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ABSTRACT

THEORY AND ESTIMATION OF ACOUSTIC

INTENSITY AND ENERGY DENSITY

Derek C. Thomas

Department of Physics and Astronomy

Master of Science

In order to facilitate the acquisition and accurate interpretation of intensity

and energy density data in high-amplitude pressure fields, the expressions for

intensity and energy density are examined to ascertain the impact of nonlinear

processes on the standard expressions. Measurement techniques for estimating

acoustic particle velocity are presented. The finite-difference method is devel-

oped in an alternate manner and presented along with bias and confidence

estimates. Additionally, two new methods for estimating the local particle ve-

locity are presented. These methods appears to eliminate the errors and bias

associated with the finite-difference technique for certain cases.
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Chapter 1

Introduction

1.1 Introduction

This thesis contains a theoretical development of the acoustic intensity and energy

density as well as a review of an established method for estimating the information

necessary to calculate these quantities from experimental data. The limitations of this

method are discussed, and two new alternate methods are presented. These methods

are analyzed and compared to the established method. This chapter presents an

overview of the previous work and motivates the work presented in this thesis.

1.2 Background

An expression for the energy carried by an acoustic pressure wave was first derived by

Kirchhoff in 1877 [1]. It was also considered by Lord Rayleigh in his seminal work, The

Theory of Sound [2]. Acoustic intensity measurements have proved useful for various

applications. The acoustic intensity has been used extensively for characterization of

radiating sources, while acoustic energy density has been shown to be useful in both

1



2 Chapter 1 Introduction

architectural acoustics [3] and active noise control [4]. Because the energy density

exhibits greater spatial uniformity than other observable field quantities, such as

pressure, the number of measurement points required to characterize the field may

be reduced in some cases [3]. In noise control, minimization of the energy density at

one point corresponds to a greater reduction of the total energy of the pressure field

due to the spatial uniformity of the energy density, often resulting in more efficient

control.

Although the common expression for acoustic energy density

w =
1

2
ρu2 +

p2

2ρ0c
(1.1)

is used indiscriminately in acoustics, multiple sources [5–10] present

w =
1

2
ρu2 +

p

γ − 1
(1.2)

as an energy density expression derived from first principles without linearizing ap-

proximations for the nondissipative case; this expression seems necessary to describe

the energy density of a high-amplitude field [11]. The connection between the Eqs.

(1.1) and (1.2) has been discussed in the literature [6–8], but still remains somewhat

ambiguous.

The standard method for estimating particle velocity [12] from closely spaced

pressure measurements relies on a finite-difference estimate of the pressure gradient as

well as an average measure of the pressure. These estimates introduce significant bias

into the measurement process. Elko performed extensive work on the development

and evaluation of the finite-difference (p-p) method for estimating the intensity in

one dimension [13]. Elko suggested [14] that mounting the sensors in a sphere for the

finite-difference estimate reduces the bias.
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1.3 Motivation

High-amplitude noise is a byproduct of the current demand for high-thrust jet and

rocket engines in transportation, military, and scientific applications. There is a

growing need to understand the nature and effects of such noise, due to increasingly

stringent noise pollution regulations and possible structural and mechanical effects

of high-amplitude pressure exposure. NASA has funded research with the goal of

providing additional insight and understanding of acoustical phenomena relevant to

rocket noise sources. Due to the utility of energy density and intensity measurements

in other areas of acoustics, NASA seeks to employ similar methods in the evaluation

and testing of rocket noise. A probe has been constructed which consists of four high-

amplitude pressure microphones mounted on the surface of a sphere. Because of this,

special attention will be paid to the effect of the sphere on the estimated quantities.

1.4 Research Objectives

There are two predominant objectives of the research contained herein. The first

is to verify the standard expressions for acoustic intensity and energy density and

provide a connection between these expressions and the alternate expression derived

from first principles [8]. The second is to estimate the intensity and energy density

of a pressure field for certain cases without the inherent bias of the finite-difference

method.

1.5 Outline

The remainder of this thesis will be as follows:

• Chapter 2 begins with a development of the expressions for linear acoustic
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intensity and energy density both generally and for several model cases. It

contains a derivation of the fully nonlinear energetic acoustic quantities for the

nondissipative case from first principles, and provides a connection between the

nonlinear expressions and the standard linear forms.

• Chapter 3 presents the standard method for estimating the acoustic intensity

and energy density of a pressure field using pressure sensors along with two new

methods for estimating the same quantities.

• Chapter 4 contains a development of confidence intervals for intensity estimates

made from acquired data. The errors induced by estimate bias and equipment

are considered and numerical simulations of the various techniques are presented

and compared.

• Chapter 5 summarizes the results of the research and includes suggestions for

future work.

• The MATLAB code used to produce the results contained herein is presented

for reference in the appendix.



Chapter 2

Acoustic Intensity and Energy

Density

2.1 Fundamental Equations

A description of the behavior of a fluid requires an equation of momentum,

ρ
Du

Dt
= −∇P + ∇ · T + f , (2.1)

where ρ is the mass density, u is the velocity vector field, P is the absolute pressure,

T is the stress tensor, and f represents any body forces such as gravity, or electromag-

netic forces. Bold faced font will be used to represent vectors, and blackboard font

will be used to represent second rank tensors and matrices. Using ∇(·) to represent

the gradient operator, the total derivative is defined as D(·)/Dt = ∂(·)/∂t + u · ∇(·).

Assuming that the stress tensor and body forces are known, additional relations are

necessary to determine the pressure, density, and velocity fields. The imposition of a

mass conservation law on the system induces the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.2)

5



6 Chapter 2 Acoustic Intensity and Energy Density

In order to close the system, additional information, such as an energy equation or

an appropriate equation of state, is needed. These equations may be used to develop

expressions for the energy density and energy transfer due to a fluid disturbance. The

governing acoustic equations are a special cases of these general equations. First, the

linear case will be considered, followed by the more general nonlinear case.

2.2 Linear Expressions for Acoustic Intensity and

Energy Density

The conservation expressions in Eq. (2.1) and (2.2) are nonlinear and currently

do not admit analytical solution except in certain simplified cases. For the case of

small-amplitude acoustic fluctuations about an equilibrium state, considerable sim-

plification is achieved by substituting

u = u0 + u′, (2.3a)

P = P0 + p′, (2.3b)

ρ = ρ0 + ρ′, (2.3c)

and neglecting second order terms. If losses and body forces also neglected and there

is no mean flow (u0 = 0), then, to first order, the momentum and continuity equations

are

ρ0
∂u′

∂t
= −∇p′, (2.4a)

∂ρ′

∂t
= −ρ0∇ · u′. (2.4b)

These are referred to as the linearized Euler’s (momentum) and continuity equations

[1].
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Because the system is defined by two equations in the three quantities, ρ′, p′,

and u′, it is underdetermined and an additional relation is required. The adiabatic

equation of state,

1 +
p′

P0
=

(
1 +

ρ′

ρ0

)γ

, (2.5)

where γ is the ratio of specific heats, is appropriate for most acoustic processes in

which heat transfer between elements of the system is negligible.

The intensity due to a small-amplitude acoustic disturbance may be developed

by considering the linearized forms of the governing equations [1]. Taking the dot

product of the velocity with the linearized Euler’s equation (2.4a), applying a vector

identity, and using the mass conservation equation (2.4b) yields

u′ ·
[
ρ0

∂u′

∂t

]
= −∇ · (p′u′) − p′

ρ0

∂ρ′

∂t
. (2.6)

Using the linear relation for the speed of sound in an adiabatic gas ρ′ = p′/c2 and

applying the chain rule to the time derivatives produces

∂

∂t

[
ρ0 |u′|2

2
+

p′2

2ρ0c2

]
+ ∇ · (p′u′) = 0. (2.7)

The term in brackets on the left is referred to as the acoustic energy density

w =
ρ0u

′2

2
+

p′2

2ρ0c2
, (2.8)

and the instantaneous acoustic intensity is defined as

Ii = p′u′. (2.9)

If complex notation is used for the pressure and velocity, then Ii = Re{p′complex}Re{u′
complex}.

The complex notation will be used throughout the remainder of this work without

special indication. It is also possible to define the complex intensity [15] as

Ic =
1

2
p′u∗ = I + J, (2.10)
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where,

I =
1

2
Re{pu∗}, (2.11a)

J =
1

2
Im{pu∗}. (2.11b)

The symbol  is used to represent the imaginary number,  =
√
−1. To distinguish

between the real and imaginary parts of the complex intensity, the real part I is

referred to as the active intensity and the imaginary part J is referred to as the

reactive intensity [1,15]. The active intensity is the time average of the instantaneous

intensity,

1

T

∫

T

Iidt = I. (2.12)

The active intensity is the average energy per cycle carried through a surface by the

“traveling” portion of the pressure field. The reactive intensity represents the energy

that is carried back and forth through the same surface by the “standing” portion of

the pressure field, hence the average intensity of the reactive portion is zero.

2.2.1 Intensity Due to Point Sources

The pressure field produced by a single time-harmonic point source at an arbitrary

location rs1 is

p1 =
A1

|r1|
e(ωt−k1·r1), (2.13)

where A1 is the complex source amplitude, r1 = r − rs1, and k1 = k r1

|r1| is the wave

vector indicating the direction of propagation. The velocity field associated with the

pressure field is found using Euler’s equation, and may be written as

u1 =


ρω
∇p1 =

A1

ρω|r1|2
r1

[
k − 

|r1|

]
e(ωt−k1·r1). (2.14)
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Using these expressions for pressure and particle velocity in Eq. (2.11) yields

I =
k|A1|2
ρω|r1|3

r1, (2.15)

J =
|A1|2

ρω|r1|4
r1 (2.16)

for the active and reactive intensities.

It is also straightforward to find the intensity due to the radiation of multiple

point sources. The pressure at a point r is given by the sum of the contributions from

the individual sources,

p =

N∑

m=1

pm =

N∑

m=1

Am

|rm|
e(ωt−km·rm), (2.17)

where rm = r− rsm, and km = k rm

|rm| . The velocity is found in the same manner as in

Eq. (2.14) to be

u =
N∑

n=1

un =
N∑

n=1

An

ρω|rn|2
rn

[
k − 

|rn|

]
e(ωt−kn·rn). (2.18)

Thus, the instantaneous intensity is

Ii =

N∑

m=1

pm

N∑

n=1

un =

N∑

m=1

N∑

n=1

AmAn

ρω|rm||rn|2
[
k − 

|rn|

]
e(2ωt−kn·rn−km·rm)rn, (2.19)

and the complex intensity is

Ic =
1

2

N∑

m=1

pm

N∑

n=1

u∗
n =

1

2

N∑

m=1

N∑

n=1

AmA∗
n

ρω|rm||rn|2
[
k +



|rn|

]
e(kn·rn−km·rm)rn. (2.20)

Taking the real part of Eq. (2.20) describes the average energy transfer due to the

acoustic disturbance over one period, or over a sufficiently long time interval.

2.3 Nonlinear Expressions for Acoustic Intensity

and Energy Density

Although the method presented previously for obtaining the linear acoustic intensity

is mathematically elegant, it provides little insight into the physical processes that
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govern energy transfer in a fluid. A more general approach may be followed to obtain

expressions for the acoustic intensity and energy density from the nonlinear governing

equations.

The general form for the kinetic energy density, t, is 1
2
ρu2, where ρ is the mass den-

sit, by appropriate definition of variables, this definition is valid for both Lagrangian

and Eulerian coordinates. This expression is identical in form to the classical expres-

sion for kinetic energy having the mass replaced by the mass density. In order to

determine the correct form for the potential energy density u in a fluid, assume that

u = ρe, where e is the internal energy per unit mass. The value of e may be found

using either a series expansion or by considering the thermodynamic properties of the

system. The series expansion is presented by both Pierce [1] and Chu and Apfel [16].

A derivation based on thermodynamic principles is found in Seliger and Whitham’s

paper [17].

First, consider the first law of thermodynamics,

δU = δQ + δW, (2.21)

where Q is the heat of the system and W is the work done on the system. This law

states that the change in the energy in the system is equal to the sum of the change

in heat and the work done on the system. This may be expressed in terms of exact

differentials as

dU = ΘdS − PdV, (2.22)

where S is the entropy, Θ is the temperature, and P is the pressure. For the problem

at hand, this equation is most usefully expressed as

de = Θds − Pd
(
ρ−1
)
, (2.23)

where e is again the energy per unit mass, s is the specific entropy, and 1/ρ is the

specific volume (volume per unit mass). This relation may be solved for the energy
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per unit mass e, if the process is assumed to be isentropic (ds = 0), and if the pressure

is related to the density by an appropriate equation of state. The thermodynamic

process of acoustic propagation is usually assumed to be adiabatic, in which case, the

equation of state is

P

P0

=

(
ρ

ρ0

)γ

, (2.24)

where γ = cp/cv, and cp, and cv are the specific heats at constant pressure, and

constant volume, respectively. Using these assumptions, Eq. (2.23) becomes

de = −P0

(
ρ

ρ0

)γ

d
(
ρ−1
)
, (2.25)

which may be integrated as

∫ e

eref

de′ = −
∫ ρ−1

ρ−1

ref

P0

(
ρ′

ρ0

)γ

d
(
ρ′−1

)
. (2.26)

The bounds of integration are chosen to represent the change in energy in the system

as it moves from a reference state to another state. The reference state may be the

equilibrium state or the classical zero-energy state (vacuum). For these two cases,

evaluating the integral given above yields

e − e0 =
P

ρ(γ − 1)
− P0

ρ0(γ − 1)
, (2.27)

for the energy per unit mass relative to a reference state, and

e =
P

ρ(γ − 1)
, (2.28)

for the energy per unit mass relative to the zero-energy state. Because the internal

energy per unit mass appears multiplied by the mass density, it is also possible to

define a potential energy density relative to a reference state as

u − u0 = ρe − [ρe]ref =
P

γ − 1
−
[

P

γ − 1

]

ref

. (2.29)
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If the zero-energy state is chosen as the reference state, then Eq. (2.29) is equal to

Eq. (2.28). If the equilibrium state is chosen, then Eq. (2.29) is

u − u0 =
P − P0

γ − 1
6= ρ(e − e0) =

P

(γ − 1)
− ρP0

ρ0(γ − 1)
. (2.30)

Thus, for an adiabatic process in a gas, the total energy density is

w = t + u =
ρu2

2
+

P

γ − 1
. (2.31)

There is a rather subtle point here that should be emphasized. If the potential energy

density of the system is referenced to an equilibrium energy per unit mass, the energy

density expression becomes

w =
ρu2

2
+

P

γ − 1
− ρP0

ρ0(γ − 1)
. (2.32)

This is the expression presented by Andreev [8] as the correct expression for acoustic

energy density. However, if the energy is referenced to an energy per unit volume,

then the expression is

w =
ρu2

2
+

P − P0

γ − 1
. (2.33)

Because the acoustic equations are most commonly used in an Eulerian form (control

volume), it seems that referencing the energy density to the equilibrium energy density

per unit volume is more appropriate, and in this case Eq. (2.33) is more natural.

However, it will be shown later that Eq. (2.27) is the correct energy expression for a

Lagrangian coordinate system.

In order to draw a connection between Eq. (2.33) and the traditional acoustic

energy density, Eq. (2.8), assume that the fluctuations about equilibrium are small,

and expand the pressure P about the equilibrium in a series in the density ρ. The

result is

P − P0 =

[
∂p

∂ρ

]

0

(ρ − ρ0) +
1

2!

[
∂2p

∂ρ2

]

0

(ρ − ρ0)
2 + · · · , (2.34)
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where the derivatives are evaluated at equilibrium. This expansion may be used to

show that for the infinitesimal case, the energy density expressions obtained from

Eqs. (2.27) and (2.29) are equal. Using the ideal gas law and the adiabatic equation

of state, [
∂p

∂ρ

]

0

=

[
γP

ρ

]

0

= c2, (2.35)

and [
∂2p

∂ρ2

]

0

=

[
γ(γ − 1)P

ρ2

]

0

=
c2

ρ0
(γ − 1). (2.36)

Thus,

u =
P − P0

γ − 1
=

c2

γ − 1
(ρ − ρ0) +

c2

2ρ0
(ρ − ρ0)

2 + · · · . (2.37)

Assuming that ρ = ρ0 + ρ′, and discarding third-order terms in the kinetic energy

density expression, we have

w =
ρ0u

2

2
+

1

γ − 1

[
c2(ρ − ρ0)

]
+

c2

2ρ0

(ρ − ρ0)
2 (2.38)

to second order. The first order relation between the density and pressure, ρ − ρ0 =

(P −P0)/c
2 may be used to write the squared term in w in the more commonly used

form if desired [1]. Upon substituting w into the energy conservation equation [1],

∂w

∂t
+ ∇ · (wu + Pu) = 0, (2.39)

we see that the linear terms cancel due to the continuity equation, ∂ρ/∂t+∇·(ρu) = 0,

and

∂

∂t

[
ρ0u

2

2
+

c2

2ρ0
(ρ − ρ0)

2

]
+ ∇ · [u(P − P0)]. (2.40)

From this equation we define the acoustic potential energy density,

u =
c2

2ρ0
(ρ − ρ0)

2, (2.41)

the acoustic kinetic energy density,

t =
ρ0u

2

2
, (2.42)
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the acoustic energy density,

w = t + u =
ρ0u

2

2
+

c2

2ρ0
(ρ − ρ0)

2, (2.43)

and the acoustic intensity,

I = u(P − P0). (2.44)

Although the method outlined previously provides a simple analytic form for the

total energy density, the adiabatic assumption limits the application of the expression

to other fluids. An alternate method for determining the potential energy density is

to assume that the fluctuation from equilibrium is small, and expand ρe in a series

in ρ about an equilibrium value ρ0 as

ρe = ρ0e0 +

[
∂ρe

∂ρ

]

0

(ρ − ρ0) +
1

2!

[
∂2ρe

∂ρ2

]

0

(ρ − ρ0)
2 + · · · , (2.45)

where the terms inside the brackets, [·]0, are evaluated at equilibrium. Again using

Eq. (2.23), the necessary derivatives are

∂ρe

∂ρ
= e + ρ

∂e

∂ρ
= e +

p

ρ
= h, (2.46)

∂2ρe

∂ρ2
=

∂h

∂ρ
=

∂e

∂ρ
+

1

ρ

∂p

∂ρ
− p

ρ
=

1

ρ

∂p

∂ρ
=

c2

ρ
, (2.47)

where c is the isentropic sound speed and h is the enthalpy per unit mass. Thus,

ρe = ρ0e0 + h0(ρ − ρ0) +
c2

2ρ0
(ρ − ρ0)

2 (2.48)

to second order. Following the assumption that the fluctuations about equilibrium

are small, and writing ρ = ρ0 +ρ′, then ρ′u2/2 is a third order quantity, and the total

energy density is

w =
ρ0u

2

2
+ ρ0e0 + h0(ρ − ρ0) +

c2

2ρ0

(ρ − ρ0)
2 (2.49)

to second order. The energy density relative to equilibrium is

w =
ρ0u

2

2
+ h0(ρ − ρ0) +

c2

2ρ0

(ρ − ρ0)
2. (2.50)
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The standard expression for acoustic energy density is obtained by considering the

energy conservation equation,

∂w

∂t
+ ∇ · [(w + p)u] = 0. (2.51)

When w is substituted into the conservation equation, the linear terms again cancel

and as a result,

∂

∂t

[
ρ0u

2

2
+

c2

2ρ0
(ρ − ρ0)

2

]
+ ∇ · [u(P − P0)] = 0. (2.52)

Naze Tjøtta and Tjøtta [18] give the nonlinear expression of energy conservation

to third order as

∂

∂t
E + ∇ · I = −D, (2.53)

where

E = ρ0
u2

2
+

(P − P0 + L)2

2ρ0c
2
0

+
1

3

(
1 − B

A

)
(P − P0)

3

ρ2
0c

4
0

− ∂

∂t

[
(κ +

4

3
µ)

u2

2c2
0

+
γ − 1

γ
K

(P − P0)
2

2ρ0c4
0

]
, (2.54a)

I = (P − P0 + E)u − µu×∇× u, (2.54b)

D =
1

c2
0

(κ +
4

3
µ)

∣∣∣∣
∂v

∂t

∣∣∣∣
2

+
γ − 1

γ

K

ρ0c4
0

(
∂p

∂t

)2

+ µ|∇ × v|2, (2.54c)

E =
ρ0u

2

2
+

(P − P0)
2

2ρ0c2
0

, (2.54d)

where K, κ, and µ are the coeffiecients of thermal conductivity, bulk and shear

viscosity, respectively, and L = ρu2/2 + p2/2ρc2 is the acoustic Lagrangian density.

If dissipative terms are removed, zero mean flow is assumed and the third order

quantities are neglected, then Eqs. (2.53) and (2.54) reduce to

∂

∂t
E + ∇ · I = 0, (2.55)
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where,

E = ρ0
u2

2
+

(P − P0)
2

2ρ0c
2
0

= w, (2.56a)

I = (P − P0)u = Ii (2.56b)

which are equivalent to the energy equations derived here.

2.4 Lagrangian Formulation

The equations of motion in a Lagrangian frame may be obtained by means of a vari-

ational principle. This formulation permits commentary on which expression for the

potential energy density is most appropriate. The linear acoustic equations of motion

are obtained from a variational principle in [19]. Bennett includes a brief treatment of

the method in his book Lagrangian Fluid Dynamics [20]. Eckart considers the motion

of an adiabatic ideal gas [21], but the clearest development of the nonlinear equations

of motion is presented by Seliger and Whitham [17].

Let the position of some fluid particle at time t = 0 be represented by α =

[ α1 α2 α3 ]T. The position of the particle at time t is given by

x(α, t) = α + ξ(α, t), (2.57)

where ξ = [ ξ1 ξ2 ξ3 ]T is the vector of displacements. Throughout this section it

will be convenient to use subscripts to denote vector components. The summation

convention, where repeated indices indicate summation e.g.,

∑

i

xiyi = xiyi (2.58)

will also be employed. The transformation from the initial time to the current time
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is characterized by the Jacobian matrix

J =
∂xi

∂αj

=




1 + ∂ξ1
∂α1

∂ξ1
∂α2

∂ξ1
∂α3

∂ξ2
∂α1

1 + ∂ξ2
∂α2

∂ξ2
∂α3

∂ξ3
∂a1

∂ξ3
∂a2

1 + ∂ξ3
∂a3




, (2.59)

thus, the current density ρ is related to the initial density ρ0 by the Jacobian deter-

minant [17],

J =
∂(x1, x2, x3)

∂(α1, α2, α3)
=

∂x

∂α1

· ∂x

∂α2

× ∂x

∂α3

=

∣∣∣∣∣∣∣∣∣∣

1 + ∂ξ1
∂α1

∂ξ1
∂α2

∂ξ1
∂α3

∂ξ2
∂α1

1 + ∂ξ2
∂α2

∂ξ2
∂α3

∂ξ3
∂α1

∂ξ3
∂α2

1 + ∂ξ3
∂α3

∣∣∣∣∣∣∣∣∣∣

, (2.60)

as

ρ =
ρ0

J
. (2.61)

Once the density has been determined, it may be used to determine the pressure via

the adiabatic relation,

P = P0

(
ρ

ρ0

)γ

=
P0

Jγ
. (2.62)

Implicit in the use of this equation is that the entropy remains constant for a given

particle. The velocity of a fluid particle is given by

ui =
∂xi

∂t
=

∂ξi

∂t
. (2.63)

These quantities may be used to determine the equations of motion by means of

a variational principle. For a conservative system in Lagrangian coordinates, the

equations of motion may be found by satisfying the condition that the action, S,

defined as

S =

∫

t

∫

V

[t − u]dV dt, (2.64)

be stationary. The Lagrangian coordinate differential volume dV = dx1dx2dx3 may

be related to the reference coordinate volume dW = dα1dα2dα3 by dV = JdW .
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Substituting the results of Section 2.3 into Eq. (2.64) results in

S =

∫

t

∫

V

ρ

[
1

2

(
∂xi

∂t

)2

− p

ρ(γ − 1)

]
dV dt. (2.65)

Using the relations between the Lagrangian coordinates and the pressure, mass den-

sity, and particle velocity and making the transformation to the reference coordinate

system yields

S =

∫

t

∫

W

ρ0

[
1

2

(
∂xi

∂t

)2

− p0

ρ0(γ − 1)
J1−γ

]
dWdt. (2.66)

The integrand is defined as the Lagrangian density L. It may be shown [19] that the

constraint on S is satisfied if

∂

∂t

[
∂L
∂ ∂xi

∂t

]
+

3∑

j=1

∂

∂αj

[
∂L

∂ ∂xi

∂αj

]
− ∂L

∂xi
= 0. (2.67)

The Lagrangian density, L, is depends on xi only through derivatives, so

∂

∂t

[
∂L
∂ ∂xi

∂t

]
+

3∑

j=1

∂

∂αj

[
∂L

∂ ∂xi

∂αj

]
= 0. (2.68)

Carrying out the appropriate derivatives [17] results in the equation of motion

∂2xi

∂t2
= − 1

ρ0

∂J

∂
(

∂xi

∂αj

) ∂P

∂αj
. (2.69)

Substituting for P and defining c0 = γP0/ρ0 produces

∂2xi

∂t2
= c0J

−γ−1 ∂J

∂
(

∂xi

∂αj

) ∂J

∂αj

. (2.70)

For one dimension, J = 1 + ∂ξ1/∂α1, and Eq. (2.70) becomes

∂2ξ1

∂t2
=

c0(
1 + ∂ξ1

∂α1

)γ+1

∂2ξ1

∂α2
1

, (2.71)

which is identical to the full non-dissipative nonlinear equation derived by Beyer [22].
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This formulation enables a discussion of the three expressions derived for the

potential energy density in Section 2.3. The three expressions are numbered as follows

to facilitate discussion. The potential energy density referenced to the zero energy

(vacuum) state is given by

u1 =
P

γ − 1
, (2.72)

the potential energy density referenced to the equilibrium energy per unit mass is

u2 =
P

γ − 1
− ρP0

ρ0(γ − 1)
, (2.73)

and the potential energy density referenced to the equilibrium energy per unit volume

is

u3 =
P − P0

γ − 1
. (2.74)

The first expression, u1 is valid for all cases, but there is some ambiguity as to

which of the remaining two is appropriate for acoustic energy density, that is, which

expression is best for fluctuations about equilibrium. The Lagrangian formulation

allows immediate comparison of the two. Upon substitution, it becomes apparent

that u3 does not produce the correct Lagrangian equations of motion. Thus, u2 is the

correct form for a Lagrangian description of acoustic processes. This does not mean

that u3 is inaccurate, rather, u3 seems more suited to the control volume formulation

of Eulerian fluid dynamics because it is referenced to the energy per volume which is a

much more natural quantity in an Eulerian coordinate system. The lack of knowledge

of an appropriate variational principle for an Eulerian field precludes investigation of

this hypothesis; however, the paper by Scholle [23] may serve as a starting point

for continued investigation. Thus, u2 appears to be appropriate for a Lagrangian

description of the fluid motion, while u3 appears to be appropriate for an Eulerian

description. For infinitesimal fluctuations, this question becomes inconsequential as

the two conventions are equivalent.
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Chapter 3

Techniques for Estimating Acoustic

Intensity and Energy Density

3.1 Introduction

Calculation of the acoustic intensity and energy density at a point in space requires

knowledge of both the pressure and the particle velocity at that point. The pressure

is easily measured with a microphone or other appropriate sensor. However, direct

measurement of the particle velocity is difficult and the equipment is often expen-

sive, and in some cases very fragile. Consequently, alternate methods that exploit

knowledge of the acoustical field have been devised to provide relatively low cost,

durable probes. One technique that uses the differences between the pressures at

multiple sensor locations to estimate particle velocity has been included in the ANSI

standard on sound intensity measurements [24]. The finite-difference technique is

presented here along with an alternate method that provides certain advantages over

the finite-difference method.

Before discussing the various methods for estimating particle velocity from pres-

21
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sure measurements, the relationship between pressure and particle velocity is dis-

cussed. The particle velocity may be related to the pressure using the linear Euler’s

equation,

ρ0
∂u

∂t
= −∇p. (3.1)

If the signal is time-harmonic and complex notation is used, or if the analysis is

conducted in the frequency domain via the Fourier transform, then

∂u(r, t)

∂t
= jωu(r, t), (3.2)

or,

∂ũ(r, ω)

∂t
= jωũ(r, ω), (3.3)

where ũ = F{u} =
∫∞
−∞ ueωtdt. In these cases, Eq. (3.1) becomes

ωρ0u = −∇p, (3.4)

or

ωρ0ũ = −∇p̃. (3.5)

An alternate method [25] uses the antiderivative to find that

u = −ρ−1
0

∫ t

0

∇p dt, (3.6)

assuming that the system is initially at rest. All three of these methods for esti-

mating the particle velocity require knowledge of the pressure gradient. The stan-

dard method for approximating the pressure gradient is known as the finite-difference

method. Hereafter, all analysis will be conducted in the frequency domain and the

tilde indicating the Fourier transform will be omitted.
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3.2 Finite-Difference Method

In one dimension, the gradient of a pressure field may be easily estimated by taking

the difference between two closely spaced sensors and dividing by the separation

distance d to obtain

∂p

∂x
≈ p1 − p2

d
. (3.7)

This necessitates the use of closely phase matched sensors, although the effect of slight

phase mismatch for constant frequency decreases as the separation distance increases.

The maximum separation distance is limited by the finite-difference approximation of

the spatial derivative which requires that the separation distance be much less than a

wavelength, λ. Fahy [12] suggests that the spacing should be less than 0.13λ to avoid

errors greater than 5%. These requirements limit the frequency bandwidth for which

this method can be used.

The finite-difference method can be extended up to three dimensions be using one

pair of sensors along each coordinate axis for a total of six sensors. However, it is

not necessary to use six sensors. Since three points in space uniquely define a plane,

with three sensors it is always possible to find a plane that contains all three sensors.

Although variation normal to this plane cannot be resolved by the triad of sensors,

this problem is corrected by adding a fourth sensor that does not lie in the plane of

the other three sensors. Using this fourth sensor, variations in any direction may be

estimated.

Although numerous configurations of sensors may be used [26,27], only a tetrahe-

dral configuration will be considered here. The methods presented are applicable to

an array of microphones in arbitrary locations. The tetrahedral configuration consists

of four sensors located at the vertices of a tetrahedron as shown in Fig. 3.1. In a

spherical coordinate system with vertices a distance a from the origin, the azimuthal
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1

2

3
4

x

z

y

Figure 3.1 A tetrahedral sensor array. The sensors are placed at the vertices

of a tetrahedron with a circumcircle of radius a. Sensor 1 lies on the z axis
and sensors 2 and 4 are aligned with the y axis.

(φi) and polar (θi) angles for the i-th sensor are

φ1 = 0, θ1 = 0,

φ2 = 5π
3

, θ2 = π − arccos 1
3
,

φ3 = π, θ3 = π − arccos 1
3
,

φ4 = π
3
, θ4 = π − arccos 1

3
.

Using these angles, the locations of the sensors may be specified in cartesian coordi-
nates as

r1 =




0
0
a



 , r2 =




a
√

2
3

−a
√

6
3

−a
3



 , r3 =




−2a

√
2

3

0
−a

3



 , and r4 =




a
√

2
3

a
√

6
3

−a
3



 . (3.8)

There are certain difficulties associated with using four sensors if they are not

aligned along the coordinate axes with one placed at the origin. In any alternate
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configuration, the lines between sensors have projections on multiple axes and the

gradient can no longer be estimated simply by taking the difference between pairs of

sensors and dividing by the separation distance. Instead, the relative contribution by

each pair to each component of the gradient must be calculated.

From a naive perspective, perhaps the most apparent method for calculating the

contribution of each sensor pair to the estimated gradient is to take the the difference

of the pressures measured at the sensors divided by the projection of the separation

distance onto the appropriate coordinate axis and averaging the results. For four

sensors located at r1, r2, r3, and r4, where ri = [xi yi zi]
T, this can be calculated

systematically by defining the matrix dx as

dx =




dx11 dx12 dx13 dx14

dx21 dx22 dx23 dx24

dx31 dx32 dx33 dx34

dx41 dx42 dx43 dx44




, (3.9)

where dxij = xi − xj . Thus, dxii = 0 and dxij = −dxji so dx is antisymmetric and

trace(dx) = 0. Defining similar matrices dy and dz in the same manner yields,

dy =




dy11 dy12 dy13 dy14

dy21 dy22 dy23 dy24

dy31 dy32 dy33 dy34

dy41 dy42 dy43 dy44




, (3.10)

dyij = yi − yj, dyii = 0, dyij = −dyji,

dz =




dz11 dz12 dz13 dz14

dz21 dz22 dz23 dz24

dz31 dz32 dz33 dz34

dz41 dz42 dz43 dz44




, (3.11)
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dzij = zi−zj , dzii = 0, and dzij = −dzji. Next, the matrices d′
x, d

′
y, and d′

z are formed

by inverting the nonzero elements of the corresponding dµ matrix. As an example,

for nonzero elements of dx, d′
xij = 1/dxij. Using these matrices with the matrix P,

defined as

P =




p1 0 0 0

0 p2 0 0

0 0 p3 0

0 0 0 p4




, (3.12)

a finite-difference operator, ∆µ(·), may be defined as

∆µ(P) = d′
µP + (d′

µP)T. (3.13)

Because P is diagonal, and d′ is antisymmetric, this operator may be written as

∆µ(P) = d′
µP − P(d′

µ)T. (3.14)

For the coordinate system defined in Eq. (3.8),

∆x(P) =




0 p2−p1

dx12

p1−p3

dx13

p4−p1

dx14

p2−p1

dx12
0 p2−p3

dx23
0

p1−p3

dx13

p2−p3

dx23

0 p4−p3

dx34

p4−p1

dx14

0 p4−p3

dx34

0




, (3.15)

∆y(P) =




0 p2−p1

dy12

0 p4−p1

dy14

p2−p1

dy12
0 p3−p2

dy23

p4−p2

dy24

0 p3−p2

dy23
0 p4−p3

dy34

p4−p1

dy14

p4−p2

dy24

p4−p3

dy34
0




, (3.16)
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and

∆z(P) =




0 p2−p1

dz12

p3−p1

dz13

p4−p1

dz14

p2−p1

dz12
0 0 0

p3−p1

dz13
0 0 0

p4−p1

dz14
0 0 0




. (3.17)

The components of these matrices are finite-difference approximations of the spatial

derivatives of the field p along the chosen coordinate axes. The standard approxima-

tions for these derivatives may be found by averaging the components of the operator

acting on the diagonal matrix of the measurement points. This average may be

computed using

dp

dx
≈ 1

N

∑

i,j

[∆x(P)]ij =
1

N
iT∆x(P)i, (3.18)

where N is the number of nonzero components in ∆x(P), and i is a column vector of

ones. For a tetrahedral probe with microphones placed at a radial distance, a, from

a common origin as defined in Eq. (3.8), the gradient is approximately

∇p ≈




1
N
iT∆x(P)i

1
N
iT∆y(P)i

1
N
iT∆z(P)i




=
1

4a




√
2

5
(−9p1 + 8p2 − 7p3 + 8p4)

√
6(p4 − p2)

3p1 − p2 − p3 − p4




(3.19)

A careful examination of the x term reveals that this expression cannot be correct as

it predicts variation in the x direction in the presence of a field that varies only in

the z direction. The reason for this is not clear unless the sums are analyzed term by

term. It then becomes apparent that due to the symmetries of the configuration in

the y-direction, the contributions of all of the sensor pairs cancel except for sensors

2 and 4 which lie along the y-axis. In the x-direction, this symmetry does not exist,

and consequently, the other pairs do not cancel. If all of the sensors lie in the same

plane then this won’t cause any problems, however, since the sensors lie outside of

the x-y plane, there are potential phase differences between the sensors that are not
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accounted for. These phase differences cause errors in the gradient estimate for certain

directions.

A more correct finite-difference estimate may be obtained from the assumption

that the sensors are located such that the spatial variation in the field is small over

the volume occupied by the probe. This is technically identical to the method used

by Pascal and Li [27] although their method varies slightly in certain details. In this

case, the gradient of the field may be approximately related to the pressure difference

between any sensor pair by

r′ij · ∇p = r′ij
T∇p ≈ pj − pi, (3.20)

where r′ij = [rjx− rix rjy − riy rjz − riz ]
T = rj −ri. If ∆p = [ p2−p1 · · · pn −pn−1 ]T,

and X = [ r′12 | r′13 · · · | r′n−1,n ]T is an N × 3 matrix, n is the number of sensors

and N = n(n − 1)/2 is the number of sensor pairs, then

X∇p = ∆p + ǫ∇p, (3.21)

where ǫ∆p represents the error in the estimate. By minimizing the squared error, the

least-squares estimate of the gradient is

∇p ≈ (XT
X)−1

X
T∆p. (3.22)

This is a finite-difference, least-squares estimate of the gradient of the field p. The

matrix (XTX)−1XT is a left inverse [28,29] of X, and may be calculated as long as the

columns of X are linearly independent. This requirement is guaranteed to be satisfied

as long as the number of sensors used is greater than the number of measurement

dimensions (three dimensions, four sensors minimum). The errors associated with this

approximation will be discussed in section 4.1.1. For the tetrahedral probe considered
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previously, the gradient approximation is

∇p ≈ 1

4a




√
2(p2 − 2p3 + p4)
√

6(−p2 + p4)

3p1 − p2 − p3 − p4




. (3.23)

The y and z components are identical to the those obtained by averaging the indi-

vidual contributions of sensor pairs, but the x component is very different. It can be

shown that for a variation along the y or z axis, this method predicts no variation

in the x direction, as opposed to the erroneous prediction of the averaging method.

Consequently, this method appears to be the best available solution.

This approximation of the gradient may be used to estimate the acoustic intensity.

Substituting Eq. (3.23) into Eq. (3.5), the velocity u is

u =


ρ0ω
∇p ≈ 

4aρ0ω




√
2(p2 − 2p3 + p4)
√

6(−p2 + p4)

3p1 − p2 − p3 − p4




(3.24)

From Eq. (2.11), the time-averaged intensity vector, I is

I =
1

2
Re{pu∗}. (3.25)

For the finite-difference case, the pressure p is the Fourier transform of the pressure

at the acoustical center of the probe, which is approximated as the average of the

pressure measured at the four sensor locations

p ≈ p1 + p2 + p3 + p4

4
. (3.26)

Defining the single-sided cross-spectrum as

Gij = 2 [p∗i pj]ω=0...∞ , (3.27)
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and substituting the estimated values for u and p, the time-averaged intensity is

I ≈ 1

32ρωa




√
2 Im{−G12 + 2G13 − G14 + 3G23 − 3G34}
√

6 Im{G12 − G14 − G23 − 2G24 − G34}

4 Im{G12 + G13 + G14}




. (3.28)

These expressions agree with those presented without derivation by Hori [30].

3.3 Wave Vector Method

The finite-difference method suffers from frequency-dependent estimate bias which

results from both averaging and the finite-difference approximation. In spite of this

limitation, it can be used with virtually no knowledge of the field to estimate both

the active and reactive intensity. If certain conditions are met, then our knowledge of

wave propagation may be used to more elegantly and accurately estimate the particle

velocity. If the measurement location is in the acoustic far field, then the velocity and

intensity may be estimated by assuming that the wavefront is approximately planar

over the volume of the sphere, and that the wave is described locally by p = p0e
−k·r.

In this case, the direction of propagation may be estimated by comparing the relative

phase of the sensors in the probe.

Consider a probe consisting of four sensors, with sensors 1, 2, 3, and 4 located at

r1, r2, r3, and r4, respectively. This probe may be used to estimate the wave vector

of a pressure field. It is useful to shift the coordinate system temporarily so that one

of the sensors lies at the origin. Choosing to place sensor 1 at the origin results in
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the shifted coordinate system, r′. The shifted sensor positions are given by

r′11 = r1 − r1, (3.29a)

r′12 = r2 − r1, (3.29b)

r′13 = r3 − r1, (3.29c)

r′14 = r4 − r1. (3.29d)

Observe that the pressure measured at each of the sensors is given by

p1 = |p(r1)| eϕ1 , p2 = |p(r2)| eϕ2 , p3 = |p(r3)| eϕ3 , and p4 = |p(r4)| eϕ4.

(3.30)

The phases of the pressures measured at sensors 2-4 relative to the pressure at sensor

1 may be found from the transfer functions,

Hij =
pj

pi
=

|pj|
|pi|

eϕij . (3.31)

The phases of the sensors relative to sensor 1 are given by

ϕ11 = arg(H11) = 0, (3.32a)

ϕ12 = arg(H12), (3.32b)

ϕ13 = arg(H13), (3.32c)

ϕ14 = arg(H14). (3.32d)

For a plane wave, the spatial phase shift of any point relative to the origin is

ϕ = −k · r. (3.33)

Combining Eq. (3.32) and (3.33) provides a system of three equations relating the

transfer functions to the wave vector k

−k · r′12 = arg(H12) = ϕ12, (3.34a)

−k · r′13 = arg(H13) = ϕ13, (3.34b)

−k · r′14 = arg(H14) = ϕ14. (3.34c)
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If the pressure field is not planar, these equations are approximate. The error remains

small except in fields dominated by the reactive pressure. These equations may be

written in matrix form as

− X1k = ϕ1, (3.35)

where k is the wave vector, X1 =
[

r′12 r′13 r′14
]T

, and

ϕ1 =
[
arg(H12) arg(H13) arg(H14)

]T
. The wave vector k normal to the surface of

constant phase may be estimated if the ri are chosen so that X1 is invertible, in which

case,

k′ = −X
−1
1 ϕ1. (3.36)

This is the wave vector calculated relative to sensor 1, hereafter referred to as k′
1.

The same calculation may be carried out with any other sensor lying at the origin.

The requirement that X1 be invertible is equivalent to requiring that the vectors r′i

contain orthogonal components, or in other words, that the vectors r′1i form a three-

dimensional basis.

Once the wave vector has been estimated, it can be related to the particle velocity

by

u =
k

ρ0ω
e−k·r. (3.37)

Following the assumption that the wavefronts are locally planar and taking the gra-

dient of the plane wave pressure field analytically, Eq. (3.5) becomes Eq. (3.37). It

is also possible to use the relation |k′| = k′ = ω/cph, where cph is the phase speed, to

express Eq. (3.37) as

u =
k′

|k′|
e−k′·r

ρ0cph

. (3.38)

Special care must be taken when using this form of the equation because it uses the

phase speed of the wave front, not the thermodynamic sound speed. Thus, it is only

valid in regions where the two are approximately equal. The phase speed may be
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calculated from the estimated vector k′ as

cph =
|k′|
ω

. (3.39)

Comparing the calculated phase speed with the thermodynamic sound speed may

serve as a check of whether or not the necessary assumptions are valid.

It is also possible to use all of the inter-sensor transfer functions simultaneously to

find a least-squares estimate of the wave vector. This is mathematically equivalent to

estimating the wave vectors relative to each sensor and averaging the result to obtain

k′
ave =

n∑

m=1

k′
m

n
. (3.40)

This is accomplished by defining the matrix

X =
[
X

T
1 | X

T
2 | · · · | X

T
n

]T
=
[
r′12 | r′13 | · · · | r′n−1,n

]
, (3.41)

and the vector

ϕ = [ϕ12 | ϕ13 | · · · | ϕn−1,n]
T = [arg(H12) | arg(H13) | · · · | arg(Hn−1,n)]T . (3.42)

These quantities may be used to estimate kls using the full form of (3.35),

− Xk′
ls = ϕ. (3.43)

The least-squares solution is

k′
ls = −(XT

X)−1
X

Tϕ = −C
−1
r X

Tϕ, (3.44)

where Cr is the covariance matrix of inter-sensor separation distances.

The separation distance of the sensors provides an upper limit on the estimable

wave number. The phase between two sensors in a given direction may only be

accurately determined if the sensors are separated by less than half of a wavelength,

consequently,

|k| < min
i

2π

|riν − rjν|
, (3.45)
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where ν represents the appropriate cartesian coordinate. This limit is directly anal-

ogous to the Nyquist frequency. There is a different minimum frequency for each

direction, however, a conservative estimate may be obtained by using the maximum

sensor to sensor distance. Because the wave vector method directly uses the phase

to estimate the wave vector in the frequency domain, in certain cases it is possible

to extend the method to frequencies above the Nyquist limit. If there is sufficient

frequency content in the signal to accurately unwrap the phase, e.g. a broadband

signal such as the sound field of a jet or rocket field, then the method may potentially

be used beyond the Nyquist limit.

The wave vector calculated using this method is the normal vector of a surface of

constant phase. The geometry of the surfaces of constant phase (planar, cylindrical,

spherical, or other) may be determined by appropriate placement of multiple probes

and using the wave vectors to determine the principal curvatures of the surfaces of

constant phase. It may be possible in certain cases to use multiple probes to estimate

the source location by triangulation.

For the tetrahedral probe depict in Fig. 3.1, the sensors are located at

r1 =




0

0

a




, r2 =




a
√

2
3

−a
√

6
3

−a
3




, r3 =




−2a
√

2
3

0

−a
3




, and r4 =




a
√

2
3

a
√

6
3

−a
3




, (3.46)

where a is the radial distance of the sensors from the origin. By shifting the coordinate

system so that sensor 1 lies at the origin,

r′1 =




0

0

0




, r′2 =




a
√

2
3

−a
√

6
3

−4a
3




, r′3 =




−2a
√

2
3

0

−4a
3




, and r′4 =




a
√

2
3

a
√

6
3

−4a
3




. (3.47)
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Form the matrix

X1 =




a
√

2
3

−a
√

6
3

−4a
3

−2a
√

2
3

0 −4a
3

a
√

2
3

a
√

6
3

−4a
3




, (3.48)

and calculate the inverse

X
−1
1 =




√
2

4a
−

√
2

2a

√
2

4a

−
√

6
4a

0
√

6
4a

− 1
4a

− 1
4a

− 1
4a




. (3.49)

Thus,

k′
1 =




k′
x1

k′
y1

k′
z1




=

√
2

4a




− arg(H12) + 2 arg(H13) − arg(H14)
√

3 arg(H12) −
√

3 arg(H14)

1√
2
arg(H12) + 1√

2
arg(H13) + 1√

2
arg(H14)




. (3.50)

The least-squares estimate of the wave vector may be calculated as

k′
ls =

1

16a




√
2 (− arg(H12) + 2 arg(H13) − arg H14) + 3 arg(H23) − 3 arg(H34))
√

6 (arg(H12) − arg(H14) − arg(H23) − 2 arg(H24) − arg(H34))

4 (arg(H12) + arg(H13) + arg(H14))




(3.51)

For a tetrahedral probe, the sensors are equidistant and the separation distance is

|ri − rj| =
2a

√
6

3
. (3.52)

Hence the lowest Nyquist frequency for the probe is

fmax =
c

22a
√

6
3

=
3c

4a
√

6
. (3.53)

For a probe with a 1/2′′ radius, fmax = 8402 Hz. The smallest separation distance

for a coordinate axis is along the x-axis, where sensors 2 and 4 are separated from

sensor 3 by a distance a
√

2. The highest Nyquist frequency for a tetrahedron is 9701

Hz.
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3.4 Spherical Harmonic Method

If the sensors are located on the surface of a sphere, then the symmetry of the probe

provides an alternate means for estimating the wave vector. The pressure produced

by an incident plane wave of amplitude p0 on the surface of a rigid sphere is given by

p |r=a= p0

∞∑

n′=0

(−)n′

(2n′ + 1)

[
jn′(ka) − j′n(ka)

h
(2)′
n′ (ka)

h
(2)
n′ (ka)

]
n′∑

m=−n′

Y m
n′ (r̂)[Y m

n′ (k̂)]∗,

(3.54)

where r̂ and k̂ represent the angular position and direction of wave propagation

respectively [31]. The pressure at the position of the i-th sensor, pi is

pi = p0

∞∑

n′=0

(−)n′

(2n′ + 1)

[
jn′(ka) − jn′(ka)

h
(2)′
n′ (ka)

h
(2)
n′ (ka)

]
n′∑

m=−n′

Y m
n′ (r̂i)[Y

m
n′ (k̂)]∗.

(3.55)

Let the vector p be defined as p = [p1 p2 . . . pn], where n is the number of sensors.

The summation in Eq. (3.55) may be related to p. First, define the matrix of spherical

harmonics and spherical Bessel functions at the sensor locations as

H =




a0Y
0
0 (r̂1) a1Y

−1
1 (r̂1) a1Y

0
1 (r̂1) a1Y

1
1 (r̂1) · · ·

a0Y
0
0 (r̂2) a1Y

−1
1 (r̂2) a1Y

0
1 (r̂2) a1Y

1
1 (r̂2) · · ·

...

a0(ka)Y 0
0 (r̂n) a1Y

−1
1 (r̂n) a1Y

0
1 (r̂n) a1Y

1
1 (r̂n) · · ·




, (3.56)

where,

an′ = (−)n′

(2n′ + 1)jn′(ka) − j′n′(ka)

h
(2)′
n′ (ka)

h
(2)
n′ (ka). (3.57)

Then, define the vector Yk as

Yk =
[
Y 0

0 (k̂) Y −1
1 (k̂) Y 0

1 (k̂) Y 1
1 (k̂) · · ·

]
. (3.58)

The vector p is thus,

p = p0HYH
k . (3.59)
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H is an n × ∞ matrix and Yk is an infinitely long vector. For most well-behaved

cases, both may be truncated. The number of terms that must be kept depends on

the maximum ka value desired. If the summation in Eq. (3.55) were truncated after

M terms, then H would be an n × (M + 1)2 matrix and Yk would have (M + 1)2

elements. The elements of H are calculated from known quantities, but the vector Yk

and the constant p0 contain the amplitude and direction of the incident wave which

are the quantities to be estimated. The product of p0 and Yk may be estimated from

the vector of pressure amplitudes and the truncated matrix H as

p0Y
H
k = (HH

H)−1
H

Hp. (3.60)

Because this calculation is carried out numerically, care must be taken when inverting

the matrix HHH to avoid numerical error.

Once the product p0Yk has been calculated, the wave amplitude p0 and the di-

rection of propagation may be found using the definition of the spherical harmonics

and an identity. The spherical harmonics are defined as

Y m
n (k̂) =

√
2n + 1

4π

(n − m)!

(n + m)!
P m

n (cos θk)e
mφk , (3.61)

hence, Y 0
0 (k̂) = 1/

√
4π. Thus, the approximate amplitude, p̂0, of the incoming wave

may be calculated by multiplying the first element of the vector (HHH)−1HHp by
√

4π,

p̂0 =
√

4π[(HH
H)−1

H
Hp]1. (3.62)

The expression inside of the brackets is a vector, so the subscript serves to index

the elements of the vector. This is an estimate of amplitude of the incident wave

without the presence of the sphere. Once the amplitude of the incident wave has been

approximated, the direction of the wave vector may be determined using the identity

2n + 1

4π
Pn(x̂ · ŷ) =

n∑

m=−n

Y m
n (x̂) [Y m

n (ŷ)]∗. (3.63)
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This may be expressed using the vector notation by first defining

Yri =
[
Y 0

0 (r̂i) Y −1
1 (r̂i) Y 0

1 (r̂i) Y 1
1 (r̂i) · · ·

]
, (3.64)

so that,

Pn(k̂ · r̂) =
4π

2n + 1
[Yri](n+1)2−2n...(n+1)2

[
YH

k

]
(n+1)2−2n...(n+1)2

. (3.65)

It is possible to determine the direction of propagation using just the second through

fourth entries of the vectors Yk and Yri by recalling the definition of the first order

Legendre polynomial, P1(x) = x, thus,

k̂ · r̂i = arccos

(
4π

3
[Yri]2...4

[
YH

k

]
2...4

)
. (3.66)

Thus, a system of equations for k̂ may be written in matrix form as

X̂k̂ = c, (3.67)

where
X̂ =

[
r̂1 r̂2 · · · r̂n

]T
(3.68)

is the matrix of unit sensor position vectors, and

c =




arccos
(

4π
3

[Yr1]2...4

[
YH

k

]
2...4

)

arccos
(

4π
3

[Yr2]2...4

[
YH

k

]
2...4

)

...

arccos
(

4π
3

[Yrn]2...4

[
YH

k

]
2...4

)




. (3.69)

The unit vector k̂ is given approximately as

k̂ = (X̂T
X̂)−1

X̂
Tc. (3.70)

The magnitude of the wave vector is given by the relation k = ω/c, so

k =
ω

c
k̂. (3.71)

Once the wave vector has been determined, the particle velocity and the intensity

may be calculated using Eqs. (3.37) and (2.11).



Chapter 4

Comparison of Intensity

Estimation Techniques

The methods presented in Chapter 3 for estimating the particle velocity are of little

use without knowledge of their limitations and the accuracy of their results. It is

necessary to know the effect of sensor phase mismatch and signal noise. If the probe

consists of sensors mounted on the surface of a sphere, and the scattering is not

included in the calculations as it is for the spherical harmonic method, it is necessary

to determine the effect that scattering from the sphere has on the estimated quantities.

4.1 Estimate Confidence

4.1.1 Finite-Difference Method Estimate Confidence

Throughout this chapter, E{·} will be used to represent the expected value. In order

to determine reasonable confidence bounds for the estimators presented in Chapter

3, assume that the errors in the signals are uncorrelated. If this is true, then the

39
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covariance matrix, defined as

C∆p = E{(∆p− ∆p0)(∆p −∆p0)
H}, (4.1)

where ∆p0 = E{
[
p2 − p1 p3 − p1 · · · pN − pN−1

]T}is the mean of the pressure

differences, reduces to C∆p = σ2
∆pI, where σ2

∆p is the variance. It is necessary to

estimate the variance from the data as [32, 33]

σ2
∆p =

∆pH(I − R)∆p

N − r
(4.2)

where I is the identity matrix, R = X(XTX)−1XT, N is the number of sensor pairs,

and r is the rank of the matrix R. The pressures may be modeled as being normally

distributed about the mean ∆p0 with a probability density function f given as

f(∆p) =
1

(2π)
N
2 |C∆p|

1

2

exp

[
−1

2

[
(∆pH − ∆pH

0 )C−1
∆p(∆p− ∆p0)

]]
. (4.3)

For uncorrelated signal noise,

f(∆p) =
1

(2πσ2
∆p)

N
2

exp

[
− 1

2σ2
∆p

[
(∆pH − ∆pH

0 )I(∆p− ∆p0)
]
]

. (4.4)

It is possible to define a probability density function for the estimated gradient by

recalling that

∆p = X∇p. (4.5)

Thus, after defining a vector ∇p = C−1
r XT(∆p − ∆p0), where Cr = XTX is the

covariance matrix of the inter-sensor separation distances, the probability density

function of the estimated gradient ∇p is

f(∇p) = N∇p exp

[
− 1

2σ2
∆p

∇p
H
Cr∇p

]
, (4.6)

where N∇p is a normalization constant. The value of this constant is unimportant for

the analysis at hand. Because the covariance matrix Cr is self-adjoint, the eigenvectors

are orthogonal, and Cr may be factored as

Cr = EDrE
H (4.7)
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where E is a unitary matrix having the eigenvectors of Cr as columns, and Dr is a

diagonal matrix with the eigenvalues of Cr along the diagonal [28]. The matrix EH is

a unitary transformation matrix that rotates a vector into the principal axes of the

column space of Cr. Thus, the vector ∇̂p = EH∇p represents the variation in ∇p

from the optimal value in an orthonormal basis of the eigenvectors of Cr, and the

probability density function of ∇p is

f(∇p) = N∇p exp

[
− 1

2σ2
∆p

∇̂p
H
Dr∇̂p

]
. (4.8)

Concentration ellipsoids may be defined from Eq. (4.8) by setting the exponent

equal to a constant [33]. Choosing a constant χ2
ν|g, where ν represents the degrees

of freedom, and g represents the confidence level, defines an ellipsoid in the gradient

parameter space with the equation

χ2
ν|g =

1

σ2
∇p1

[
∂̂p

∂x

]2

+
1

σ2
∇p2

[
∂̂p

∂y

]2

+
1

σ2
∇p3

[
∂̂p

∂z

]2

, (4.9)

centered at ∇p0 = C−1
r XT∆p0, with principal axes aligned with the eigenvectors of

Cr, with lengths given by

σ∇pi =

√
σ2

∆p

Drii
. (4.10)

Fig. 4.1 illustrates the concentration ellipse for two-dimensional cartesian coordi-

nates. For a suitably large ensemble of estimates, a fraction g will lie within the

ellipsoid. The concentration ellipsoids may then be mapped to the velocity space

using the relation u = ∇p/ρ0ω.

For the tetrahedron, the covariance matrix of inter-sensor separation distances,

Cr, is

Cr =




16
3
a2 0 0

0 16
3
a2 0

0 0 16
3
a2




. (4.11)
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σ1

σ2

∇p

∂p

∂x

∂p

∂y

Figure 4.1 A concentration ellipsoid defined by the variance in intersensor

pressure differences. The principal axes are aligned with the eigenvectors of
the covariance matrix of intersensor separation distances.
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Because Cr is diagonal, there is no need to rotate the axes of the concentration ellip-

soids. Moreover, because the diagonal entries are equal, the concentration ellipsoids

are spheres with radii given by

σ∇pi =

√
σ2

∆p

Drii
=

σ∆p

√
3

4a
. (4.12)

The solid angle subtended by the concentration spheres in the parameter space is

Ω∇p = 2π



1 −
(

1 − σ∇p∣∣∇p0

∣∣

)−1/2




= 2π



1 −
(

1 − σ∆p

√
3

4a |C−1
r XT∆p0|

)−1/2


 . (4.13)

The solid angle provides an indicator of the accuracy of the direction of the estimate.

Because the concentration ellipsoid is a sphere, the maximum and minimum radial

distances of the ellipsoid lie in the same direction as ∇p0 and are found by adding or

subtracting σ2
∆p from

∣∣∇p0

∣∣.

4.1.2 Wave Vector Method Estimate Confidence

Concentration ellipses for the velocity estimate may also be developed for the wave

vector method. In the wave vector method a least squares estimate of the wave vector

is found using the relative phases of sensor pairs. Again assuming that errors in the

phase measurements are normally distributed about the mean, the covariance matrix

of the relative phase vector ϕ is

C∆p = σ2
ϕI. (4.14)

The variance, σ2
ϕ, of the phase measurements is given by

σ2
ϕ =

ϕH(I − R)ϕ

N − r
, (4.15)
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where R = X(XTX)−1XT, N is the number of sensor pairs, and r is the rank of the

matrix R. The probability density function for the normal distribution is

f(ϕ) =
1

(2πσ2
ϕ)

N
2

exp

[
− 1

2σ2
ϕ

[
(ϕH − ϕH

0 )I(ϕ − ϕ0)
]]

. (4.16)

The wave vector k is related to the relative phase vector by −Xk = ϕ, so defining

the mean wave vector k0 = C−1
r XTϕ0, the probability density function of k is

f(k) = Nk exp

[
− 1

2σ2
ϕ

(kH − kH
0 )EDrE

H(k − k0)

]
. (4.17)

The exponent may be used to define concentration ellipsoids for the wave vector or,

by appropriate transformations, for the velocity and intensity vectors. The solid angle

and magnitude error bounds may be determined in the same manner as for the finite-

difference method. Because the variance of the pressure measurements and the phase

may be determined from experimental data, it is possible to estimate the confidence

we may have in the estimated quantity. For example, if the phase error is normally

distributed with variance of one degree, then the radius of the concentration ellipsoid

in wave vector space for a probe with a radius of 1/2′′ is

σk′ =

√
3

4a
≈ 17.32. (4.18)

If this is small compared to the wave vector amplitude, then the estimate may be used.

For low frequencies, the standard deviation may be larger than the estimated vector

and the estimate must be considered carefully. The confidence may be improved by

either decreasing the phase variation, or increasing the radius of the probe.
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4.2 Measurement and Equipment Induced Bias and

Error

4.2.1 Finite-Difference Estimator Bias

The least-squares estimator is an unbiased estimator, but, in order to estimate the

gradient of the pressure, it is assumed in Eq. (3.20),

r′ij
T∇p ≈ pj − pi, (4.19)

that the spatial relationship between pressure sample points is approximately linear.

For a small amplitude acoustic process, the spatial relationship is described by a

second-order differential equation. For acoustic disturbances with a wavelength that

is large compared to the sensor spacing, the pressure change is approximately linear.

However, as the wavelength decreases, this approximation becomes less accurate.

This results in a physical bias of the estimate. The bias due to the finite-difference

is not the only source of bias. The velocity estimated is the velocity at the acoustic

center of the probe. Because there is no sensor at the acoustic center of the sphere,

it is necessary to estimate the pressure there from the existing sensors by averaging

the pressures. This is a source of significant bias, as is illustrated for one dimension

in Fig. 4.2. If the derivative of the curve at point c is approximated by the slope

of the line a − b, the error is fairly small. In contrast, if the pressure at point c

is approximated by the average of the pressures at points a and b, marked by d,

then there is significant error. The average is a reasonably accurate estimate for

estimating the pressure at the acoustic center of the sensors for frequencies where the

sensor spacing is less than a quarter of the wavelength. If the sensor spacing is greater

than a quarter wavelength, then the accuracy decreases rapidly. As is apparent in

Fig. 4.3, the bias of the pressure estimate is much worse than the bias of the velocity
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a

b

c

d

Figure 4.2 The finite-difference and average methods are illustrated.

estimate. The intensity bias is also shown in Fig. 4.3.

4.2.2 Effect of a Spherical Probe on the Finite-Difference

Estimate

Because the intensity/energy density probe developed for NASA consists of four sen-

sors mounted on the surface of a rigid sphere, the effect of a spherical housing on

both methods for estimating the intensity is especially relevant.

In [14], Elko considers the effect that mounting the sensors on opposite sides of a

sphere has on a finite-difference approximation of the pressure gradient. His method

follows. Begin with the pressure produced by a plane wave, traveling in the −z

direction (p = p0e
kz), incident on the surface of a rigid sphere with radius a, given

by Bowman [31] as

p′(ka, θ) =
−p0

(ka)2

∞∑

n=0

()n(2n + 1)
Pn(cosθ)

h
(2)′
n (ka)

, (4.20)
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Figure 4.3 Bias of the finite-difference approximation, average pressure,

and intensity for a one-dimensional probe with a sensor separation distance
of 0.025m.

where Pn represents the Legendre polynomials and h
(2)
n = jn − yn represents the

spherical Hankel function of the second kind. Assuming that ka ≪ 1, applying a

small argument approximation to the summation, and keeping only two terms, we

obtain

p′(ka, θ) ≈ p0

[
1 +

3

2
ka cos θ

]
. (4.21)

For sensors located on the surface of the sphere at θ1 = 0 and θ2 = π, the pressures

measured are approximately

p′1(ka, θ) ≈ p0

[
1 +

3

2
ka

]
, (4.22a)

p′2(ka, θ) ≈ p0

[
1 − 3

2
ka

]
. (4.22b)

Using these pressures to estimate the pressure gradient yields

dp

dz
≈ p′1 − p′2

∆z′
≈ 3p0ka

∆z′
. (4.23)
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Next, consider the finite-difference estimate of the pressure gradient without the

sphere

dp

dz
≈ p1 − p2

∆z′
=

p0

(
eka − e−ka

)

∆z
≈ 2p0ka

2a
. (4.24)

Comparing (4.23) and (4.24), it becomes apparent that the presence of the sphere

creates an effective separation distance of ∆z ≈ 3a for small ka. Elko interprets

this as a positive bias that counteracts the negative bias associated with the finite-

difference estimation technique. However, this bias estimate is only appropriate for

sensors mounted on opposite sides of the sphere. For sensors that are not mounted

on orthogonal axes, the bias is different for every coordinate direction. Following the

same process for the tetrahedral probe, the effective spacings are found to be

∆x′ ≈ 3
√

2

2
a, (4.25a)

∆y′ ≈
√

6a, (4.25b)

∆z′ ≈ 2a. (4.25c)

Elko’s method may be generalized to a plane wave incident from an arbitrary

direction by replacing the cos θ term by −k̂·r̂, where k̂ and r̂ are unit vectors indicating

the direction of wave propagation and sensor location, and the dot product of the two

unit vectors is given by k̂ · r̂ = cos θk cos θ + sin θk sin θ cos(φ − φk), where φk and θk

are the azimuthal and polar angles indicating the direction of wave propagation. For

this case, Eqs. (4.23) and (4.24) become

dp

dz
≈ p′1 − p′2

∆z′
≈ −3p0kak̂ · (r̂i − r̂j)

∆z′
, (4.26a)

dp

dz
≈

p0

(
e−kak̂·r̂i − e−kak̂·r̂j

)

∆z
≈ −2p0kak̂ · (r̂i − r̂j)

∆z
. (4.26b)

Taking the ratio of these two expressions, and setting it equal to one, since the
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gradient estimates should be the same,

3p0kak̂ · (r̂i − r̂j)

∆z′
∆z

2p0kak̂ · (r̂i − r̂j)
= 1, (4.27)

we see that

∆z′ =
3

2
∆z (4.28)

for a plane wave incident from an arbitrary angle. Thus for small ka, the sphere

produces an effective separation of 3/2 times the physical separation distance for any

sensor orientation.

Elko uses small argument approximations to reach his conclusions. However, if a

small argument approximation is not made, then the pressure due to a plane wave

traveling in the φk, θk direction measured by the i-th sensor at ar̂i on the surface of

a sphere is

p′i = p0e
−k·r̂ia − p0

∞∑

n=0

(−)n(2n + 1)
j′n(ka)

h
(2)′
n (ka)

h(2)
n (ka)Pn(k̂ · r̂i) (4.29)

= p0

∞∑

n=0

(−)n(2n + 1)

[
jn(ka) − j′n(ka)

h
(2)′
n (ka)

h(2)
n (ka)

]
Pn(k̂ · r̂i). (4.30)

Here the identity

2n + 1

4π
Pn(x̂ · ŷ) =

n∑

m=−n

Y m
n (x̂) [Y m

n (ŷ)]∗, (4.31)

has been used to simplify the usual expressions. Again setting the ratio of the two

estimates equal to one,

(p′i − p′j)∆µ

(pi − pj)∆µ′ =
∆µ

∆µ′
[
p0e

−k·r̂ia − p0e
−k·r̂ja

]−1 [
p0e

−k·r̂ia − p0e
−k·r̂ja

]

− ∆µ

∆µ′
[
p0e

−k·r̂ia − p0e
−k·r̂ja

]−1 ×
[
p0

∞∑

n=0

(−)n(2n + 1)
j′n(ka)

h
(2)′
n (ka)

h(2)
n (ka)

[
Pn(k̂ · r̂i) − Pn(k̂ · r̂j)

]]

= 1,
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where µ represents the appropriate cartesian coordinate, we see that

∆µ′

∆µ
= 1 −

∞∑

n=0

(−)n(2n + 1)j′n(ka)

h
(2)′
n (ka)

h(2)
n (ka)

Pn(k̂ · r̂i) − Pn(k̂ · r̂j)

e−k·r̂ia − e−k·r̂ja
. (4.32)

This expression is valid for all values of ka and for an arbitrary incident plane wave.

By keeping only the first two terms of the summation and using an appropriate small

angle approximation, it can be shown that this reduces to Elko’s expression.

4.2.3 Effect of a Spherical Probe on the Wave Vector Esti-

mate

The effect that mounting the sensors on the surface of a sphere has on the wave

vector method for estimating the particle velocity may be predicted by considering

the pressure on the surface of a rigid sphere at the sensor locations ri = a r̂, given by

pi = p0

∞∑

n=0

(−)n(2n + 1)

[
jn(ka) − j′n(ka)

h
(2)′
n (ka)

h(2)
n (ka)

]
Pn(k̂ · r̂i). (4.33)

Because the wave vector method is a phase based calculation, it is necessary to

calculate the phase at each sensor location. This is accomplished by defining

ηi = Re{pi} = p0

∞∑

n=0

(−1)n(4n + 1)

×



j2n(ka) − j2n(ka)(j′2n(ka))2 + j′2n(ka)y2n(ka)y′
2n(ka)∣∣∣h(2)′

2n (ka)
∣∣∣



P2n(k̂ · r̂i)

+ (−1)n+1(4n + 3)

×



y2n+1(ka)(j′2n+1(ka))2 − j2n+1(ka)j′2n+1(ka)y′
2n+1(ka)∣∣∣h(2)′

2n+1(ka)
∣∣∣



P2n+1(k̂ · r̂i),

(4.34)
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and,

ζi =Im{pi} = p0

∞∑

n=0

(−1)n(4n + 3)

×



j2n+1(ka) − j2n+1(ka)(j′2n+1(ka))2 + j′2n+1(ka)y2n+1(ka)y′
2n+1(ka)∣∣∣h(2)′

2n+1(ka)
∣∣∣



P2n+1(k̂ · r̂i)

+ (−1)n(4n + 1)



y2n(ka)(j′2n(ka))2 − j2n(ka)j′2n(ka)y′
2n(ka)∣∣∣h(2)′

2n (ka)
∣∣∣



P2n(k̂ · r̂i).

(4.35)

Using these definitions, the phase is given by

φi = atan2(ζi, ηi) (4.36)

where atan2(y, x) is defined as

atan2(y, x) =






tan−1
∣∣ y
x

∣∣ sgn(y) x > 0
π
2

sgn(y) x = 0(
π − tan−1

∣∣ y
x

∣∣) sgn(y) x < 0.

(4.37)

The pressure at any of the sensors may be expressed as

pi =

√
|ηi|2 + |ζi|2eφi, (4.38)

and the transfer function between the sensors at ri and rj is

Hij =
pj

pi
=

√
|ηj|2 + |ζj|2

|ηi|2 + |ζi|2
e(φi−φj). (4.39)

Mounting the sensors on the surface of a sphere causes amplitude and phase shifts

that appear to invalidate assumptions that form the basis for calculations of the wave

vector and consequently the velocity vector. The phase of the microphones relative

to one another becomes strongly related to the position of the sensors on the sphere

relative to the direction of the incoming signal. Define the excess phase γi as the
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Figure 4.4 Real part of the excess pressure on the surface of a hard sphere

as a function of angle.

difference between the phase in the presence of the sphere and the phase without the

sphere,

γi = φi − ϕi. (4.40)

Then the least-squares estimate of the wave vector using a tetrahedral probe becomes

k =
1

4a




√
2(−ϕ2 − γ2 + 2(ϕ3 + γ3) − ϕ4 − γ4)

√
6(ϕ2 + γ2 − ϕ4 − γ4)

−3(ϕ1 + γ1) + ϕ2 + γ2 + ϕ3 + γ3 + ϕ4 + γ4




. (4.41)

The excess phase has the potential to strongly affect the estimated vector, especially

at higher frequencies. The real and imaginary parts of the excess, or scattered pres-

sure defined as ps = p′ − p, are illustrated in Figs. 4.4 and 4.5 as functions of the

angular position on the sphere and ka. It is clear from the figures that the sphere

drastically affects the pressures measured at the sensor locations. Although this effect

is somewhat beneficial for the finite-difference method at small values of ka, the effect
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Figure 4.5 Imaginary part of the excess pressure on the surface of a hard

sphere as a function of angle.

on the wave vector method is detrimental to the performance of the method. It may

be possible to implement an iterative method to improve the estimate of the wave

vector method in the presence of a sphere, but no work has been done to investigate

this possibility.

4.2.4 Effect of Sensor Phase Mismatch

The phase mismatch of physical sensors also has the potential to significantly impact

the accuracy of the estimated quantities. Let the phase mismatch of each microphone

be represented by αi, which can be a function of frequency. Using this convention,

the pressure at each sensor is related to the actual pressure by

pi = peαi . (4.42)
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Phase matching of the sensors is especially important at low frequencies, because

the phase is proportional to the wavelength. Even a small phase error (less than

one degree) corresponds to a large spatial distance for a long wavelength. Although

the wave vector method appears especially sensitive to phase error because it uses

the phase to directly calculate the velocity and the intensity, the finite-difference

method also uses the phase indirectly, because it relies on the physical delay in the

signal between two sensors to estimate the gradient. At low frequencies, even small

phase errors between the sensors can cause large errors in the estimated gradient. To

illustrate this, consider a plane wave of frequency f sampled at locations r1 and r2.

If both sensors have phase errors given by α1 and α2, the estimated pressure gradient

is given by

∂p

∂x
≈ p0

e−(k·r1x−α1) − e−(k·r2x−α2)

|r1x − r2x|
. (4.43)

By defining α′
i = αi/k,

∂p

∂x
≈ p0

e−k(k̂·r1x−α′

1
) − e−k(k̂·r2x−α′

2
)

|r1x − r2x|
. (4.44)

If the wavelength of the incident wave is greater than the sensor separation distance,

then α′
i will significantly affect the estimated gradient since k̂ · ri < α′

i. The phase

error between the sensors appears in the wave vector method as

k =
1

4a




√
2(−ϕ2 − α2 + 2(ϕ3 + α3) − ϕ4 − α4)

√
6(ϕ2 + α2 − ϕ4 − α4)

−3(ϕ1 + α1) + ϕ2 + α2 + ϕ3 + α3 + ϕ4 + α4




. (4.45)

By comparing Eqs. (4.44) and (4.45) it is apparent that the finite-difference method is

actually more sensitive to phase error because the phase term appears in the exponent,

whereas, in the wave vector method, the error affects the estimate only linearly.
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4.3 Numerical Simulations

4.3.1 Plane Wave

The estimates of the active intensity produced by the finite-difference method and

the wave vector method are compared by considering the accuracy of the numerically

estimated quantities relative to the analytically predicted quantities. The intensity

of a plane wave of amplitude p0 is easily calculated analytically to be

I =
p2

0

2ρ0c
k̂. (4.46)

The pressures measured at the four sensors are given by

pi = p0e
−(k·ri+αi) (4.47)

where again, αi represents the phase error of the sensor. The predicted pressures are

used to estimate the intensity as presented in chapter 3. Ifd represents the intensity

estimated using the finite-difference method, Ils represents the least-squares estimate

based on the wave vector method, and I1 represents the wave vector estimate relative

to sensor 1. The logarithmic error in the intensity component estimates given by

10 log10

∣∣∣∣∣

∣∣I[·]ν
∣∣

|Iν |

∣∣∣∣∣ (4.48)

and the logarithmic error in the ℓ1 norm of the intensity estimate given by

10 log10

∣∣∣∣∣

∣∣I[·]x
∣∣+
∣∣I[·]z

∣∣+
∣∣I[·]z

∣∣
|Ix| + |Iy| + |Iz|

∣∣∣∣∣ (4.49)

are shown in Figs. 4.6 through 4.14. The subscript brackets serve as placeholders for

the estimate method label. The ℓ1 norm was chosen to compare the magnitude of

the estimates in order to avoid erroneous cancelation of constants in the numerical

estimates. It is also a conservative estimate of the error because the ℓ1 norm is always
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greater than or equal to the standard Euclidean norm. The MATLAB code used to

generate these plots is included in appendix A.

The logarithmic error in the estimates of each of the three coordinate components

is presented in each of the plots to evaluate the performance of each component of

the estimates as a function of the incident angle. It is clear from the error plots

that the wave vector method outperforms the finite-difference method in all cases.

The wave vector method is consistent in its estimates up to the Nyquist limit, in

contrast to the finite-difference method which exhibits significant bias for all but

the lowest frequencies. The wave vector estimate relative to one sensor performs

better than the least-squares average estimate. It seems that this is due to the bias

caused by averaging the pressures in the intensity calculation. It may be possible

to correct for this error in the least-squares estimate once the wave vector has been

estimated by multiplying the pressure by an appropriate constant to remove the effects

of propagation before averaging. The average then becomes

1

N

N∑

i=1

pie
kls·ri . (4.50)

For 100 Hz, both the least-squares (Fig. 4.6) and single sensor (Fig. 4.7) wave vec-

tor methods exhibit minimal error, although the single sensor error is approximately

5 orders of magnitude smaller. In contrast, even at such a low frequency, the finite-

difference method (Fig. 4.8) functions reasonably well for the y− and z−components,

but the x−component consistently underestimates the intensity. This is apparent in

the component error plots and also can be observed in the norm error plot. The

x−axis is located at φk = 0, π, and 2π, and θ = π/2. The error is largest at these

points and decreases to nearly zero on the y− and z− axes (φk = π/2, 3π/2, and

θk = 0, π).

For 1000 Hz, the error in the single sensor wave vector estimate (Fig. 4.10)
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remains unchanged. The error in both the least-squares wave vector estimate (Fig.

4.9) and the finite-difference estimate (Fig. 4.11) becomes more significant. The

error in the least-squares wave vector estimate is still very small, but the error in the

finite-difference estimate is large.

At 8000 Hz, the error in the single sensor wave vector estimate (Fig. 4.13) is

still minimal, but both the finite-difference (Fig. 4.14) and least-squares wave vector

(Fig. 4.12) estimates exhibit very significant error. This is not due to the bias of

the finite-difference approximation, but rather to the bias inherent in averaging the

measured pressures to estimate the pressure at the center of the probe.

The effect of sensor phase mismatch is also shown in Figs. 4.15 through 4.17. As

expected from the theoretical predictions, the phase mismatch has less effect on the

wave vector method than the finite-difference method. For the wave vector method,

the phase error has the largest effect on the smallest components. As an example,

there is significant error in the x component estimate when the wave vector of the

incident wave lies in the y − z plane. This suggests that although the logarithmic

error is large, the actual error in the vector estimate is fairly small. This is supported

by the fact that the logarithmic error in the ℓ1 norm is small.
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Figure 4.6 Logarithmic (dB) error in wave vector method least-squares

estimate of the intensity of a 100 Hz plane wave as a function of incident
angle.

Figure 4.7 Logarithmic (dB) error in wave vector method estimate refer-

enced to sensor 1 of the intensity of a 100 Hz plane wave as a function of
incident angle.
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Figure 4.8 Logarithmic (dB) error in finite-difference estimate of the in-

tensity of a 100 Hz plane wave as a function of incident angle.

Figure 4.9 Logarithmic (dB) error in wave vector method least-squares

estimate of the intensity of a 1000 Hz plane wave as a function of incident
angle.
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Figure 4.10 Logarithmic (dB) error in wave vector method estimate refer-

enced to sensor 1 of the intensity of a 1000 Hz plane wave as a function of
incident angle.

Figure 4.11 Logarithmic (dB) error in finite-difference estimate of the in-

tensity of a 1000 Hz plane wave as a function of incident angle.
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Figure 4.12 Error in wave vector method least-squares estimate of the

intensity of a 8000 Hz plane wave as a function of incident angle.

Figure 4.13 Logarithmic (dB) error in wave vector method estimate refer-

enced to sensor 1 of the intensity of a 8000 Hz plane wave as a function of
incident angle.
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Figure 4.14 Logarithmic (dB) error in finite-difference estimate of the in-

tensity of a 8000 Hz plane wave as a function of incident angle.

Figure 4.15 Logarithmic (dB) error due to phase mismatch in wave vector

method estimate of the intensity of a 1000 Hz plane wave as a function of
incident angle.
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Figure 4.16 Logarithmic (dB) error due to phase mismatch in least-squares

wave vector method estimate of the intensity of a 1000 Hz plane wave as a
function of incident angle.

Figure 4.17 Logarithmic (dB) error due to phase mismatch in finite-

difference estimate of the intensity of a 1000 Hz plane wave as a function
of incident angle.
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4.3.2 Monopole Source

Analytical expressions for the intensity due to a point source were presented in Chap-

ter 2. The logarithmic errors in the estimates produced by the finite-difference (FD)

method and the wave vector (WV) method are compared in Figs. 4.18 and 4.19. The

magnitudes of the estimated intensity vectors are compared to the magnitude of the

analytical expression by

10 log10

(
∣∣I[·]x

∣∣+
∣∣I[·]z

∣∣ +
∣∣I[·]z

∣∣)1/2

(|Ix| + |Iy| + |Iz|)1/2
. (4.51)

Note that the Euclidean norm is used here instead of the ℓ1 norm because the pos-

sibility of erroneous results using the Euclidean norm does not exist for this case.

The nondimensional parameter ka, where a is the radius of the circumsphere of the

tetrahedral probe, is used here. The wave vector method performs well even in the

near field of the monopole. This is initially surprising until the wave vector method

is analyzed more carefully. The pressure at the i-th sensor is given by

pi = A0
e−k·ri

|ri|
. (4.52)

Because the wave vector method only uses the phase differences, the radial amplitude

variation does not effect the estimated wave vector. If the single sensor wave vector

method is used, then the radial variation in pressure does not effect the estimated

intensity either, and for the special case of the monopole, the wave vector actually

outperforms the finite difference method. For the dipole, where the near field is

significantly more complicated, this is not the case.
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Figure 4.18 Error in wave vector method estimate in the near field of a

monopole source. Axis units are in fractions of a wavelength.
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Figure 4.19 Error in finite-difference method estimate in the near field of

a monopole source. Axis units are in fractions of a wavelength.
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4.3.3 Dipole Source

The dipole is an excellent source configuration for comparing the finite-difference and

wave vector methods. Although it is a relatively simple source configuration, the field

contains strong reactive components and is significantly more complicated than the

monopole field. The analytical expressions for the intensity due to multiple sources

were derived in Chapter 2. When discussing dipoles it is useful to define the nondi-

mensional parameter kd, where k is the wavenumber, and d is the source separation

distance. It is also useful to nondimensionalize the characteristics of the probe to

generalize the results. For the tetrahedral sensor configuration, the parameter ka,

where a is again the radius of the circumsphere of the tetrahedron, is appropriate.

The relevant information is included in the title or caption of the figures in order to

allow comparison and generalization of the results. The analytically predicted and

estimated fields for a dipole with kd = 4.6 are presented in Figs. 4.20-4.22. A visual

inspection reveals that at this frequency, the analytical and estimated fields are very

similar.

In order to compare the accuracy of the different methods, the logarithmic er-

ror defined previously is averaged over the 40m×40m×40m volume surrounding the

dipole and the results are plotted against frequency in Fig. 4.23. Initially, it appears

that the finite-difference method outperforms the wave vector method only marginally

at low frequencies, and is much worse at high frequencies. However, if the averaging

volume is reduced to 10m×10m×10m, the plots are significantly different. This case

is shown in Fig. 4.24. Clearly, in the near field, the finite-difference method outper-

forms the wave vector method for frequencies of interest. This is expected since the

wave vector method relies on the assumption that the pressure field is locally planar

and this is not the case in the near field of a dipole. The spatial distribution of the

error is apparent in Figs. 4.25 and 4.26. The wave vector method exhibits smaller
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Figure 4.20 Analytically predicted dipole intensity field, kd = 4.6.
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Figure 4.21 Dipole intensity field estimated using the wave vector method,

ka = 0.011, kd = 4.6.
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Figure 4.22 Dipole intensity field estimated using the finite-difference

method, ka = 0.011, kd = 4.6.

error in the far field but the finite-difference method performs better in the near field.

It is also important to consider the effect of phase errors on the estimates. The av-

erage error with a normally distributed random phase error with a standard deviation

of one degree is shown in Fig. 4.27. The phase has very little effect on the average

error of both methods. The effect of the phase error on the amplitude estimate is

shown in Fig. 4.28. Perhaps unexpectedly, the wave vector method outperforms the

finite-difference method on average and especially at low frequencies.
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tensity vector field in the 6400m3 volume surrounding a dipole intensity field,
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Figure 4.24 Comparison of average logarithmic error of the estimated in-

tensity vector field in the 100m3 volume surrounding a dipole intensity field,
a = 0.025m, d = 5m.
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the wave vector method in the x− y plane surrounding a dipole, ka = 0.011,
kd = 4.6.
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Figure 4.26 Logarithmic error of the intensity vector field estimated using

the finite-difference method in the x − y plane surrounding a dipole, ka =
0.011, kd = 4.6.
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vector field in the 100m3 volume surrounding a dipole intensity field, a =
0.025m, d = 5m.
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Figure 4.28 Comparison of average logarithmic error of the estimated in-

tensity vector field in the 100m3 volume surrounding a dipole intensity field,
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Chapter 5

Conclusion

5.1 Summary

Both the linearized and nonlinear expressions for acoustic intensity and acoustic en-

ergy density were derived from fundamental equations or first principles. The con-

nection between the linearized expression for the potential energy density and the

nonlinear expression was shown using a power series expansion about the equilibrium.

The large linear term present in the potential energy density expression cancels due to

the conservation of mass when the expression is inserted into the energy conservation

relation.

The finite-difference method for estimating the pressure gradient was developed

generally and for the specific case of the tetrahedral probe. In addition, an alternate

method for estimating the particle velocity and, consequently, the intensity from the

relative phase differences was presented. A method for determining the amplitude

and direction of propagation for the special case of a probe consisting of sensors

mounted on the surface of a rigid sphere was developed using linear scattering theory.

The wave vector and spherical harmonic methods are new methods for estimating
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acoustic velocity and intensity. Currently both of these methods are limited to the

acoustic far field.

Expressions for determining the confidence of the estimates produced by the meth-

ods introduced in Chapter 3 were developed using statistical arguments. The effect

of finite-difference and averaging biases on the intensity estimate was investigated, as

well as the effect of sensor phase mismatch. The effect of scattering induced phase

variations on the estimate was also considered. The finite-difference and wave vector

methods were compared in numerical simulations.

5.2 Conclusion

The expressions commonly used in acoustics applications for acoustic intensity and

acoustic energy density represent conserved quantities, and are valid for processes

described by second-order approximations of the governing equations. The linear

term present in the expression for the potential energy derived from thermodynamic

principles disappears from the energy conservation equation following the application

of the mass conservation equation. It seems, although it has not been shown, that

this term corresponds to the fluctuations relative to the absolute energy caused by

the acoustic disturbance. These fluctuations do not contribute to the motion of the

fluid since the process is primarily adiabatic and consequently, thermal transmission

is negligible.

The finite-difference method for estimating the intensity exhibits significant bias

in the estimates for all but the lowest frequencies. In contrast, the particle velocity

estimates produced using the wave vector method remain accurate until reaching the

spatial Nyquist limit. For broadband noise, it may be possible to surpass the spatial

Nyquist limit by unwrapping the measured intersensor phase difference before using
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the wave vector method to estimate the particle velocity.

5.3 Future Work

Both the wave vector method and the spherical harmonic method require more ex-

tensive testing. The spherical harmonic method has been developed theoretically and

presented here for reference; an experimental evaluation of the performance of the

method is required for validation. The wave vector method for estimating the par-

ticle velocity relies on the assumption that the field is approximately planar across

the volume of the probe, and that the reactive intensity is negligible in the vicinity

of the probe. It may be possible to eliminate the farfield requirement by a careful

consideration of the near field of a point source, and separate the contribution of the

propagating, or active intensity from the standing or reactive intensity. A similar

analysis of the application of the spherical harmonic method in the neighborhood of

a point source may also be fruitful. It would be useful to consider the generic case of

the superposition of an arbitrary propagating wave and an arbitrary standing wave

at the probe location in space. If the amplitude of the propagating wave could be

separated from the amplitude of the standing wave, as well as the wave vectors of

both waves, then this would serve as a method for measuring active and reactive

intensity in an unknown field, i.e. without the farfield assumption.
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Appendix A

Matlab Code

clear all;
close all;
set(0, 'DefaultAxesFontName' , 'arial' );
set(0, 'DefaultAxesFontSize' ,14);
set(0, 'DefaultAxesFontWeight' , 'normal' )
set(0, 'DefaultAxesLineWidth' ,2);
set(0, 'DefaultLineLineWidth' ,2);
f = 1000;
ph = 0; % Set to 1 to include random phase mismatch
w = 2. * pi. * f;
c = 343;
rho = 1.21;
k = w./c;
cmax = 2e−1;
cmin = −2e−1;
cmaxa = 1;
cmina = −1;
cmaxp = 5;
cminp = −15;
cminm = −1;
cmaxm = 1;
a = 0.0254./2;
N = 100;
dphik=2. * pi./(N −1);
dthetak=pi./(N −1);
[phik,thetak]=meshgrid(0:dphik:2. * pi,0:dthetak:pi);

kx = k. * cos(phik). * sin(thetak);
ky = k. * sin(phik). * sin(thetak);
kz = k. * cos(thetak);
% Microphone 1 position (on top of the sphere)

83



84 Chapter A Matlab Code

theta1 = 0;
phi1 = 0;
% Normalized dot product of the position vector of
% mic 1 with the wave vector
rk1 = 1./2. * (cos(theta1 −thetak). * (1+cos(phi1 −phik)) ...

+cos(theta1+thetak). * (1 −cos(phi1 −phik)));
% Microphone 2 position
theta2 = 1.910633237;
phi2 = −pi./3;
% Normalized dot product of the position vector of
% mic 2 with the wave vector
rk2 = 1./2. * (cos(theta2 −thetak). * (1+cos(phi2 −phik)) ...

+cos(theta2+thetak). * (1 −cos(phi2 −phik)));
% Microphone 3 position
theta3 = 1.910633237;
phi3 = pi;
% Normalized dot product of the position vector of
% mic 3 with the wave vector
rk3 = 1./2. * (cos(theta3 −thetak). * (1+cos(phi3 −phik)) ...

+cos(theta3+thetak). * (1 −cos(phi3 −phik)));
% Microphone 4 position
theta4 = 1.910633237;
phi4 = pi./3;
% Normalized dot product of the position vector of
% mic 4 with the wave vector
rk4 = 1./2. * (cos(theta4 −thetak). * (1+cos(phi4 −phik)) ...

+cos(theta4+thetak). * (1 −cos(phi4 −phik)));
p0 = 1; % Amplitude of the incident wave
kr = k. * a;
ka = k. * a;
kr1 = k. * a. * rk1;
kr2 = k. * a. * rk2;
kr3 = k. * a. * rk3;
kr4 = k. * a. * rk4;
psi2 = ph * 0.0175/4 * (2 * rand(1) −1);
psi3 = ph * 0.0175/4 * (2 * rand(1) −1);
psi4 = ph * 0.0175/4 * (2 * rand(1) −1);
p1 = p0. * exp( −j. * kr1); % Pressure at mic 1
p2 = p0. * exp( −j. * kr2). * exp(j. * psi2); % Pressure at mic 2
p3 = p0. * exp( −j. * kr3). * exp(j. * psi3); % Pressure at mic 3
p4 = p0. * exp( −j. * kr4). * exp(j. * psi4); % Pressure at mic 4

p=(p1+p2+p3+p4)/4;

% kx1 = sqrt(2)./4./a. * (angle(p3.ˆ2./p2./p4));
% ky1 = sqrt(6)./4./a. * (angle(p2./p4));
% kz1 = 1./4./a. * (angle(p2. * p3. * p4./p1.ˆ3));
% k1 = sqrt(kx1.ˆ2+ky1.ˆ2+kz1.ˆ2);

kx1 = sqrt(2)./4./a. * ( −angle(p2./p1)+2 ...
. * angle(p3./p1) −angle(p4./p1));



85

ky1 = sqrt(6)./4./a. * (angle(p2./p1) −angle(p4./p1));
kz1 = 1./4./a. * (angle(p2./p1)+angle(p3./p1)+angle(p4./p1));
k1 = sqrt(kx1.ˆ2+ky1.ˆ2+kz1.ˆ2);

kx2 = sqrt(2)./4./a. * (2. * angle(p3./p2) −angle(p4./p2));
ky2 = −sqrt(6)./4./a. * angle(p4./p2);
kz2 = −1./4./a. * (3. * angle(p1./p2) −angle(p3./p2) −angle(p4./p2));
k2 = sqrt(kx2.ˆ2+ky2.ˆ2+kz2.ˆ2);

kx3 = −sqrt(2)./4./a. * (angle(p2./p3)+angle(p4./p3));
ky3 = sqrt(6)./4./a. * (angle(p2./p3) −angle(p4./p3));
kz3 = −1./4./a. * (3. * angle(p1./p3) −angle(p2./p3) −angle(p4./p3));
k3 = sqrt(kx3.ˆ2+ky3.ˆ2+kz3.ˆ2);

kx4 = −sqrt(2)./4./a. * (angle(p2./p4) −2. * angle(p3./p4));
ky4 = sqrt(6)./4./a. * angle(p2./p4);
kz4 = −1./4./a. * (3. * angle(p1./p4) −angle(p2./p4) −angle(p3./p4));
k4 = sqrt(kx4.ˆ2+ky4.ˆ2+kz4.ˆ2);

vx = kx./rho./w. * p0;
vy = ky./rho./w. * p0;
vz = kz./rho./w. * p0;
v=sqrt(abs(vx).ˆ2+abs(vy).ˆ2+abs(vz).ˆ2);
Ix = p0 * conj(vx)/2;
Iy = p0 * conj(vy)/2;
Iz = p0 * conj(vz)/2;
I = sqrt(abs(vx).ˆ2+abs(vy).ˆ2+abs(vz).ˆ2);

vx1 = kx1./rho./c./k1. * p1;
vy1 = ky1./rho./c./k1. * p1;
vz1 = kz1./rho./c./k1. * p1;
v1=sqrt(abs(vx1).ˆ2+abs(vy1).ˆ2+abs(vz1).ˆ2);

Ix1 = real(p1. * conj(vx1)/2);
Iy1 = real(p1. * conj(vy1)/2);
Iz1 = real(p1. * conj(vz1)/2);
I1 = sqrt(abs(Ix1).ˆ2+abs(Iy1).ˆ2+abs(Iz1).ˆ2);

vx2 = kx2./rho./c./k2. * p2;
vy2 = ky2./rho./c./k2. * p2;
vz2 = kz2./rho./c./k2. * p2;
v2=sqrt(abs(vx2).ˆ2+abs(vy2).ˆ2+abs(vz2).ˆ2);

Ix2 = real(p2. * conj(vx2)/2);
Iy2 = real(p2. * conj(vy2)/2);
Iz2 = real(p2. * conj(vz2)/2);
I2 = sqrt(abs(Ix2).ˆ2+abs(Iy2).ˆ2+abs(Iz2).ˆ2);

vx3 = kx3./rho./c./k3. * p3;
vy3 = ky3./rho./c./k3. * p3;
vz3 = kz3./rho./c./k3. * p3;
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v3=sqrt(abs(vx3).ˆ2+abs(vy3).ˆ2+abs(vz3).ˆ2);

Ix3 = real(p3. * conj(vx3)/2);
Iy3 = real(p3. * conj(vy3)/2);
Iz3 = real(p3. * conj(vz3)/2);
I3 = sqrt(abs(Ix3).ˆ2+abs(Iy3).ˆ2+abs(Iz3).ˆ2);

vx4 = kx4./rho./c./k4. * p4;
vy4 = ky4./rho./c./k4. * p4;
vz4 = kz4./rho./c./k4. * p4;
v4=sqrt(abs(vx4).ˆ2+abs(vy4).ˆ2+abs(vz4).ˆ2);

Ix4 = real(p4. * conj(vx4)/2);
Iy4 = real(p4. * conj(vy4)/2);
Iz4 = real(p4. * conj(vz4)/2);
I4 = sqrt(abs(Ix4).ˆ2+abs(Iy4).ˆ2+abs(Iz4).ˆ2);

vxa = (vx1+vx2+vx3+vx4)/4;
vya = (vy1+vy2+vy3+vy4)/4;
vza = (vz1+vz2+vz3+vz4)/4;
va = (abs(vxa).ˆ2+abs(vya).ˆ2+abs(vza).ˆ2).ˆ(1/2);

Ixa = real(p. * conj(vxa)/2);
Iya = real(p. * conj(vya)/2);
Iza = real(p. * conj(vza)/2);
Ia = sqrt(abs(Ixa).ˆ2+abs(Iya).ˆ2+abs(Iza).ˆ2);

vxp = j./rho./w. * (p2 −2* p3+p4)/(4 * a);
vyp = j./rho./w. * sqrt(6) * ( −p2+p4)/(4 * a);
vzp = j./rho./w. * (3 * p1−p2−p3−p4)/(4 * a);
vp=sqrt(abs(vxp).ˆ2+abs(vyp).ˆ2+abs(vzp).ˆ2);

Ixp = real(p. * conj(vxp)/2);
Iyp = real(p. * conj(vyp)/2);
Izp = real(p. * conj(vzp)/2);
Ip = sqrt(abs(Ixp).ˆ2+abs(Iyp).ˆ2+abs(Izp).ˆ2);

lerrIx1 = 20. * log10(abs((Ix1)./(Ix)));
lerrIy1 = 20. * log10(abs((Iy1)./(Iy)));
lerrIz1 = 20. * log10(abs((Iz1)./(Iz)));
lerrI1 = 20. * (log10((abs(Ix1)+abs(Iy1)+abs(Iz1)) ...

./(abs(Ix)+abs(Iy)+abs(Iz))));

lerrIx2 = 20. * log10(abs(Ix2./Ix));
lerrIy2 = 20. * log10(abs(Iy2./Iy));
lerrIz2 = 20. * log10(abs(Iz2./Iz));
lerrI2 = 20. * (log10((abs(Ix2)+abs(Iy2)+abs(Iz2)) ...

./(abs(Ix)+abs(Iy)+abs(Iz))));

lerrIx3 = 20. * log10(abs(Ix3./Ix));
lerrIy3 = 20. * log10(abs(Iy3./Iy));
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lerrIz3 = 20. * log10(abs(Iz3./Iz));
lerrI3 = 20. * (log10((abs(Ix3)+abs(Iy3)+abs(Iz3)) ...

./(abs(Ix)+abs(Iy)+abs(Iz))));

lerrIx4 = 20. * log10(abs(Ix4./Ix));
lerrIy4 = 20. * log10(abs(Iy4./Iy));
lerrIz4 = 20. * log10(abs(Iz4./Iz));
lerrI4 = 20. * (log10((abs(Ix4)+abs(Iy4)+abs(Iz4)) ...

./(abs(Ix)+abs(Iy)+abs(Iz))));

lerrIxa = 20. * log10(abs(Ixa./Ix));
lerrIya = 20. * log10(abs(Iya./Iy));
lerrIza = 20. * log10(abs(Iza./Iz));
lerrIa = 20. * log10((abs(Ixa)+abs(Iya)+abs(Iza)) ...

./(abs(Ix)+abs(Iy)+abs(Iz)));

lerrIxp = 20. * log10(abs(Ixp./Ix));
lerrIyp = 20. * log10(abs(Iyp./Iy));
lerrIzp = 20. * log10(abs(Izp./Iz));
lerrIp = 20. * log10((abs(Ixp)+abs(Iyp)+abs(Izp)) ...

./(abs(Ix)+abs(Iy)+abs(Iz)));

PHI=phik;
THETA=thetak;
subplot(2,2,1)
pcolor(phik,thetak,(lerrIx1));
shading interp
axis([0 2 * pi 0 pi])
caxis([cmin cmax])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar

subplot(2,2,2)
pcolor(phik,thetak,(lerrIy1));
shading interp
axis([0 2 * pi 0 pi])
caxis([cmin cmax])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar

subplot(2,2,3)
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pcolor(phik,thetak,(lerrIz1));
shading interp
axis([0 2 * pi 0 pi])
caxis([cmin cmax])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar

subplot(2,2,4)
pcolor(phik,thetak,(lerrI1));
shading interp
axis([0 2 * pi 0 pi])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );

colorbar

figure
subplot(2,2,1)
pcolor(phik,thetak,(lerrIxp));
shading interp
axis([0 2 * pi 0 pi])
caxis([cminp cmaxp])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar

subplot(2,2,2)
pcolor(phik,thetak,(lerrIyp));
shading interp
axis([0 2 * pi 0 pi])
caxis([cminp cmaxp])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar
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subplot(2,2,3)
pcolor(phik,thetak,(lerrIzp));
shading interp
axis([0 2 * pi 0 pi])
caxis([cminp cmaxp])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar

subplot(2,2,4)
pcolor(phik,thetak,(lerrIp));
shading interp
axis([0 2 * pi 0 pi])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar

figure
subplot(2,2,1)
pcolor(phik,thetak,(lerrIxa));
shading interp
axis([0 2 * pi 0 pi])
caxis([cmina cmaxa])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar

subplot(2,2,2)
pcolor(phik,thetak,(lerrIya));
shading interp
axis([0 2 * pi 0 pi])
caxis([cmina cmaxa])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
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colorbar

subplot(2,2,3)
pcolor(phik,thetak,(lerrIza));
shading interp
axis([0 2 * pi 0 pi])
caxis([cmina cmaxa])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar

subplot(2,2,4)
pcolor(phik,thetak,(lerrIa));
shading interp
axis([0 2 * pi 0 pi])
xlabel( ' \phi k ' )
ylabel( ' \theta k ' )
set(gca, 'XTick' ,[0 pi 2 * pi]);
set(gca, 'XTickLabel' , {'0' ; 'p' ; '2p' });
set(gca, 'YTick' ,[0 pi/2 pi])
set(gca, 'YTickLabel' , {'0' ; 'p/2' ; 'p' }, 'fontname' , 'symbol' );
colorbar

clear all;
close all;
a = 0.025;
p0 = 1;
c = 343;
rho = 1.21;
fmax = 20000;
N = 100;
M = 50;
df = fmax/(N −1);
f = 0:df:fmax;
w = 2* pi * f;
k = w/c;
kamax = 10;
dka = kamax/(N −1);
KA = 0:dka:kamax;
thetamax = pi;
dtheta = thetamax/(N −1);
THETA = 0:dtheta:thetamax;
[ka,theta] = meshgrid(KA,THETA);
ps = zeros(size(ka));
LPm2 = ones(size(ka));
LPm1 = cos(theta);
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m = 0;
jmm1 = sqrt(pi./(2 * ka)). * besselj(m+1/2 −1,ka);
jmp1 = sqrt(pi./(2 * ka)). * besselj(m+1/2+1,ka);
ymm1 = sqrt(pi./(2 * ka)). * bessely(m+1/2 −1,ka);
ymp1 = sqrt(pi./(2 * ka)). * bessely(m+1/2+1,ka);
dhm = 1./(2 * m+1). * (m* (jmm1+i * ymm1)−(m+1) * (jmp1+i * ymp1));
ps = ps+p0 * ( −i)ˆm * (2 * m+1)* LPm2./dhm;
m = 1;
jmm1 = sqrt(pi./(2 * ka)). * besselj(m+1/2 −1,ka);
jmp1 = sqrt(pi./(2 * ka)). * besselj(m+1/2+1,ka);
ymm1 = sqrt(pi./(2 * ka)). * bessely(m+1/2 −1,ka);
ymp1 = sqrt(pi./(2 * ka)). * bessely(m+1/2+1,ka);
dhm = 1./(2 * m+1). * (m* (jmm1+i * ymm1)−(m+1) * (jmp1+i * ymp1));
ps = ps+p0 * ( −i)ˆm * (2 * m+1)* LPm1./dhm;
for m = 2:M

LP = 2* cos(theta). * LPm1−LPm2−1/m* (cos(theta). * LPm1−LPm2);
jmm1 = sqrt(pi./(2 * ka)). * besselj(m+1/2 −1,ka);
jmp1 = sqrt(pi./(2 * ka)). * besselj(m+1/2+1,ka);
ymm1 = sqrt(pi./(2 * ka)). * bessely(m+1/2 −1,ka);
ymp1 = sqrt(pi./(2 * ka)). * bessely(m+1/2+1,ka);
dhm = 1./(2 * m+1). * (m* (jmm1+i * ymm1)−(m+1) * (jmp1+i * ymp1));
ps = ps+p0 * ( −i)ˆm * (2 * m+1)* LP./dhm;
LPm2 = LPm1;
LPm1 = LP;

end
ps = i./ka.ˆ2. * ps;
% surf(ka,theta,abs(ps));
% subplot(211)
surf(ka,theta,real(ps −p0* exp(i * ka. * cos(theta)))); %p0* exp(i * ka. * cos(theta)) −
axis([0 kamax 0 thetamax −3 3]);
caxis([ −3 3])
title( 'Real part of the excess pressure, Re(p s)' )
xlabel( 'ka' )
ylabel( ' \theta' )
view(45,45)
colorbar
figure
surf(ka,theta,imag(ps −p0* exp(i * ka. * cos(theta))));
% surf(ka,theta,(unwrap(angle(ps),0.1)));%
% axis([0 kamax 0 thetamax −3 3]);
% caxis([ −3 3])
view(45,45)
title( 'Imaginary part of the excess pressure, Im(p s)' )
xlabel( 'ka' )
ylabel( ' \theta' )
colorbar

% Calculate the intensity due to multiple point sources
clear all;
close all;
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set(0, 'DefaultAxesFontName' , 'Arial' );

set(0, 'DefaultAxesFontSize' ,14);

set(0, 'DefaultAxesFontWeight' , 'demi' )

set(0, 'DefaultAxesLineWidth' ,2);

set(0, 'DefaultLineLineWidth' ,2);

set(0, 'DefaultLineMarkersize' ,10);

colvect=[0,0,0; 0,0,0; .5,.5,.5; 0,.8,0; .7,.3,.3;];

set(0, 'DefaultAxesColorOrder' ,colvect);

set(0, 'DefaultAxesLineStyleOrder' , {' −' , ' −−' });
f = 5000;
w = 2* pi * f;
c = 343;
k = w/c;
lambda = 2 * pi/k;
a = 0.025/2;
rho = 1.21;
d = 0.25;
p0 = 0.1 * [1,0];
rs = [0 d/2 0;0 −d/2 0];
% p0 = 0.1 * [1, −1,1, −1,1, −1,1, −1,1, −1,1, −1,1, −1];
% rs = [0 d/2 0;0 −d/2 0;0 3 * d/2 0;0 −3* d/2 0;0 5 * d/2 0;0 −5* d/2 0;0 7 * d/2 0;0 −7* d/2 0;0 9
p0 = sin(k * rs(:,2)+pi/8)./(k * rs(:,2));
N = 40;
U = 0;
TITLE = [sprintf( ' Wave Vector Intensity Estimate: y Dipole y −z plane
' ); ...

sprintf( 'Finite −Difference Intensity Estimate: y Dipole y −z plane' ); ...
sprintf( ' Analytical Intensity: y Dipole y −z plane ' ); ...
sprintf( ' Wave Vector Intensity Estimate: y Dipole x −z plane ' ); ...
sprintf( 'Finite −Difference Intensity Estimate: y Dipole x −z plane' ); ...
sprintf( ' Analytical Intensity: y Dipole x −z plane ' ); ...
sprintf( ' Wave Vector Intensity Estimate: y Dipole x −y plane ' ); ...
sprintf( ' Finite −Difference Intensity: y Dipole x −y plane ' ); ...
sprintf( ' Analytical Intensity: y Dipole x −y plane ' )]

for ND = 1:3;
U = U+1;
% rmax = 3;
% dr = rmax/(N −1);
% r = 0:dr:3;
% dphi = 2 * pi/(N −1);
% phi = 0:dphi:2 * pi;
% % phi = 0;
% dtheta = pi/(N −1);
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% theta = 0:dtheta:pi;
% % theta = 0;
% [R,PHI,THETA] = meshgrid(r,phi,theta);
Xmin = −2;
Xmax = 2;
dX = (Xmax−Xmin)/(N −1);
X = Xmin:dX:Xmax;
if ND == 1

X = 0;
end
Ymin = −2;
Ymax = 2;
dY = (Ymax−Ymin)/(N −1);
Y = Ymin:dY:Ymax;
if ND == 2

Y = 0;
end
Zmin = −2;
Zmax = 2;
dZ = (Zmax−Zmin)/(N −1);
Z = Zmin:dZ:Zmax;
if ND == 3

Z = 0;
end

[x,y,z] = meshgrid(X,Y,Z);
% x = (x);
% y = (y);
% z = (z);
R = sqrt(x.ˆ2+y.ˆ2+z.ˆ2);
PHI = atan2(y,x);
THETA = acos(z./sqrt(x.ˆ2+y.ˆ2+z.ˆ2));
% x = R.* cos(PHI). * sin(THETA);
% y = R.* sin(PHI). * sin(THETA);
% z = R.* cos(THETA);

rm1 = [0 0 a];
rm2 = [a * sqrt(2)/3 −a* sqrt(6)/3 −a/3];
rm3 = [ −2* a* sqrt(2)/3 0 −a/3];
rm4 = [a * sqrt(2)/3 a * sqrt(6)/3 −a/3];
% r1(1,:,:,:) = rm1(1)+x −rs(1,1);
pa = zeros(size(x));
uax = zeros(size(pa));
uay = zeros(size(pa));
uaz = zeros(size(pa));

p1 = zeros(size(pa));
p2 = zeros(size(pa));
p3 = zeros(size(pa));
p4 = zeros(size(pa));
% figure(3)
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for o = 1:length(p0)
rax = x −rs(o,1);
ray = y −rs(o,2);
raz = z −rs(o,3);

kax = w/c * rax./(rax.ˆ2+ray.ˆ2+raz.ˆ2).ˆ(1/2);
kay = w/c * ray./(rax.ˆ2+ray.ˆ2+raz.ˆ2).ˆ(1/2);
kaz = w/c * raz./(rax.ˆ2+ray.ˆ2+raz.ˆ2).ˆ(1/2);

pa = pa + p0(o). * exp( −j * (kax. * rax+kay. * ray+kaz. * raz))./(rax.ˆ2+ray.ˆ2+raz.ˆ2).ˆ(1/2);

uax = uax+p0(o)/rho/w * rax. * (w/c −j./(rax.ˆ2+ray.ˆ2+raz.ˆ2).ˆ(1/2)) ...
. * exp( −j * (kax. * rax+kay. * ray+kaz. * raz))./(rax.ˆ2+ray.ˆ2+raz.ˆ2);

uay = uay+p0(o)/rho/w. * ray. * (w/c −j./(rax.ˆ2+ray.ˆ2+raz.ˆ2).ˆ(1/2)) ...
. * exp( −j * (kax. * rax+kay. * ray+kaz. * raz))./(rax.ˆ2+ray.ˆ2+raz.ˆ2);

uaz = uaz+p0(o)/rho/w. * raz. * (w/c −j./(rax.ˆ2+ray.ˆ2+raz.ˆ2).ˆ(1/2)) ...
. * exp( −j * (kax. * rax+kay. * ray+kaz. * raz))./(rax.ˆ2+ray.ˆ2+raz.ˆ2);

r1x = rm1(1)+x −rs(o,1);
r1y = rm1(2)+y −rs(o,2);
r1z = rm1(3)+z −rs(o,3);

k1x = w/c * r1x./(r1x.ˆ2+r1y.ˆ2+r1z.ˆ2).ˆ(1/2);
k1y = w/c * r1y./(r1x.ˆ2+r1y.ˆ2+r1z.ˆ2).ˆ(1/2);
k1z = w/c * r1z./(r1x.ˆ2+r1y.ˆ2+r1z.ˆ2).ˆ(1/2);

r2x = rm2(1)+x −rs(o,1);
r2y = rm2(2)+y −rs(o,2);
r2z = rm2(3)+z −rs(o,3);

k2x = w/c * r2x./sqrt(r2x.ˆ2+r2y.ˆ2+r2z.ˆ2);
k2y = w/c * r2y./sqrt(r2x.ˆ2+r2y.ˆ2+r2z.ˆ2);
k2z = w/c * r2z./sqrt(r2x.ˆ2+r2y.ˆ2+r2z.ˆ2);

r3x = rm3(1)+x −rs(o,1);
r3y = rm3(2)+y −rs(o,2);
r3z = rm3(3)+z −rs(o,3);

k3x = w/c * r3x./sqrt(r3x.ˆ2+r3y.ˆ2+r3z.ˆ2);
k3y = w/c * r3y./sqrt(r3x.ˆ2+r3y.ˆ2+r3z.ˆ2);
k3z = w/c * r3z./sqrt(r3x.ˆ2+r3y.ˆ2+r3z.ˆ2);

r4x = rm4(1)+x −rs(o,1);
r4y = rm4(2)+y −rs(o,2);
r4z = rm4(3)+z −rs(o,3);

k4x = w/c * r4x./sqrt(r4x.ˆ2+r4y.ˆ2+r4z.ˆ2);
k4y = w/c * r4y./sqrt(r4x.ˆ2+r4y.ˆ2+r4z.ˆ2);
k4z = w/c * r4z./sqrt(r4x.ˆ2+r4y.ˆ2+r4z.ˆ2);

p1 = p1+(p0(o) * exp( −j * (k1x. * r1x+k1y. * r1y+k1z. * r1z))./sqrt(r1x.ˆ2+r1y.ˆ2+r1z.ˆ2));
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p2 = p2+(p0(o) * exp( −j * (k2x. * r2x+k2y. * r2y+k2z. * r2z))./sqrt(r2x.ˆ2+r2y.ˆ2+r2z.ˆ2));
p3 = p3+(p0(o) * exp( −j * (k3x. * r3x+k3y. * r3y+k3z. * r3z))./sqrt(r3x.ˆ2+r3y.ˆ2+r3z.ˆ2));
p4 = p4+(p0(o) * exp( −j * (k4x. * r4x+k4y. * r4y+k4z. * r4z))./sqrt(r4x.ˆ2+r4y.ˆ2+r4z.ˆ2));
% subplot(221)
% surf(squeeze(p1))
% subplot(222)
% surf(squeeze(p2))
% subplot(223)
% surf(squeeze(p3))
% subplot(224)
% surf(squeeze(p4))
% pause

end
% p1 = p1. * exp(j * 0.0175 * randn(size(p1)));
% p2 = p2. * exp(j * 0.0175 * randn(size(p1)));
% p3 = p3. * exp(j * 0.0175 * randn(size(p1)));
% p4 = p4. * exp(j * 0.0175 * randn(size(p1)));

% subplot(221)
% surf(abs(p1))
% subplot(222)
% surf(abs(p2))
% subplot(223)
% surf(abs(p3))
% subplot(224)
% surf(abs(p4))
% pause
kwvx = sqrt(2)/4/a * ( −angle(p2./p1)+2 * angle(p3./p1) −angle(p4./p1));
kwvy = sqrt(6)/4/a * (angle(p2./p1) −angle(p4./p1));
kwvz = 1/4/a * (angle(p2./p1)+angle(p3./p1)+angle(p4./p1));

kwv = (kwvx.ˆ2+kwvy.ˆ2+kwvz.ˆ2).ˆ(1/2);
% p(1) = (2 * p3+p2+p4)/4;
% p(2) = (p2+p4)/4;
% p(3) = (3 * p1+p2+p3+p4)/6;
uwvx = kwvx. * p1./kwv/rho/c;
uwvy = kwvy. * p1./kwv/rho/c;
uwvz = kwvz. * p1./kwv/rho/c;

upx = −1/j/w/rho/4/a * sqrt(2) * (p2 −2* p3+p4);
upy = −1/j/w/rho/4/a * sqrt(6) * (p4 −p2);
upz = −1/j/w/rho/4/a * (3 * p1−p2−p3−p4);

Iax = real(pa. * conj(uax))/2;
Iay = real(pa. * conj(uay))/2;
Iaz = real(pa. * conj(uaz))/2;

Ialog = 10 * log10(sqrt(abs(Iax).ˆ2+abs(Iay).ˆ2+abs(Iaz).ˆ2)/(10 e−12));
phiIa = atan2(Iay,Iax);
thetaIa = acos(Iaz./sqrt(Iax.ˆ2+Iay.ˆ2+Iaz.ˆ2));
Iaxlog = Ialog. * sin(thetaIa). * cos(phiIa);
Iaylog = Ialog. * sin(thetaIa). * sin(phiIa);
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Iazlog = Ialog. * cos(thetaIa);

Iwvx = real(p1. * conj(uwvx))/2;
Iwvy = real(p1. * conj(uwvy))/2;
Iwvz = real(p1. * conj(uwvz))/2;

p = (p1+p2+p3+p4)/4;

Ipx = real(p. * conj(upx))/2;
Ipy = real(p. * conj(upy))/2;
Ipz = real(p. * conj(upz))/2;

Iwvlog = 10 * log10(sqrt(abs(Iwvx).ˆ2+abs(Iwvy).ˆ2+abs(Iwvz).ˆ2)/ (10e −12));
phiI = atan2(Iwvy,Iwvx);
thetaI = acos(Iwvz./sqrt(Iwvx.ˆ2+Iwvy.ˆ2+Iwvz.ˆ2));
Iwvxlog = Iwvlog. * sin(thetaI). * cos(phiI);
Iwvylog = Iwvlog. * sin(thetaI). * sin(phiI);
Iwvzlog = Iwvlog. * cos(thetaI);

Iplog = 10 * log10(sqrt(abs(Ipx).ˆ2+abs(Ipy).ˆ2+abs(Ipz).ˆ2)/(10 e−12));
phiIp = atan2(Ipy,Ipx);
thetaIp = acos(Ipz./sqrt(Ipx.ˆ2+Ipy.ˆ2+Ipz.ˆ2));
Ipxlog = Iplog. * sin(thetaIp). * cos(phiIp);
Ipylog = Iplog. * sin(thetaIp). * sin(phiIp);
Ipzlog = Iplog. * cos(thetaIp);
% I1 = I1/max(max(abs(I1)));
% I1log = 10 * sign(I1). * log10(abs(I1)/10e −12)/200;
% r11 = r1 −r1;
% r21 = r2 −r1;
% r31 = r3 −r1;
% r41 = r4 −r1;
% quiver3(r0(1),r0(2),r0(3),k(1),k(2),k(3),'b');
% quiver3(r0(1),r0(2),r0(3),k1(1),k1(2),k1(3),'b');
figure(U)

% subplot(2,2,ND)
hold on
quiver3(x,y,z,Iwvxlog,Iwvylog,Iwvzlog, 'k' , 'LineWidth' ,2);
for o = 1:length(p0)

if p0(o) >0
shape = 'sk' ;

elseif p0(o) <0
shape = 'ok' ;

end
scatter3(rs(o,1),rs(o,2),rs(o,3),shape)

end
hold off
% quiver3(r0(1),r0(2),r0(3),0,I1log(2),I1log(3),'r') ;
% quiver3(r0(1),r0(2),r0(3),u1(1),u1(2),u1(3),'r');
xlabel( 'x' );
ylabel( 'y' );
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zlabel( 'z' );
axis equal
axis([Xmin Xmax Ymin Ymax Zmin Zmax])
az = 90 * (1 −sign(mod(1,ND)));
el = 90 * (1 −sign(mod(3,ND))) −90* (1 −sign(mod(1,ND)));
view(az,el)
title(TITLE(U,:))
U = U+1;

figure(U)
% subplot(2,2,ND)

hold on
quiver3(x,y,z,Ipxlog,Ipylog,Ipzlog, 'k' , 'LineWidth' ,2);
for o = 1:length(p0)

if p0(o) >0
shape = 'sk' ;

elseif p0(o) <0
shape = 'ok' ;

end
scatter3(rs(o,1),rs(o,2),rs(o,3),shape)

end
hold off
% quiver3(r0(1),r0(2),r0(3),0,I1log(2),I1log(3),'r') ;
% quiver3(r0(1),r0(2),r0(3),u1(1),u1(2),u1(3),'r');
xlabel( 'x' );
ylabel( 'y' );
zlabel( 'z' );
axis equal
axis([Xmin Xmax Ymin Ymax Zmin Zmax])
az = 90 * (1 −sign(mod(1,ND)));
el = 90 * (1 −sign(mod(3,ND))) −90* (1 −sign(mod(1,ND)));
view(az,el)
title(TITLE(U,:))
U = U+1;

figure(U)
% subplot(2,2,ND)
hold on
quiver3(x,y,z,Iaxlog,Iaylog,Iazlog, 'k' , 'LineWidth' ,2);
for o = 1:length(p0)

if p0(o) >0
shape = 'sk' ;

elseif p0(o) <0
shape = 'ok' ;

end
scatter3(rs(o,1),rs(o,2),rs(o,3),shape)

end
hold off
% quiver3(r0(1),r0(2),r0(3),0,I1log(2),I1log(3),'r') ;
% quiver3(r0(1),r0(2),r0(3),u1(1),u1(2),u1(3),'r');
xlabel( 'x' );
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ylabel( 'y' );
zlabel( 'z' );
axis equal
axis([Xmin Xmax Ymin Ymax Zmin Zmax])
az = 90 * (1 −sign(mod(1,ND)));
el = 90 * (1 −sign(mod(3,ND))) −90* (1 −sign(mod(1,ND)));
view(az,el)
title(TITLE(U,:))

end
% avphiIwv = 1/Nˆ2 * sum(sum((squeeze(phiI −phiIa))));
% avthetaIwv = sum(sum(squeeze(thetaI −thetaIa)));
% avphiIp = 1/Nˆ2 * sum(sum((squeeze(phiIp −phiIa))));
% avthetaIp = sum(sum(squeeze(thetaIp −thetaIa)));
%
figure
surf(squeeze(x)/lambda,squeeze(y)/lambda,10 * log10(squeeze((abs(Iwvx)+abs(Iwvy)+abs(Iwvz))./(abs
axis([Xmin/lambda Xmax/lambda Ymin/lambda Ymax/lambda] )
view(3)
xlabel( 'x/ \lambda' )
ylabel( 'y/ \lambda' )
zlabel( 'dB' )
topline = sprintf( 'Error of WV Estimate: ka = %g, kd = %g' ,k * a,k * d)
title(topline)
colorbar
figure
surf(squeeze(x)/lambda,squeeze(y)/lambda,10 * log10(squeeze((abs(Ipx)+abs(Ipy)+abs(Ipz))./(abs(Ia x
axis([Xmin/lambda Xmax/lambda Ymin/lambda Ymax/lambda] )
view(3)
xlabel( 'x/ \lambda' )
ylabel( 'y/ \lambda' )
zlabel( 'dB' )
topline = sprintf( 'Error of FD Estimate: ka = %g, kd = %g' ,k * a,k * d)
title(topline)
colorbar
% figure(6)
% subplot(211)
% surf(squeeze(x),squeeze(y),(squeeze(phiI −phiIa)))
% subplot(212)
% surf(squeeze(x),squeeze(y),(squeeze(thetaI −thetaIa)))
% figure(7)
% subplot(211)
% surf(squeeze(x),squeeze(y),(squeeze(phiIp −phiIa)))
% subplot(212)
% surf(squeeze(x),squeeze(y),(squeeze(thetaIp −thetaIa)))
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