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ABSTRACT

ERROR SENSOR STRATEGIES FOR ACTIVE NOISE CONTROL AND

ACTIVE ACOUSTIC EQUALIZATION IN A FREE FIELD

Ryan T. Chester

Department of Physics and Astronomy

Master of Science

Several measurements may be used as error signals to determine how to

appropriately control a sound field. These include pressure, particle veloc-

ity, energy density and intensity. In this thesis, numerical models are used

to show which signals perform best in two situations. The first is free-field

active noise control (ANC) using error sensors located in the near field of

the sound sources. The second is equalization in a free field and a semi-free

field. Minimized energy density total power output (MEDToPO) plots are

developed; these indicate the maximum achievable attenuation for a chosen

error sensor as a function of location. A global listening area equalization

coefficient (GLAEC) is found to evaluate the performance of the equaliza-

tion methods. It is calculated by finding the average of the spectral standard

deviation of several frequency response measurements in a specified listen-

ing area. For free-field ANC employing error sensors located in the near field,



pressure-based measurements perform the best. For free-field equalization over

an extended listening region, total energy density performs best. Equalization

of an extended listening region is more successful over a limited low-frequency

bandwidth.
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Chapter 1

Introduction

Two important objectives in the field of sound control are the elimination of

excess noise and the improvement of the quality of sound reproduction. It is useful

to examine sound fields generated by simple sources in free space to study techniques

that may be beneficial in controlling sound. Mathematically describing sound fields

in regions far from simple source configurations, such as a pair of point sources,

requires little effort, given that appropriate approximations are made. Typically,

many approximations are made to simplify the description of a sound field produced

by multiple point sources with arbitrary source strengths. This restricts the results to

the far field. Though useful for describing the far field, these approximations fail to

properly describe sound near the sound sources. The math becomes more complicated

when modeling the near field of sound sources. A good mathematical description of

the near field of multiple sources may provide efficient ways to model, measure and

control the sound field for many applications.

In the field of active noise control (ANC), an error sensor is used to characterize a

sound field and adapt the control system to variations in the field. Because of spatially

dependent variations in a sound field, it is critical that good locations are chosen for

1
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the error sensors. Often, there are constraints that prohibit placing error sensors in

the far field. Qiu et al. looked briefly at placing energy density (ED) sensors in the

near field for use in ANC and analyzed the number of sensors necessary to achieve

effective sound control [1]. In their research, they compared potential energy density

(PED), kinetic energy density (KED), total energy density (TED) and intensity-

based error sensors in their ability to control a source arrangement consisting of a

single primary source and single control source. However, they mainly looked at

the number of error sensors that should be used for ANC and did not move the

error sensors closer than λ/8 from the sound sources. Better understanding of the

nature of the near-field regions of sound sources allows one to find good locations

for error sensors. Nevertheless, the work by Qiu et al. does show that there is a

difference in the information given by the various metrics used to examine a sound

field. Hansen and Snyder suggested methods for proper placement of error sensors.

Their method involved determining regions where attenuation is greatest for a system

that is operating optimally [2].

Often, noise control is the goal of active sound control. However, another inter-

esting and useful application for active sound control is the equalization of a sound

system. In this case, a filter is used to alter the signal provided to a set of loudspeakers

to achieve an ideal frequency response at the receiver location. Using pressure-based

measurements for designing equalization filters would be an intuitive first approach

because human hearing is based on acoustic pressure. However, because pressure

varies dramatically over listening areas, equalization using pressure-based filters can

only be used for very isolated listening zones. There is a possibility that other mea-

surements may be more useful for equalizing sound fields. A well-established method

for evaluating equalization would provide a tool for determining the success of differ-

ent equalization methods.
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There are several measurements available to measure sound at a listening position.

Each of these measurements describes different features of the sound field. In ANC

and equalization, these measurements provide information concerning how the field

may be altered as well as insight as to how well the sound is being controlled. It

is often convenient to place error sensors in the (acoustic or geometric) near field of

the sound sources. Which measurement will most effectively produce the appropriate

information to accomplish the desired sound control? Though measurements such as

pressure, TED and intensity have been used to a limited extent in ANC, pressure has

almost exclusively been used for equalization. For the case of ANC, this question will

be focused on effects of sensors in the near field of the sources involved. For the case

of equalization, the question will be extended to sensors in many locations in the near

field or far field.

The direct sound from a source or combination of sound sources is important

for the entire sound field. In many ANC techniques, error sources are placed in

close proximity to the primary source, in order to achieve the strong coupling that is

necessary to control sound radiation. In some cases, the control sensors are placed in

the near field of these sources. Placing the error sensors in the near field of the sources

causes the direct sound to dominate the measured sound. To examine this situation,

it is convenient to study the ANC system in the free field only, thus ignoring some

issues involved with the reverberant field in enclosed cases.

The direct sound is also important for equalizing a sound field. This is clearly true

for outdoor settings. While equalization is often performed in reverberant locations,

the reverberation makes the situation more complicated than a free field situation.

Starting with a free-field investigation, one can better understand the direct interac-

tion of the sound sources. This in turn allows for better understanding of the effects

of equalization on a sound field.
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1.1 Objectives

The models developed in this research are used to answer two closely related ques-

tions. First, which measurement is most effective for global free-field ANC using error

sensors located in the near field? Second, which measurement is most effective for

global free-field sound equalization? In order to answer this, computational models of

sound produced in a free field are developed, to accurately represent both the near and

far field. Though in most listening environments there is at least some reverberation,

the free-field model provides useful information because it also describes the direct

sound field in an enclosure. The sources may be used to illustrate the results of per-

forming sound control using various types of measurements (such as pressure, particle

velocity, energy density and intensity to name a few). The model helps determine the

control parameters and show the results of direct sound equalization.

There are several techniques that are useful for modeling sound fields. One con-

venient starting point is the use of computational models [1, 3–5]. Computational

models show what may happen in an ideal situation, and serve to show what to

expect in real experiments. This provides a good preliminary step for planning an

experiment, because it indicates which methods should produce good results. More

importantly, the computational experiments may also be used to efficiently find the

limitations of a new approach to sound control. A good computer model may also be

used as an experiment in its own right. Experiments using computer models can be

used to look at many factors without having to change physical experimental setups

repeatedly.

In this research, several computational models are developed using MapleTM and

MATLAB R©. MapleTM was mostly used to find symbolic solutions and descriptions

of the sound field that verify the results calculated by hand. These results were coded
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into MATLAB R© to create computational models. The results from the MATLAB R©

computations are given in terms of plots and animations, as well as some that further

describe the situations. Some of the more important portions of the MATLAB R©

code can be found in Appendices G throught K. Based on the results calculated from

MATLAB R©, the success or failure of ANC or equalization could be determined for

several situations.

1.2 Active Noise Control

There are two basic classifications of methods used to control sound: active and

passive. Some examples of passive sound control include placing a barrier to block

sound transmission or resurfacing a room to alter its response. Control methods that

produce sound to control noise and/or use electronics to alter a signal are considered

active. Some examples of active sound control include the use of loudspeakers to

cancel sound from another source or the use of an electronic filter to compensate for

the response of a room.

Often, sound found in a given environment is undesired or even dangerous. In some

cases, it is appropriate to use ANC to deal with the offending noise. In active sound

control there are three basic components: the error sensors, the signal processing

equipment and the actuators [6]. The error sensors detect the sound field and pass

the information to the processing equipment. Commonly, a digital signal processor

(DSP) is employed to analyze the sound field and determine how to drive the actuators

to control the sound. The processing determines the ideal amplitude and phase for

driving the actuators to cancel the sound for a given situation.

There are several error signal measurements available for use in ANC. The most

familiar is acoustic pressure, which is the signal commonly detected by microphones
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and sound level meters. Other measurements that may be used include particle

velocity, PED, KED, TED, active intensity and reactive intensity [1,7]. Sound power

may also be measured to describe a sound field. However, sound power is difficult

to measure in situ, and therefore is not usually considered a viable measurement

for performing ANC. On the other hand, it is often a very appropriate measure for

judging the success of attempts at sound control, as well as for calculating the optimal

sound control for a given source arrangement [8–10].

1.3 Equalization

Loudspeakers and listening environments tend to alter original audio signals. The

process of equalization may be used to compensate for the resulting inaccuracies

including [11,12]. Some situations call for filters to compensate for known acoustical

problems in a system, while others may be post processed to deal with inaccuracies

due to distortions of an audio signal [13].

The frequency response between the audio signal and listener is altered by the

transducers used to produce sound, transducer interactions, and the environment in

which the sound is generated. In many cases, the loudspeakers are equalized under

anechoic conditions [14]. The process of equalization involves adjusting a sound sys-

tem so that the source to listener frequency response matches some desired frequency

response. It is not limited to adapting only the loudspeakers in the system. Three

things cause the system to be unequalized: nonuniform frequency response of the

loudspeakers, superposition of reflected sound and the sound from other loudspeak-

ers, and frequency-dependent air absorption [15]. An equalization filter boosts or cuts

the signal sent to the loudspeaker as a function of frequency in order to obtain the de-

sired frequency response of the system. User-adjustable filters are commonly referred
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to as equalizers [15]. Often, certain spectral curves are desired that can be easily

implemented using a equalizer. However, there is considerable difficulty in applying

a given spectral response to a large listening area because of the spatial dependence

of the sound field [16]. In this research, an equalized system will be one in which the

frequency response is as close to uniform over frequency as possible. The primary

concern will be to achieve a frequency response that is uniform both over frequency

and over space.

Equalization is a filtering process. A room acts as a filter that introduces delay

and spectral coloration. One goal of equalization is to reduce the spectral variation

of the room response. The delayed reflections in the room interact constructively

and destructively causing the response at a specified position to vary over frequency.

Filters in series commute, so an electronic filter designed to correct for the response

of a room does not need to be implemented after the room has changed the signal.

This means that the correction filter may be implemented before it is used to drive

a loudspeaker in the room. In a sense, the correction filter corrupts the signal and

the room response restores the signal. However, it is important to note that a filter

cannot replace a portion of the signal that has been removed. This means that there

is a limit to how much correction is possible with a filtering technique.

Determining an appropriate equalization filter requires measuring the transfer

function between some input signal and the output signal. Once this has been done,

the inverse of the response is found, and a filter is created by inverting the response

function. If the goal is to equalize the sound at one well-defined listening location,

pressure equalization will provide the best equalization because our hearing is based

on pressure. However, use of one or only a few pressure measurements will likely

degrade the average equalization for a large listening area [11, 17, 18]. This raises

an important question: which measured value would provide an optimal equalization
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filter for an expanded listening area?

All equalization methods fail to remove the extreme dips caused by destructive

interference due to reflections or multiple sound sources. The spatial dips depend on

the geometry of the listening area as well as source location and strength. Using the

filtering methods discussed here, it is impossible to completely replace a frequency

that has been removed from the frequency response. However, the spectral peaks

that occur in the field may be attenuated using the filters designed from the error

sensors.

In a listening environment, frequency response varies as a function of space. This

means that a listener at one point will hear something different than a listener at

another point. Ideally, each listener in a given listening area would hear the same

thing [16]. However, because of interference effects, this is rarely the case. Because

of the relationship between frequency response and impulse response, unequalized

sound fields are also subject to reverberation problems, which can degrade speech

intelligibility.

In addition to the variation in magnitude response of acoustic systems, there are

frequency-dependent variations in the phase response of any acoustic system [19].

There are methods available to compensate for variation in the phase distortion of

an acoustic system. At the same time, phase is much more sensitive to delay and

other conditions of an acoustic system. It is also questionable whether there is value

in trying to equalize phase—especially over extended listening areas. Examination of

phase equalization is outside of the scope of this research, but it is worth noting as

an important part of all acoustic systems.
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1.4 Plan of Development

The topics discussed in the chapters of this thesis will precede as described here.

Chapter 2 discusses mathematical approaches for modeling sound fields. Both analyti-

cal and computational methods are discussed. The discussion of modeling sound fields

continues in Ch. 3, with a focus on techniques for modeling equalization methods.

Chapter 4 discusses the effects of ANC techniques and the benefits and limitations

of using the different methods. Chapter 5 focuses on examination of the changes in

sound fields due to equalization. This chapter also discusses a procedure for judg-

ing the success of equalization methods. Chapter 6 provides a brief summary and

conclusions of this research followed by some suggestions for future research.





Chapter 2

Modeling Sound Fields

Often, it is useful to derive mathematical descriptions of sound fields produced

by a combination of sources when trying to alter the field produced by them. Be-

fore choosing a metric for controlling a sound field, it is important to decide which

measurement is best for the given application. In order to determine the best mea-

surement to use for active sound control, several computational setups were devised.

Initially, closed form solutions were calculated to describe the sound field in terms

of PED (proportional to squared pressure), KED (proportional to the magnitude of

squared particle velocity), and TED (the sum of PED and KED). Plots of these quan-

tities were used to determine whether KED or TED offered a significant advantage

over squared pressure.

In most situations, far field-approximations are made to model a field produced

by a combination of sound sources. These approximations simplify the mathematics

required to arrive at a good description of the sound field. However, in this case we

are interested in error sensors located in the near field. Since far-field approxima-

tions cannot be used in performing the calculations to describe the near field, these

approximations will not be used in this research. Using a more exact model for the

11
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sound field allows for a better description of how applying active sound control using

near-field sensors will affect the sound field.

Analytical and computational methods both have advantages in modeling a sound

field. An analytic expression can often describe the field in a way that yields both a

qualitative and quantitative understanding of the sound field. In order to interpret

the analytical expression easily, some simplification is necessary. Even for simple

situations, this is a cumbersome process. This complicates the study of different

sound-source arrangements. Computational calculations of complicated analytic ex-

pressions can be quickly and easily altered to accurately represent different sound

source configurations. The results of these calculations can be used to produce de-

tailed plots that describe the sound field in a way that can be readily interpreted,

thus showing the qualitative characteristics of the sound field. However, with a com-

putational approach, it is difficult to interpret computer code to make qualitative

predictions of the sound field. A combination of computational and analytical meth-

ods for describing sound fields can illustrate which acoustic measurement performs

the best for a given sound control application.

2.1 Analytical Description of Sound Fields

Pressure is one of the fundamental and most common variables used when mea-

suring sound. As a starting point, the field is described using analytical methods.

Later, similar methods are developed for computational models used for predicting

the nature of the sound field. For simplicity, cases involving two sources will serve as

a starting point for this discussion. To calculate the pressure field, the principle of

superposition is used [20]. The pressure field for an arbitrary number, N , of sources
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is found by the sum [21–23]

p̂ =
N∑
n=1

Âne
−jkRn

Rn

, (2.1)

where Ân is the monopole amplitude of the nth source,

Ân =
jρ0ckq̂n

4π
, (2.2)

Rn is the distance between the nth source and the field point P in question, and q̂n

is the source strength of the nth source. Throughout this research, ρ0 is the fluid

density, c is the speed of sound, k is the wave number and q̂ is the complex source

strength. One of the simplest ways to calculate Rn is the Pythagorean theorem,

Rn =
√

(x− xn)2 + (y − yn)2 + (z − zn)2, (2.3)

where ~r = (x, y, z) indicates the field point and the subscript n indicates which

sound source produces the sound for that iteration of the sum. The sum in Eq. (2.1)

describes, in the frequency domain, the complex sound pressure amplitude produced

by multiple point sources, at the field point (See Fig. 2.1 for an example of two

sources). This expression leads to other acoustic quantities that describe the resulting

sound field around the sources.

Another fundamental measurement of sound is particle velocity. Pressure is re-

lated to particle velocity through the linearized Euler’s equation [24],

−∇p̂ = ρ0
∂~̂u

∂t
. (2.4)

By assuming time harmonicity, Euler’s equation can be simplified to

−∇p̂ = jωρ0~̂u = jckρ0~̂u. (2.5)

If we apply Euler’s equation to Eq. (2.1), and solve for ~̂u, we obtain a vector expression

that describes the particle velocity. After some simplification, in cartesian coordinates
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the result becomes1 [23, 25–27]

~̂u =
N∑
n=1

q̂ne
−jkRn

4πR3
n

(jkRn + 1)~Rn (2.6)

where

~Rn =


x− xn

y − yn

z − zn

 , (2.7)

and x, y, and z are the coordinates of the field point, and xn, yn, and zn are the

coordinates of the nth sound source.

ED can be calculated from the pressure and particle velocity terms. The time

averaged frequency-dependent expression for TED is the sum of the PED and the

1This expression agrees with work by Beranek, Morse and Ingard, Kinsler et al., and Pierce [23,

25–27]. The derivation of particle velocity from acoustic pressure is explicitly shown in Appendix A,

along with a brief explanation of how the result agrees with Beranek, Morse and Ingard, Kinsler et

al., and Pierce.

Figure 2.1 Two point sources on a cartesian coordinate system.
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KED. These expressions are [28–32],

〈wp〉t =
|p̂|2

4ρ0c2
, 〈wk〉t =

ρ0

4
(~̂u · ~̂u∗), 〈wt〉t = 〈wk〉t + 〈wp〉t. (2.8)

The ED values can be calculated to describe the sound field. Because the KED and

TED values include particle velocity, they contain more information than pressure

alone, which may facilitate better control. The vector nature of particle velocity also

means that it contains more information than pressure based-quantities alone.

Equations (2.8) may also be used to calculate the Lagrangian density (LD). The

Lagrangian, commonly found in physics textbooks, is the difference of the kinetic and

potential energy. Mathematically, the Lagrangian is defined by [33]

L = T − V (2.9)

where L is the Lagrangian, T is the kinetic energy and V is the potential energy. The

LD may than be defined as

〈wL〉t = 〈wk〉t − 〈wp〉t. (2.10)

Again, this is a time-averaged quantity. This quantity does have a few drawbacks.

Specifically, when the PED and the KED are equal, the LD goes to zero. Furthermore,

when the PED is larger than the KED, the LD becomes negative, which complicates

the design of an equalization filter.

2.1.1 Two Sources Acting Together

One of the simplest cases to explore is two sources acting in phase with one another

with equal source strengths. This brings Ân out of the sum for pressure in Eq. (2.1),

and q̂n out of the sum for particle velocity in Eq. (2.6). The expression for the pressure

field for this simple situation is the same as Eq. (2.1) with N = 2 and Â1 = Â2.
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Another simple case is two sources with equal magnitude, but 180◦ out of phase.

Equation (2.1) again describes the pressure field with N = 2 and Â1 = −Â2. Setting

the pressure amplitude of the two sources to have opposite signs is equivalent to

changing the phase by π. Aside from factoring the source strengths from the sum,

there is little simplification that may be performed.

2.1.2 Radiation Patterns of a Source

A physical loudspeaker has a directivity pattern. In order to model this analyti-

cally, it is useful to approximate a loudspeaker as a vibrating cap in a sphere. Though

this does not result in a closed-form solution, it does result in a sum that converges.

The pressure produced by a vibrating cap on a sphere can be expressed by [34]

p̂(r, θ) = ρ0c
∞∑
m=0

Um
Cm(kr)

Pm(cos θ)h(2)
m (kr), (2.11)

where Pm indicates the Legendre polynomial, h(2)
m represents the spherical Hankel

function of the second kind, which will be defined shortly. The term Cm is a function

defined as

Cm(χ) =
j

2m+ 1

{
mjm−1(χ)− (m+ 1)jm+1(χ)− j

[
mηm−1(χ)− (m+ 1)ηm+1(χ)

]}
,

(2.12)

where jm(χ) and ηm(χ) are the spherical Bessel functions of the first and second kinds

which are in turn related to the cylindrical Bessel functions of the first and second

kinds by [34,35]

jm(χ) =

√
π

2χ
Jm+ 1

2
(χ) ηm(χ) =

√
π

2χ
Nm+ 1

2
(χ). (2.13)

The aforementioned spherical Hankel function of the second kind is defined as [34,35]

h(2)
m (χ) = jm(χ)− jηm(χ). (2.14)
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The final term in Eq. (2.11), Um, depends on how the cap on the sphere is vibrating.

In this research the model for a radially vibrating cap is used, rather than an axially

vibrating cap, so the model in this research may model a simple horn better than a

loudspeaker. In this case, the term representing the velocity of the vibrating surface

becomes

Um =


û0

2
(1− cos θ0) m = 0

û0

2
[Pm−1(cos θ0)− Pm+1(cos θ0)] m = 1, 2, 3, . . .

(2.15)

The term θ0 describes the polar angle which defines the edge of the cap, see Fig. 2.2.

This value for a given cap on a sphere may be found using the relation

sin θ0 =
ac
a
, (2.16)

where ac is the radius of the cap and a is the radius of the sphere. The sum in

Eq. (2.11) is an infinite sum. In the computational model, it is only necessary to use

enough terms that the pressure expression converges at the frequencies of interest.

This process may be repeated for multiple sources and summed in order to model the

interactions in the pressure field.

Figure 2.2 This diagram indicates the angle that describes the size of a cap
on a sphere.
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2.1.3 Reflections, Ray Tracing and The Method of Images

Another interesting case is one in which reflecting surfaces are present. To deal

with reflections, geometric acoustic techniques may be used. In acoustics, the law of

reflections works the same way that it does in optics, as long as the assumption that

the wavelengths are much smaller than the dimensions of the reflective surfaces is

valid. Expressing a reflection as a function of angles, the angle of incidence is equal

to the angle of reflection [36,37],

θi = θr. (2.17)

This may also be expressed using vector notation,

vr = vi − 2(vi · n)n. (2.18)

where vr is the reflected vector while vi is the incident vector as in Fig. 2.3.

There are two common methods for modeling reflections in a sound field, ray

tracing and image sources. The method of ray tracing uses the law of reflections to

determine the path that sound travels from the source to the receiver. This provides

a visual method to describe how the sound propagates for a given source and surface

arrangement. The path length can be determined from this method, along with the

sound attenuation due to absorption. This may be taken into account to arrive at a

reasonable description of the sound field [36]. The method of images is an alternate

H
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HHH

HHj��
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�
��

�
��*

θi θr
vrvi

Figure 2.3 In the law of reflections, as described in Eqs. (2.17) and (2.18),
states that a vector incident on a surface will reflect from the surface with
the same incident angle. This figure illustrates this law.
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method that uses virtual sources to model a sound field. Modeling an acoustic field

using the method of images works the same as it does when used for electromagnetic

fields. A reflecting surface and a sound source can be modeled using two sound

sources in free space such that they are equidistant from the original reflecting plane,

as illustrated in Fig. 2.4. The path length is naturally taken into account in this model

by the placement of the virtual source [36, 37]. This system works well in computer

simulations because it simply requires the use of additional image sound sources

to represent more reflections. However, modeling a system with multiple reflecting

surfaces quickly become difficult for complicated geometries. For example, situations

where the geometry causes an acoustic shadow would need more complicated methods

to correctly describe the sound field.

The first step for modeling sound reflected from a plane is to determine the location

of the virtual source. With just one source and one reflecting surface, a virtual source

should simply be placed opposite the real source. The directivity of the source as

well as its orientation should be reversed front to back, like a mirror, as it is placed

on the opposite side of the of the source. When this technique is used correctly, a

mirror image of the entire sound field is created on the side of the virtual image. This

is illustrated in Figs. 2.4 and 2.5. This process may be repeated for each reflective

Figure 2.4 To use the method of images a virtual source is reflected to the
other side of the reflecting plane.
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Figure 2.5 The appropriate placements of image sources for two simple
cases involving two reflecting surfaces. In both cases, the dark circle is the
real source and the white circles represent the virtual sources. Solid lines
represent reflective surfaces.

surface encountered along a sound path. In the case of multiple reflections, the

previous virtual source becomes the new primary source, and a corresponding image

source is placed opposite the new reflecting surface. An example involving two parallel

reflective surfaces, indicated by solid lines, is shown in Fig. 2.5(a). The numbers

indicate a chain of image sources; the image source marked with 1 is the first image

source, the 2 indicates the secondary image source, which simulates the reflection of

the first image source, and the 3 indicates the tertiary image source, which is the

image of the secondary image source. The unmarked image sources are based on

another set of reflections. In theory, the process would be repeated infinitely, though

real cases are limited by absorption. In a practical computational model, the number

of virtual sources is limited by the desired time duration of the impulse response.

The additional path length for the image sources is taken into account regardless

of the number of reflections. This occurs because the image source from one reflection

is placed farther from the next reflecting surface, as shown in Fig. 2.5. The resulting

source array may be used to model the sound field in computational models [29,36,37].
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Figure 2.5(b) shows two perpendicular reflecting surfaces with a single source and a

receiver. The direct sound path is marked by A. A pair of sound paths, marked by

B and C, have single reflections. The sound path marked as D has two reflections.

All of these contribute to the spectral and temporal response for this arrangement.

The method of images is useful in the development of a computer model. In order

to produce an accurate computer model using this method, the techniques discussed

in Sec. 2.4 can be directly applied. The greatest difficulty comes from determining

the image source locations; however, these positions may be found by ray tracing

and geometry. The result is a model of the sound field that shows variations due to

reflections and can produce either the impulse response or frequency response of the

source-receiver pair.

The method of images can extend the model described in Sec. 2.1 and discussed

in Sec. 2.4 to model an enclosed sound field, a partial free field or a free field. In the

case of a free field, only the direct sound from the sources is calculated. In an enclosed

field, the reverberation is modeled by the use of many virtual sources. In theory, an

infinite number of sources would be required. In practice, this is not possible nor

necessary. Sound arriving from higher-order reflections is modeled by virtual sources

located farther away. This can be seen in Fig. 2.5(b) by comparing the the distance

from the virtual source used to model path C or B to the listening position, and the

distance from the virtual source to the listening position used to model path D. The

extra distance that the sound must travel inherently attenuates the sound produced

by the virtual source. Classical absorption may also be easily included in the model by

introducing a complex-valued wave number. There are difficulties with appropriately

representing the absorption due to the reflections of obliquely incident waves. This

absorption is outside of the scope of this research, so models will only be used here

to represent perfectly reflecting surfaces.
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2.2 Energetic Descriptions of Sound Fields

Commonly in physics it is useful to look at systems in terms of their energy.

Acoustics is no different. It is useful to look at the sound power, acoustic intensity

and energy density of sound. Energetic descriptors provide another view point for

examining sound fields and have useful properties for sound control.

2.2.1 ED of a Sound Field

A simplified expression for ED of two point sources in phase and 180◦ out of

phase can be found. Equations (2.1) and (2.6) are sums that account for several

sound sources to describe the pressure and particle velocity, respectively. Combining

these equations with Eqs. (2.8) results in descriptions of the sound field due to a set

of sources. For time-averaged PED the expression is

〈wp〉t =
1

4ρ0c2

∣∣∣∣∣
N∑
n=1

Âne
−jkRn

Rn

∣∣∣∣∣
2

(2.19)

while the time-averaged KED is

〈wk〉t =
ρ0

4

∣∣∣∣∣
N∑
n=1

−q̂ne−jkRn

R3
n

(jkRn + 1)~Rn

∣∣∣∣∣
2

, (2.20)

where ~Rn was previously defined as

~Rn =


x− xn

y − yn

z − zn

 . (2.7)

Equation (2.2) defines Ân as

Ân =
jρ0ckq̂n

4π
. (2.2)

For a sound field produced by only two sound sources, the specific expressions can

be determined using analytical methods. The PED for a pair of sound sources is
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described by2

〈wp〉t =
ρ0k

2

64π2

(
|q̂p|2

R2
p

+
|q̂s|2

R2
s

+
2|q̂p||q̂s|Θ
RpRs

)
(2.21)

where

Θ = cos(k(Rp −Rs)) cos γ − sin(k(Rp −Rs)) sin γ (2.22)

γ = φp − φs describes the phase difference of the sound sources, q̂p and q̂s are the

complex source strengths of the sources, and Rp and Rs are the distances from the

sound sources to the field point of interest. The KED is3

〈wk〉t =
ρ0

64π2

( |q̂p|2[k2R2
p + 1]

R4
p

+
|q̂s|2[k2R2

s + 1]

R4
s

+
2|q̂p||q̂s|∆
R3
pR

3
s

ζ

)
, (2.23)

where

∆ = (x− xp)(x− xs) + (y − yp)(y − ys) + (z − zp)(z − zs), (2.24)

and

ζ = (ξ cos(χ) + χ sin(χ)) cos γ + (χ cos(χ)− ξ sin(χ)) sin γ (2.25)

where k(Rp −Rs) = χ and k2RpRs + 1 = ξ. TED is described by4

〈w〉t =
|q̂p|2ρ0

64π2R4
pR

4
s



2k2R4
sR

2
p +R4

s +B2(2k2R4
pR

2
s +R4

p)+

+2k2R3
pR

3
sB

 cos γ cos (χ)) +

− sin γ sin (χ))

+

+2BRpRs∆



 ξ cos(χ)+

χ sin(χ)

 cos γ+

 χ cos(χ)−

ξ sin(χ)

 sin γ





. (2.26)

2Squared pressure is calculated in Appendix C.1.
3The vector magnitude of particle velocity is calculated in Appendix C.2.
4TED is found in Appendix C.3.
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again k(Rp − Rs) = χ, k2RpRs + 1 = ξ, and ∆ is defined in Eq. (2.24). These

expressions will be used to determine a relationship between ED quantities and total

radiated sound power.

In the special case where the two sources have the same source strength and act

in phase, the expressions for ED can be further reduced. For the case of PED the

expression simplifies to

〈wp〉t =
ρ0k

2

64π2
|q̂|2
(

1

R2
p

+
1

R2
s

+
2

RpRs

cos
(
k(Rs −Rp)

))
. (2.27)

The ζ in the expression for KED simplifies to

ζ = (k2RpRs + 1) cos(k(Rp −Rs)) + (k(Rp −Rs)) sin(k(Rp −Rs)) (2.28)

This simplification shows little significance at this point; however, it yields a rela-

tionship between ED and sound power that is independent of source strength. This

solution also provides a first approximation to the relationship between ED and sound

power. This relationship will be discussed later.

2.2.2 Sound Power

In sound control, one important measurement of the system is the sound power.

Sound power describes the energy flux radiated per unit time from a system of sound

sources. Sound power can then be thought of as the sound energy that leaves or enters

a closed surface per amount of time. This is a Gaussian surface, similar to those used

in electromagnetism. Sound power can be divided into two types of power: active

and reactive. The active power is the power that is radiated from the system, passing

through the enclosing surface, while the reactive power describes the energy that

remains in the system.

The method for calculation of sound power illustrates the concept of reactive and

active sound power. For a single point source the power radiated, or self power, can
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be expressed by [9, 32]

Π =
1

2
<{p̂∗q̂}. (2.29)

If a second sound source is introduced to the system, the contribution of the first

sound source to the total radiated power is affected by the second source. There are

complications because the second source introduces an impedance into the system.

The result may be an increase or a decrease in the radiated power of the whole system.

The change in radiated power is due to the impedance of the other sources in the

space. The acoustic power calculations must include both self power and mutual

power from the other sources in the system. The sound power produced by just one

of the two sources in the sound field is expressed as

Π =
1

2
<{(p̂11 + p̂12)∗q̂p}. (2.30)

The power radiated, taking into account the impedances of the other sources, can be

added together to arrive at the total sound power radiated by the sound sources. The

resulting expression describing the total sound power for two point sources is [9]

Π =
1

2
<{(p̂11 + p̂12)∗q̂p}+

1

2
<{(p̂21 + p̂22)∗q̂s}. (2.31)

The total resulting power is different than summing the self power produced by the

two sources independent. Introducing a new sound source to the system changes the

impedance of all of the sources already in the system.

A similar process may be used to calculate the sound power of much more compli-

cated systems, relying mainly on computational methods. To simplify the calculations

it is useful to use the relationship of pressure to the source strength and impedance.

This can be expressed as [10]

p̂ = Ẑq̂. (2.32)

In this case, we let p̂ and q̂ be vectors representing the pressures and source strengths

in the system, and let Ẑ be a matrix that represents the impedance of each source’s
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relationship with the other sources. We thus arrive at a description of the power of

the system. It is important to note that the conjugation on the pressure is Hermitian,

meaning that the vector is conjugated and transposed. The resulting expression for

the sound power of an arbitrary set of point sources becomes [10]

Π =
1

2
<{p̂Hq̂} =

1

2
<{q̂HẐHq̂}. (2.33)

Because of reciprocity, the matrix Ẑ is Hermitian [8, 10, 38]. This expression is con-

venient for determining the sound power of many arbitrarily positioned sources.

For the special case of two point sources, a simple analytical expression is well

defined. For a pair of point sources, with source strengths q̂p and q̂s and separation

distance d, the sound power is [39]

Π =
k2ρ0c

8π
|q̂p|2

(
1 +
|q̂s|2

|q̂p|2
+ 2
|q̂s|
|qp|

sinc(kd) cos(γ)

)
, (2.34)

where γ is the phase difference φp−φs. This expression for sound power will be used

to explore control achieved when source coupling is used in ANC.

2.2.3 Acoustic Intensity

Another useful measurement in acoustics is the acoustic intensity. The instanta-

neous intensity describes the energy per unit area transferred from one element of

fluid to another element of fluid, and may be expressed as [30]

~̂I = p̂~̂u. (2.35)

It is important to note that intensity is a vector quantity. The time averaged-acoustic

intensity, which is often more useful, may be expressed by [30,31]

〈~̂I(t)〉T =
1

T

∫ T

0

p̂~̂u dt, (2.36)
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where T is the period of a single frequency wave. For time-harmonic conditions, it

may also be expressed using the complex frequency domain values of pressure and

particle velocity:

〈~I(t)〉T =
1

2
<{p̂∗~̂u} =

1

2
<{p̂~̂u∗}. (2.37)

Intensity is a point measurement that varies as a function of spatial location, while

sound power is a global measurement, which does not vary over space. This can be

see by noting that sound power depends on the source strength of the sources in the

system, while the intensity depends on pressure and particle velocity measured at a

single point. Because of this, acoustic intensity may measure sources that are not

in the system of interest. As previously mentioned, the sound power expresses how

much energy exits or enters a complete closed surface containing the system of sound

sources. Intensity, however, is the acoustic energy per area that is transferred through

a cross section.

The acoustic intensity is also more convenient for making measurements in the

lab than sound power. Measuring acoustic intensity requires the same information

necessary to find ED. Both are dependent upon the acoustic particle velocity and

acoustic pressure. Because of these similarities, most instruments used to measure

ED may also be used to measure acoustic intensity [1, 7, 40, 41]. Measuring sound

power, however, requires measurements at several locations around the system of

sound sources. This makes the sound power a less convenient quantity in many

practical situations, where both the number of sensors and available time are limited.

2.2.4 Relationship between ED and Π

Kestell et al. showed in their work that a measurement taken by an error sensor

at one location may be used to minimize sound at a different location, which indicates

that one measurement may be used to predict another measurement [42]. This raises
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an interesting question: could a given localized measurement such as ED be used to

predict or approximate a global measurement such as Sound Power? If a relationship

of some kind can be found between two different measurements, then it should be

possible to use that relationship to predict the value of one measurement from the

other.

Sound power describes the sound energy radiated from a system of sound sources

so, it is a quantity that is important for active nose control (ANC) [43, 44]. Because

of the inherent difficulty in measuring sound power directly, it would be convenient

and potentially useful to use an ED measurement to approximate sound power.

Using Eq. (2.21), (2.23), (2.26), and (2.34) can yield a relationship between ED

quantities and total sound power. This relationship becomes complicated for even

simple sound source arrangements. A ratio of ED to sound power can be used as a

tool for approximating sound power, like a units conversion factor. Putting PED and

KED in the numerator provides a convenient simplification for calculating the ratio

relating TED to power. Defining the ratio of TED and sound power by

〈wt〉t
Π

=
〈wp〉t + 〈wk〉t

Π
=
〈wp〉t

Π
+
〈wk〉t

Π
(2.38)

allows it to be easily split into two parts, which can be conveniently added together

after calculating the two ratios. One characteristic of the above equation is that all

of the terms involve the source strengths. In practical situations, approximating the

source strength involves the knowledge of the signal used to drive the sound source

as well as the frequency response of the source along with any components used to

drive it.

For the simple case of two point sources acting in phase with the same magnitude

in a free field, the ratio of ED to sound power can be found in a straightforward

maner. With this source arrangement, the source strengths conveniently cancel in
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the ratio. It can be shown that the ratio of PED to sound power can be expressed

by dividing Eq. (2.27) by Eq. (2.34), resulting in the ratio

〈wp〉t
Π

=
1

4πc

1
Rp

+ 1
Rs

+ 2
RpRs

cos (k[Rp −Rs])

1 + sinc(kd)
, (2.39)

where Rp and Rs indicate the distance from sources one and two to the field point,

respectively. The relationship for the KED can be found by dividing Eq. (2.23) by

Eq. (2.34), which yields

〈wk〉t
Π

=

k2R1+1
R4

p
+ k2R2+1

R4
s

+ 2∆
R3

pR
3
s
ζ

16πck2(1 + sinc(kd))
, (2.40)

where ζ is defined in Eq. (2.28) as

ζ = (k2RpRs + 1) cos(k(Rp −Rs)) + (k(Rp −Rs)) sin(k(Rp −Rs)) (2.28)

and ∆ is defined by Eq (2.24). To get the relationship between TED and total sound

power for a system, it is only necessary to use Eqs. (2.39) and (2.40) in Eq. (2.38).

For slightly more complicated situations, Eqs. (2.39) and (2.40) become much

more involved. Equations (2.21) and (2.25) may be used instead of Eqs. (2.27) and

(2.28) to arrive at a more general description of a sound field produced by two sound

sources. The resulting expression for the relationship between PED and sound power

becomes

〈wp〉t
Π

=
1

8πc

{ |q̂p|2
R2

p
+ |q̂s|2

R2
s

+ 2 |q̂p||q̂s|
RpRs

Θ

|q̂p|2 + |q̂s|2 + 2|q̂p||q̂s|sinc(kd) cos(γ)

}
. (2.41)

where Θ was defined in Eq. (2.22). For the case of KED, the relationship becomes

〈wk〉t
Π

=
1

8πk2c

{ |q̂p|2[k2R2
p+1]

R4
p

+ |q̂s|2[k2R2
s+1]

R4
s

+ 2|q̂p||q̂s|∆
R3

pR
3
s
ζ

|q̂p|2 + |q̂s|2 + 2|q̂p||q̂s|sinc(kd) cos(γ)

}
, (2.42)

where ζ is defined as

ζ = (ξ cos(χ) + χ sin(χ)) cos γ + (χ cos(χ)− ξ sin(χ)) sin γ (2.25)



30 Chapter 2 Modeling Sound Fields

in Eq. (2.25), χ = k(Rp−Rs), ξ = k2RpRs+1 and ∆ is defined by Eq. (2.24). Adding

these two expressions together yields an expression relating TED to sound power for

two sound sources. These equations require knowledge of both source strengths and

locations of the sources where the simpler expressions found in Eqs. (2.39) and (2.40)

do not require knowledge of the source strength. In an enclosed field, boundary

conditions would also be required to fully specify the system.

It is also interesting to look at the situation of approximating the formulations

with the sensor at a mathematically simple location. To do this, one may assume that

the two sources are equidistant from the error sensor, thus setting Rp equal to Rs.

Applying this simplification to Eqs. (2.41), and (2.42) does simplify the expressions

for the relationship. The relationship becomes

〈wp〉t
Π

=
1

8πcR2

{
|q̂p|2 + |q̂s|2 + 2|q̂p||q̂s| cos(γ)

|q̂p|2 + |q̂s|2 + 2|q̂p||q̂s|sinc(kd) cos(γ)

}
. (2.43)

For the case of KED,

〈wk〉t
Π

=
k2R2 + 1

8πck2R4

{
|q̂p|2 + |q̂s|2 + 2|q̂p||q̂s| cos(γ)

|q̂p|2 + |q̂s|2 + 2|q̂p||q̂s|sinc(kd) cos(γ)

}
(2.44)

where ∆ is again defined by Eq. (2.24). Equations (2.41) and (2.42) may be compared

to Eqs. (2.43) and (2.44) to assess what regions would be good candidates for placing

an error sensor for calculating the sound power of the system. However, it is important

to remember that these relationships are dependent on frequency and source strength.

2.3 Sound Levels

In acoustics it is often convenient to express measurements of sound on a decibel

scale. In the case of pressure, this is referred to as the Sound Pressure Level (Lp) and

may be defined as [45]

LP = 20 log10

(
prms

pref

)
= 10 log10

(
p2

rms

|p̂|2ref

)
, (2.45)
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where

prms =
p√
2

and the reference pressure, pref is commonly set to 20µPa for measurements in air.

The Sound Intensity Level (LI) is likewise well known and defined as [45]

LI = 10 log10

(
|~I|
Iref

)
, (2.46)

where the reference intensity, Iref, is chosen to be 10−12 W/m2 in air. These refer-

ence values result in nearly equivalent decibel values for either method of measuring

sound [45, 46]. However, at this point it is apparent that there are other measure-

ments of interest in acoustics, such as particle velocity and ED. For particle velocity

and ED different reference values would be appropriate for decibel representations.

In order to put the particle velocity on a similar scale, the relationship for a plane

wave may be exploited to calculate a reference value for particle velocity from the

reference value used for pressure [47,48]. The resulting expression is [45,47,48]

uref =
pref

ρ0c
. (2.47)

It is apparent that the value for particle velocity will vary with the ambient conditions

of the measurement [47, 48]. For the computational models, ρ0 is set to 1.21 kg/m3

and c is assumed to be 343 m/s. Using this method, the resulting reference particle

velocity is 48.2 nm/s, which may be approximated as 50 nm/s [48]. This leads to a

Sound Velocity Level (Lv) that is defined as

Lv = 20 log10

(
urms

uref

)
= 10 log10

(
u2

rms

u2
ref

)
(2.48)

where

urms =
|û|√

2

and where uref = 50 nm/s.
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A similar method may be used for finding TED level. Instantaneous ED is used

to appropriately find the ED reference level and is expressed [47,48]

wp,ref =
p2

ref

2ρ0c2
, wk,ref =

ρ0

2
|~u|2ref, wref = wk,ref + wp,ref. (2.49)

The calculation of the reference value may be further simplified by substituting in

the expression for the particle velocity reference value found in Eq. (2.47). The

substitution allows the reference values to simplify to

wp,ref = wk,ref =
pref

2ρ0c2
, wref =

pref

ρ0c2
. (2.50)

Equation (2.49) results in reference values of wp,ref = 1.41 × 10−15 J/m3, wk,ref =

1.51× 10−15 J/m3, and wref = 2.92× 10−15 J/m3 using pref = 20µPa and uref = 50nm.

Equation (2.50) results in wp,ref and wk,ref having the same value of 1.41×10−15 J/m3

and wref = 2.81 × 10−15 J/m3. It is reasonable to round the results for wref to

3 × 10−15 J/m3. However, a more precise calculation of Lv and ED Level (Lw) in

Eqs. (2.47) and (2.50) should be used because the density, ρ0, and speed of sound,

c, may vary significantly. If these variations are significant enough, it may not be

appropriate to use an approximate value for the references in calculating level values.

However, because PED, KED, and TED are related and have the same units, it is

convenient to use the same reference value. Table 2.1 includes a list of the reference

values used for for the computational models in this work.

Table 2.1 References used to calculate a given Sound Level measurement
that is used with the computational models.

Nominal Sound Level Reference Values

pref uref Iref wref

20µPa 50nm 10−12 W
m2 3× 10−15 J

m3
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2.4 Computational Model of the Sound Field

MATLAB R© was used to computationally model the sound fields explored in this

thesis. In order to make the computational models useful for many situations, the

computer code was written to calculate the fundamental acoustic measurements by

summing the pressure and vector components of the particle velocity of the sound

sources. This process is performed by initializing the variables representing total

pressure and particle velocity components to zero. The program cycles through a

loop. In each iteration the contribution to one source is added to the variables. This

process calculates the results for Eqs. (2.1) and (2.6).

The pressure and particle velocity is then used to calculate other acoustic quanti-

ties. Because TED depends on the magnitude of pressure squared and the magnitude

of particle velocity squared, these quantities are calculated next. The magnitude of

squared pressure is

|p̂|2 = p̂∗p̂. (2.51)

Since particle velocity is a vector, the magnitude squared of the particle velocity

is calculated by finding the dot product of the particle velocity with its complex

conjugate,

|~̂u|2 = ~̂u · ~̂u∗ = ~̂u∗ · ~̂u = û∗xûx + û∗yûy + û∗zûz. (2.52)

These results can be applied to Eqs. (2.8) to calculate the PED, KED and TED

fields. Other combinations of the fundamental acoustic variables, acoustic pressure

and acoustic particle velocity, may be used to produce alternate measurements of

sound fields.

These computational sound field models may be expanded to represent enclosed

sound fields. Section 2.1.3 mentioned that this would require many virtual sources.

The primary difficulty results from determining the locations of the virtual sources.
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For simple room geometries, basic algorithms may be used to determine the locations

of the virtual sound sources. However, a large number of image sources requires

long computation times for code executed in MATLAB R©. The time required to

calculate the sound field using this method prohibited the generation of surface plots

for enclosures; however, some auralizations were generated.

Animations

Often, visual methods aid understanding of a physical system; animating a plot

allows for visualization of up to four dimensions in a single plot. In order to better

understand control of a system of sound sources, MATLAB R© was used to create

visual illustrations of the sound field. In order to see the pertinent effects, the visual-

izations were often animated over frequency. These animations show how the sound

field changes as a function of frequency, providing insight into the effects of control

methods.

The animations were generated using the methods previously described. The

data for a surface plot is calculated at a frequency and saved to a file. The process

is repeated with the frequency increasing until the data for several surface plots has

been stored on the computer. The data for the surface plots at each frequency is

retrieved one data set at a time. This data is used to generate a plot that is added to

the animation. The end result is an animation that can be shown in a short period

of time.
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Active Sound Control Techniques

Active sound control includes both active noise control and equalization of sound.

Acoustic coupling may be used to globally control sound radiated from combinations

of sound sources located near one another. Electronic filters may be designed, using

measured field quantities, to equalize a sound system. It is also important to know

how well the techniques used accomplish their intended goals.

3.1 Active Noise Control

For active noise control, the objective is to reduce the sound of a given source

configuration as effectively as possible. To do this, it is important to find the optimal

control solution. For a free-field situation, the sound power provides a useful measure

of the global radiation. For successful global active noise control (ANC), the sound

power radiated from the system of sources will be reduced.

35
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3.1.1 Minimizing Sound Radiation

The simplest situation for looking at active noise control is to minimize a sound

quantity using one secondary (control) point source to reduce the sound from one

primary point source in free space. For a reference, the minimization of the sound

power output of the source pair will be used. Later, this setup will serve to compare

the effectiveness of using different types and locations of error sensors. For this section,

we will focus on the sound power output of a pair of point sources. The sound power

is a global measurement that is independent of the locations of the sensors used to

detect it. As previously mentioned, for a pair of point sources, with source strengths

q̂p and q̂s and separation distance d, the sound power is [39]

Π =
k2ρ0c

8π
|q̂p|2

(
1 +
|q̂s|2

|q̂p|2
+ 2
|q̂s|
|qp|

sinc(kd) cos(γ)

)
, (2.34)

where γ is the phase difference φp− φs. Here, and throughout this thesis, the sinc(x)

function is defined as

sinc(x) =
sin(x)

x
, (3.1)

for notational convenience.

To model a field acting in this setup, the source strength for the control source

needs to be calculated. The expression [49],

q̂s = −q̂psinc(kd), (3.2)

describes the ideal relationship between the primary source strength, q̂p, and the

control source strength, q̂s, to minimize the total power output of the source pair,

where d is the distance between sources. This results in a minimum sound power

of [49]

Π =
k2ρ0c

8π
|q̂p|2

(
1− sinc2(kd)

)
. (3.3)
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It is important to remember that sound power is independent of the location where the

sound field is measured; it is a global quantity [31,43]. Because of this global nature,

minimizing sound power makes a good reference for judging the ability to control

sound in a free field [9]. The global nature of sound power also helps judge how

much global sound control has been achieved using different measurement quantities,

especially for the cases in which sound sources are placed in a free field.

Equation (2.34) can also be simplified for the case where there are two sound

sources with the same source strength magnitude. The sound power than simplifies

to

Π =
k2ρ0c

4π
|q̂|2
(
1 + sinc(kd) cos(γ)

)
. (3.4)

Again, the value γ describes the phase difference between the sound sources.

3.1.2 Minimized Energy Density Total Power Output

An important question in active sound control is, where should the error sensor be

placed? How much attenuation can be achieved using a given measurement method

and sensor location? This thesis will demonstrate that in the near field of sound

sources, TED has less spatial and spectral variations than squared pressure or squared

particle velocity. Because of the increased uniformity of TED in the near field, it

stands to reason that placing an ED-based error sensor in the near field would relieve

some of the difficulties in carefully choosing a location of an error sensor, as well

as reduce the problems that result from the frequency dependence of the optimal

location of an error sensor. In order to assess this claim, Minimized Energy Density

Total Power Output (MEDToPO) plots have been developed to illustrate the power

output of a controlled source pair as a function of the location of a single error sensor.

Here the MEDToPO plots are generated for the cases where PED, KED, and TED

are used for error sensors.
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Making a MEDToPO plot requires several steps. First, an error sensor location is

chosen, then the ED that would be detected by that error sensor is calculated. Next,

appropriate adjustments to the control sound source are made to minimize ED at the

error sensor. At that point, the total sound power output of the system is calculated.

This value is recorded for the location of the error sensor. This process is repeated

for each location where an error sensor may be placed. The resulting set of data is

used to produce a plot that shows the total power output of the system when a given

error quantity is minimized at a number of points in the sound field. Figure 3.1 shows

examples of these types of plots for a single primary sound source, marked with an

×, and a single secondary source, marked with an ◦, at kd = 2.473. Plots of PED,

KED, and TED schemes are generated.

Often, it is useful to know how the optimal sensor locations vary as a function

of frequency. This may be seen by creating a MEDToPO plot for each frequency

of interest. The process leads to an array of MEDToPO plots, that may be used

individually to look at each frequency, as in Fig. 3.1. The plots may also be used

as frames in an animation to examine how changes in frequency alter the controlled

sound field.1 Unfortunately, the MEDToPO plot is limited to cases involving only

one error.

3.2 Equalization

For some systems it is desirable to equalize a frequency response in order to match

some ideal response curve. The dashed curve in Fig. 3.2 represents the frequency

response measured at a point a short distance from the center of two point sources

1An example of this animation can be seen on the digital version of this thesis in Appendix E

Fig. E.1. The MATLAB R© code used to generate MEDToPO plots and animations is found in

Appendix H.
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cd cd cd

Figure 3.1 An example MEDToPO plot, at kd = 2.473, illustrates sound
power output, at a given frequency, as a function of error sensor location and
error signal type. The primary source is marked with an ◦ and the secondary
source is marked by an ×.

radiating in a free field. To equalize this, the signal used to drive the sources would be

filtered with a response similar to the dot-dash curve in Fig. 3.2. The result wold be

a measured frequency response that is perfectly flat, like the solid line in the figure.

In equalization a method of dereverberation is used to correct the sound system

to minimize the effects due to the listening environment. In this case, deconvolution

is used. Several methods have been applied to find an appropriate correction filter,

including the development of a cost function and use of least-squares methods to

arrive at an appropriate solution [13,50–52]. Another method of equalization requires

measuring the transfer function between some input signal and a measured output

signal. Once this has been done, the inverse filter is found by inverting the frequency

response such that

g[n] = h[n]⊗ heq[n] or Heq(f) =
1

H(f)
, (3.5)

where ⊗ indicates convolution, g[n] is a delta function whose Fourier transform is

unity across the spectrum of interest, and the corresponding transform relationships
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Figure 3.2 The original signal is filtered by a correcting filter, the result is
a frequency response that is flat over the entire frequency range.

are defined

h[n]↔ H(f), heq[n]↔ Heq(f), (3.6)

where ↔ indicates a transform relationship.2 The variable n indicates time and f

indicates frequency. A time domain filter may be created from the resulting inverse

frequency response function, Heq(f) [13, 53, 54]. To arrive at a usable filter, the

inverted response must be transformed from the frequency domain to the time domain.

The inverse of the response filter is then convolved with the recorded signal using a

linear convolution, a process that will be discussed later [53,55,56].

Inverting the frequency response in the frequency domain and using the inverse

Fourier transform to arrive at a time domain filter inherently creates a circular filter.

This is because performing a discrete Fourier transform assumes that a circular system

is being modeled. One interesting result of this inversion process is that the inverting

filter is only causal in certain special cases [54]. If this filter is used in the compu-

2 Though this inverse relationship is defined for a transfer function in the Laplace domain, it

applies to the frequency, or Fourier, domain. This is because the Fourier domain is a special case of

the Laplace domain.
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tational model, it will produce a very notable anomaly in the auralization: an echo

will begin before the direct sound. This may be dealt with by shifting the inverted

impulse response in a circular fashion. A circular shift is performed by bringing the

first section of an array representing the discrete impulse response to the end while

maintaining the order of the elements in the array [57]. Under certain circumstances

this minor adjustment allows the inverted impulse response to be corrected for the

response of the room, even in cases when the room is not a minimum phase system.

This is because a circular shift in the time domain is equivalent to multiplying by a

linear phase factor in the frequency domain [57].

In practice, an inverse response found by simply inverting the function is not

necessarily useful [54]. If the system has nonminimum phase, the filter found by

inverting the response will be noncausal [12,13,53,54]. For a minimum phase system,

both the system and its inverse will be causal and stable [58]. This can be seen by

noting that a minimum phase system will have all of its poles and zeros inside of the

unit circle in the z-plane, wich implies that the system is stable and causal. After the

system is inverted, the zeros in the z-plane are replaced by poles, and the poles are

replaced by zeros. Thus, for the inverse to be causal and stable, the original system

must have all of its zeros inside of the unit circle in the z-plane [59]. Another option

for dealing with nonminimum phase involves approximating the appropriate inverse

filter; however, this method is outside of the scope of this research.

Any nonminimum phase filter can be separated into a minimum phase portion

and an all-pass portion [58]. In the frequency domain, the signal may be separated

such that

H(z) = Hmin(z)Hap(z). (3.7)

This expression may also be written in the time domain as

h[n] = hmin[n]⊗ hap[n]. (3.8)
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The filter, Hmin(z), will have the same magnitude as H(z), while Hap(z) will have a

uniform magnitude [53,58].

In practice, a stable causal filter is required when performing filtering operations.

Because the minimum phase portion of a response has the same magnitude as the full

response, it may be used to design an equalization filter to equalize the magnitude

response. An equalizing filter may be found by inverting the minimum phase portion

of the frequency response. This changes Eq. (3.5) slightly to

Heq(z) =
1

Hmin(z)
. (3.9)

Using a minimum phase filter will assure that the resulting filter inverse will be both

causal and stable [12, 13, 54, 58, 60]. The resulting filter is capable of equalizing the

magnitude response of the system. Though the phase is altered by a minimum phase

filter, it does not always correct the phase issues. A minimum phase inverse filter

will perfectly restore an acoustic signal that was reverberated by an impulse response

that is minimum phase [12].

For each set of systems with a given magnitude frequency response there is one

common minimum phase frequency response [58]. This means that magnitude equal-

ization of a system may be performed using the minimum phase portion of the system,

though this still alters the phase of the system. In theory, a correction filter defined

using this method will inherently be causal and stable. However, a minimum phase

filter may not correctly correct phase and can introduce phase issues. This can be

seen by noting that the response of a minimum phase system has less delay than all of

the other possible responses with the same magnitude frequency response. Research

has previously shown that if the impulse response of the listening environment is

nonminimum phase, there will be a residual reverberation in the result described in

the literature as a “metallic tone” like a “bell chime” [12,53].
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3.2.1 Minimum Phase

The Hilbert transform may be used to find the minimum phase portion of a signal.

A minimum phase signal is related to the log magnitude and phase of the frequency

response. The complex cepstrum, as it is commonly called, is stated mathematically

as [12, 58,60]

C(f) = ln[H(f)] = ln
[
|H(f)|

]
+ j arg[H(f)] (3.10)

where

h[n]↔ H(f), c[n]↔ C(f). (3.11)

If the filter length N is very long, the minimum phase portion of H(f) may be found

by noting that c[n] is a periodic function, and that the second half of the array may

be zeroed such that [12,61]

m[n] =


c[n], n = 0, N/2

2c[n], 1 ≤ n < N/2

0, N/2 < n ≤ N − 1.

where the cepstrum, C(f), is expressed in quefrency and c[n] is its transform. Letting

M(f)↔ m[n], (3.12)

finishes out the Hilbert transform. The minimum phase portion of the signal H(f) is

expressed by [12]

Hmin(f) = eM(f). (3.13)

This process can be described as taking the log of the Fourier transform of the input

signal, than inverse transforming the result and raising it to the power of the base

of the logarithm taken in the initial step. In this example the natural log was used,

though any convenient base may be chosen. It is important to remember that any
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modeled filter is implemented using linear convolution in order to represent how the

filter would perform.

Another option for building a time-domain equalization filter from a frequency

response function is to shift the filter in the time domain. After a filter is designed

in the frequency domain, it can be expressed in the time domain. The process of

transforming the filter from one domain to another assumes a circular symmetry,

which may be used to change the phase of the filter. In the time domain, the filter

may be circularly shifted so that the terms pushed out one end of the filter are moved

in to the other end. The magnitude frequency response of the filter is maintained

through this process, but can be made causal if appropriately shifted. This method

does not result in a minimum phase filter, but can be made to work well consistently.

Effectively, this technique is introducing a pure delay to compensate for non minimum

phase.

3.2.2 Convolution

Calculating a convolution involves four major steps: reversal or folding, shifting,

multiplying, and integrating or summing [62, 63]. Considering filters or signals as

curves helps understand the concept of convolution. First one of the curves is reversed

left to right, and moved to the start of the other array. The first array is moved, or

shifted, along the other while the area under both of the curves is integrated resulting

in a new curve. The new curve represents the area under both curves as a function

of the location of the curve that is moved along the other. This can be expressed

mathematically as [62, 64]

h(t) =

∫ ∞
−∞

f(τ)k(t− τ)dτ. (3.14)

In some situations, it may also be convenient to assume that the system is at
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rest before the signal is used by starting the integral at an initial point. In this

research, the convolution is performed mostly using arrays of numbers representing

signals or filters. The process is essentially the same, and is illustrated in Fig. 3.3.

The reversal step is performed by reversing the order of the terms in the filter and

placing the filter to the left of the signal array. The shifting is performed by shifting

one term at time instead of integrating the area, the aligned taps are multiplied, and

the results are summed. This produces the first value in the resulting convolution.

The shifting, multiplying, and summing steps are repeated, resulting in the next term

in the final series. The process is repeated until the last term of both the filter and

the signal line up, producing the last term of the series. This results in a series that is

L+P −1 long where L is the length of the signal and P is the length of the filter [63].

Mathematically this is stated

h[n] =
∞∑

η=−∞

f [η]k[n− η] (3.15)

and is commonly referred to as linear discrete-time convolution. For a practical

situation this is further limited to having a finite set of data which further simplifies

the sum to [63]

h[n] =
N∑
η=0

f [η]k[n− η], (3.16)

This process is straight forward and has the convenience of performing the computa-

tions in the time domain, but the process is computationally inefficient.

Up to this point, only linear convolution has been discussed; another type of

convolution known as circular convolution also exists. In linear convolution, when

the two data sets have terms that do not overlap, the unpaired terms are multiplied

by zero. In the case of circular convolution, the terms wrap around so that all of

the terms of the shorter array aligns with terms on the longer data set. This is

illustrated in Fig. 3.4 by showing the change from one iteration to the next of the
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Figure 3.3 Illustration of a discrete linear convolution of a four tap filter
and a five term signal, both of which are found on the top row. The left
middle shows the reversal and placement of the filter for the first iteration of
the process. The remaining three illustrations show further steps of the shift
process of the convolution.
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f f f f f

f f f

Figure 3.4 In circular convolution, when the filter or sequence is shifted,
the last tap or term is rotated to the beginning.

shifted filter. Circular convolution does not model the response of an acoustic signal

in a room or any other listening environment, but it matches the results of some more

computationally efficient methods of performing the convolution.

A more computationally efficient method for calculating the convolution relies

on the convolution theorem of the Fourier transform, which states that multiplica-

tion in one domain is related to convolution in the other domain. Stating this in

mathematical terms, letting [63]

y[n] = x[n]⊗ h[n]↔ X(f)H(f) = Y (f) (3.17)

where

x[n]↔ X(f), y[n]↔ Y (f), h[n]↔ H(f), (3.18)

On a computer, convolution is often computed by first using a fast Fourier transform

(fft) on the arrays to transform them to the frequency domain. The arrays are then

multiplied term by term, producing a new array. The new array is then inverse trans-

formed using the inverse fast Fourier transform (ifft). The result is the convolution

of the two arrays. However, this is a circular convolution, not a linear convolution.

It assumes that the arrays represent periodic signals or filters. To compensate for

this issue, the arrays may be zero padded before the initial Fourier transform, the
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result will have extra zeros at one end which may be removed after the convolution

is computed [56,63,65,66]. This process results in a linear convolution.

In order to model an acoustic system, a linear convolution between a signal and a

filter should be used [56, 65, 66]. The circular convolution assumes that the signal or

filter repeats itself. In a real acoustic system, the room, which is modeled by the filter,

does not repeat; under common circumstances the signal does not repeat either. This

means that a linear convolution will produce a realistic representation of the acoustic

system, while a circular convolution will introduce an error due to its periodic nature.

This process may be used to produce an auralization to determine how a given sound

will act in a given acoustic environment. A function was written for this research to

perform the convolutions, the MATLAB R© code used can be found in Appendix G.

3.3 Evaluating Equalization

There are several techniques that might be used to judge the success of methods

of equalization. These methods include modeling what would be heard at a given

listening position with an auralization, plotting information about the sound field,

and calculating an equalization coefficient to rank the effectiveness of the equalization.

3.3.1 Auralization

In order to simulate and demonstrate what would happen when a sound system in

an environment is equalized, computer simulations were created in MATLAB R©. To

better understand the effects of multiple sources in a free field, or sound sources in the

presence of a reflecting plane, a computer model was used to generate auralizations of

the situations of interest. Creation of these auralizations requires an impulse response

that represents the relationship between the sound sources, reflective surfaces, and
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the listening position for a given listening environment. The impulse response is then

convolved with an anechoic recording to produce an auralization [64].

The techniques described in Sec. 2.1, are used to find the pressure frequency re-

sponse for a listening position in a defined environment. The pressure frequency

response, convolved with a given signal describes the pressure function at a listening

position, thus modeling the sound that would be heard at that given point. This

frequency response is used to find the impulse response for the listening position,

which is used to make the auralization. The auralization made to model the listening

position can then be convolved with any equalization filter to produce an auraliza-

tion that demonstrates the effect of a given equalization filter at a specific listening

position.

To validate the convolution used in this research, its results were compared to

the results found using GratisVolverTM, a free executable file produced by CATT

AcousticTM [67]. The resulting auralizations sounded identical. To further substan-

tiate the similarities between the two auralizations, the auralizations were both read

into MATLAB R© and plotted (See Figs. 3.5(a) and (b)). The difference between the

results of the MATLAB R© convolution and the GratisVolverTM convolution is on the

order of 10−3, as shown in Fig. 3.5(c). This result is an example of the typical results

of the convolutions from these two programs.

Frequency responses based on other acoustical measurements, such as particle

velocity, TED, and sound power, were also used to equalize the systems. These filters

were calculated using developments found in Ch. 2. The resulting filters are convolved

with the previously found pressure based auralization using the previously described

methods. The new set of auralizations exhibited what a listener would hear if the

given filter were used to equalize the sound produced by a source. A similar process

could be used to model situations where the sound from a primary source is reinforced
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(a)

(b)

(c)

Figure 3.5 Abover are the resulting auralizations for convolutions using (a)
GratisVolverTM and (b) the technique used in MATLAB R©. Figure (c) shows
the difference between the convolutions performed by both programs. It is
important to note that the scale in the last figure is much smaller than the
plots of the auralizations. The auralizations can be found on the digital
version of this thesis in Appendix F.1.
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by an equalized secondary source.

3.3.2 Animations

The techniques mentioned in Sec. 2.4 were used to generate animations to illustrate

the effects of equalization on the sound field. A frequency response for a listening

position is obtained computationally to design an equalizing filter. A spatial plot of

the equalized sound field is generated at each frequency. These plots are then used

to generate an animation that shows the spectral fluctuations of the given listening

region and helps determine if the equalization process is beneficial over a large area.3

The animations in this research show how the field changes as frequency increases.

A circle is marked on these animations indicating the position of the error sensor in

order to demonstrate that the response at that position maintains a constant response

over frequency while showing that the field changes over frequency at other locations.

It quickly becomes apparent that the entire field increases or decreases due to the

gain and attenuation used to equalize the sensor at its fixed location. Animations

give a general idea of how the field changes, but it is still often difficult to see where

the field is equalized and where the performance is degraded.

3.3.3 Spectral Standard Deviation

Standard deviation of the frequency response may be used to indicate the level of

equalization of a listening area. The standard deviation may be calculated for many

listening positions, such that a map of the equalized space may be generated. If the

3Some of these animations can be viewed in the digital version of this thesis in Appendix E
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entire sample is available concurrently, the variance may be calculated by,4

s2 =

NP
i=1

(xi − x̄)2

N − 1
, (3.19)

where x̄ is the mean of x [68]. In many cases only some of the data is available at

one time, as in this research. This requires another form of the equation for standard

deviation. The standard deviation can be found using

s2 =

NP
i=1
x2
i −

(
NP
i=1

xi

)2

N

(N − 1)
, (3.20)

by calculating the standard deviation as the data becomes available [68]. A verifica-

tion that Eqs. (3.19) and (3.20) are equal is given in Appendix B.1. This method of

calculating the standard deviation becomes useful for finding spectral standard devi-

ations at many points in a sound field while generating animations of a sound field.

The method of calculation using Eq. (3.20) does not require knowledge of the mean

while performing the summations. In the computation process, this allows the data

to be overwritten for each computation cycle, which reduces memory usage. Though

both equations are equivalent, Eq. (3.20) is subject to numerical errors, which can

become noticeable when the standard deviation is nearly zero. These special cases

have been known to result in negative valued standard deviations on the order of 10−6

for small sample sizes.

4In practice, this process is performed using only a discrete data set. The only feasible way to

get a true population for analysis is to use analytical expressions to model the frequency response

and calculate the variance σ2 using an integral representation. Because of this, it is not useful

to calculate the population standard deviation. Note: It is common practice to use letters from

the roman alphabet to indicate statistical quantities based on a sample and use greek letters for

statistical quantities based on an entire population.
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3.3.4 Global Equalization Figure of Merit

A reliable figure of merit is important for appropriately judging the success, or lack

thereof, of an equalization system. A list of desirable attributes of the desired qualities

of the figure of merit for sound equalization has been proposed by Morrise [69], who

recognized that the figure of merit should:

i. have a physical basis.

ii. have a clear and unambiguous definition.

iii. have a clear explanation.

iv. apply universally to all methods of equalization (both practical and theoretical).

v. apply universally to all listening areas.

vi. be found in a straightforward manner.

vii. be contained in a single figure.

These results are similar to the requirements proposed by Hargreaves et. al. in their

work for a coefficient describing diffusers [70]. The goals of diffusion and equalization

are similar. The objective of a diffuser is to uniformly distribute sound regardless of

frequency; the goal in equalization is to achieve a uniformity in frequency response

in a large area. It is also important to note that a perfect definition for diffusion is

impossible [70]. In a like manner, a perfect global equalization coefficient would be

difficult.

There are two additional items that should also be considered for selecting a figure

of merit. The figure of merit should also:

viii. work well in real world applications.
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ix. consistently predict which methods perform best.

A computer model can generate very large sample sizes that would be ridiculous

to acquire in practical applications. Practicality introduces the difficulty of making

the equalization factor work in a real environment where only a limited number of

measurements may be taken for a sample. The global equalization factor should

also consistently predict which method of equalization has the most success. This

last requirement is obvious and perhaps is not worth explicitly including in the list;

however, it is probably the most important factor.

3.3.5 Graphical Methods for Ranking Equalization Processes

In order to develop this global equalization figure of merit, techniques were devel-

oped to verify that it appropriately ranked the equalization methods. Initially, it is

useful to inspect a one-dimensional listening area, either by examining equalization

in a one dimensional system such as a tube, or a line chosen in a three dimensional

listening area. In these cases, a surface plot may be used to show the frequency re-

sponse along one axis and the position along a line used to define a listening position.

Though this type of plot reveals detailed information, it is difficult to judge directly

from these plots which method provides better equalization. To simplify this, spec-

tral standard deviations for each point may be plotted as a function of the listening

position (see Fig. 3.6 for an example). These frequency responses may also be used to

generate animations of the sound field over frequency. These tools can help determine

where to place error sensors to control the sound field.

Typical listening areas are spread over two-dimensional surfaces. Because of this,

it is useful to have a technique to judge the equalization of a two-dimensional field.

Following the method used in the one-dimensional case, a surface plot representing

the spectral standard deviations of squared pressure for each listening position can
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Figure 3.6 An example of a curve comparing the standard deviation as a
function of position in a one-dimensional listening area.

be generated to show how standard deviation changes as a function of space. One

example of these plots is shown in Fig. 3.7. The standard deviations in Figs. 3.7 and

3.8 are calculated from kd = 0.3664 to kd = 366.4 in steps of 0.1832; this plot is

equivalent to spacing the sound sources d = 4 m apart and calculating the standard

deviation over a range of 20Hz to 20kHz in 10Hz increments. Figure 3.7 shows

the spectral standard deviation on a logarithmic scale. Figure 3.8 is normalized by

dividing the spectral standard deviation of the equalized field by the spectral standard

deviation of the unequalized field, showing a relative improvement in equalization.5

It is readily apparent from Fig. 3.7, that as the listening position gets farther from

the sound sources the standard deviation decreases. In free space, as the sound level

gets smaller with increasing distance from the sources, so does the change in the

magnitude of the response from one frequency to another, which in turn decreases

the calculated standard deviation value. This decrease can be seen by remembering

5Appendix I contains a MATLAB R© script that can be used to generate plots like those found in

Figs. 3.8.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7 Above, surface plots of spectral standard deviation, from kd =
0.3664 to kd = 366.4, over a 2-D listening area The ◦ indicates the location
of the error sensor while the + symbol indicates the locations of the sound
sources. The frequency response of this plot is calculated over |p̂|2 to in crease
the contrast in the plot.



3.3 Evaluating Equalization 57

(a) (b)

(c) (d)

(e) (f)

Figure 3.8 The resulting ratio of the spectral standard deviation, from kd =
0.3664 to kd = 366.4, of an equalized field divided by the spectral standard
deviation of the unequalized field. The portions that are indicated as being
less than one indicate equalization improvement, while values greater than
one show a decrease in equalization. The frequency response of this plot is
calculated over |p̂|2 to increase the contrast in the plot. The sensor postion
is marked by ◦.
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that the variation may be expressed by,

s2 =

NP
i=1

(xi − x̄)2

n− 1
. (3.19)

This expression shows that the standard deviation is dependent on the mean differ-

ence from the mean value of the data set, which inherently decreases as the sound

level decreases far from the source. Dividing the spectral standard deviation of the

equalized case by the spectral standard deviation removes the extraneous effect of the

attenuation due to the proximity of the listening position to the sound source, while

leaving the variation due to interference. In this case the normalization is performed

on the spectral standard deviations.

A normalization may be used in order to deal with the spatial dependence of the

standard deviation apparent in Fig. 3.7. Three methods for this normalization of the

unprocessed data were considered:

i. normalizing by dividing each frequency response by its maximum value before

calculating the spectral standard deviation.

ii. normalizing by dividing each frequency response by its average value before

calculating the standard deviation.

iii. dividing the spectral standard deviations of the equalized sound field by their

corresponding spectral standard deviations in the unequalized field.

Normalizing the standard deviations of the sound field by either the maximum val-

ues or average values of the frequency response first requires calculating the frequency

response at each position of the sound field. From these responses, the normalizing

values are calculated. The frequency response values are then divided by their own

normalization factor. At this point the standard deviations are calculated for each
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normalized frequency response. This yields an array of standard deviations that may

be used to illustrate the normalized spectral standard deviation field.

Normalizing the spectral responses before calculating the standard deviations

causes some problems. When the frequency responses are normalized by their max-

imum values, the plots of the spectral standard deviation improperly rank the per-

formance of equalization techniques. According to plots generated using this nor-

malization, the Lagrangian density (LD) worked best to equalize, but it was readily

apparent in the animations that this was not the case.6 Some plots generated using

these normalization methods are shown in Fig. 3.9; they are ordered from left to right,

then top to bottom, according to the ranking suggested by the plots.

Normalizing the frequency response using a spectral average has problems as well.

One difficulty with using the average to normalize the frequency response produces

results that look very similar regardless of the equalization technique used, causing

difficulty in determining which method functions best. This phenomenon is demon-

strated in Fig. 3.10, which again is sorted according to the way these plots rank

equalization from best to worst, going from left to right and top to bottom.

The final method of normalization compares the changes due to the different

equalization routines. The spectral variance is calculated for each listening position

of the sound field before and after equalization. The spectral variances of the equalized

field are then divided by the corresponding spectral variances of the unequalized field.

These results show comparative improvement or degradation of the equalizing method

over space. Since this expression is a ratio, positions with values between zero and

unity indicate improvement with the smaller values indicating more improvement,

values above unity indicate degradation of equalization. Expressed on a logarithmic

6An animation of the Lp of the field equalized using LD as well as an unequalized sound field

can be seen in Appendix E in Fig. E.4.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9 This is a plot of the log10 of the standard deviations of frequency
response, from kd = 0.3664 to kd = 366.4, normalized by their maximum
value over a listening region. These are ordered from the best to worst, ac-
cording to the plots, going from left to right, top to bottom. The Lagrangian
density is off the scale for these plots, indicating superior equalization. The
frequency response of this plot is calculated over |p̂|2 to in crease the contrast
in the plot.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10 This is a plot of the standard deviations of frequency response,
from kd = 0.3664 to kd = 366.4, normalized by their average value over
frequency over a listening region. These are ordered from the best to worst
going from left to right, top to bottom. The frequency response of this plot
is calculated over |p̂|2 to in crease the contrast in the plot.
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scale, values less than zero indicate improvement in equalization, while values greater

than zero indicate degradation. This type of plot provides a tool for comparing one

method against another to judge which equalization works better. The plots for the

different methods of equalization may be compared to one another to show which one

equalizes best. Some examples of these plots can be seen in Fig. 3.8 for one case.

The ratio method is very similar to the F-test found in statistics. This test com-

pares the difference between the variance of two samples by calculating their ratio [71],

just as in the difference plot method just mentioned. At this point the F-test could be

used to check to see which regions do or do not improve significantly with equalization.

Another way to judge the equalization is to look at the size of the region in the

spectral standard deviation plots that the method successfully equalizes. This is

measured by looking at the size of the area inside the listening region in which the

variation of the frequency response is smaller than a given value. In many cases,

this results in well-equalized regions that are long and narrow. The shape of these

curves are determined by surfaces in and around the listening area as well as source

arrangements and error sensor locations. This could be given as a percentage of

the listening area meeting a given frequency response variation. The limits could

also be given based on the F-test. A global equalization factor could be generated

from this by looking at the size of regions where equalization is improved. This

process would require many measurements to approximate the size of the region where

equalization improves. Because of this, determining a global equalization factor using

this technique is not practical in a nontheoretical situation.
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Active Noise Control Results

The previously discussed tools produce data that help understand how to better

control the sound field produced by sources in free space. The methods also serve to

illustrate how the sound fields change for given situations and success or failure of

different techniques used to control sound fields. This chapter discusses the results

found using these tools for active noise control problems. It examines different metrics

for use as error sensors in the near field of sound sources as well as tools for evaluation

of the success of active noise control (ANC).

4.1 Models of the Sound Field

Chapter 2 demonstrated methods for inspecting sound fields using mathematical

models and graphical representations of the acoustic fields. The graphical represen-

tations are capable of illustrating what can be measured using various instruments.

These measurements are referred to as a reference signal and are used to determine

how to control a sound field. These measurements provide the data used to deter-

mine the correct control settings. In addition to determining how to alter the sound

63
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field, measurements of an unaltered sound field also provide a comparison to show

the success or failure of the control system.

The situations with two sources reveal many of the features expected for pressure

and particle velocity. With two equal amplitude sources in phase, we see a pressure

maximum running along a line equidistant from the two sources. At the point halfway

between the two sources is a particle velocity minimum. This is because the particle

velocity due to one source is canceled by the contribution of the other source at

that point. In contrast, the situation where the two sources are 180◦ out of phase, a

pressure minimum exists along a line equidistant from the two sources and the particle

velocity has a maximum at the point half way between the two sources. Figure 4.1

shows these characteristics for a kd value of 6.961. However, the stated observations

hold for a wide range of frequencies. For either arrangement, TED is more spatially

uniform than PED or KED in a region between the two sources over a large frequency

range in the region between the sources. The relative spatial uniformity is easer to

see at higher frequencies like Fig. 4.2 or with arrays of sources with more sources like

those in Fig. 4.3. This uniformity suggests that placement of an error sensor that

measures TED will work equally well for controlling a sound field for these near field

error sensor locations. This uniformity also persists for more complicated situations

with more sound sources.

The processes of visualization and analysis may be easily used to explore more

complicated sound fields. Acoustic pressure and acoustic particle velocity are calcu-

lated by summing the contributions from each source. The method is limited by the

number of sources, not the frequency range, as is the case with modal modeling. This

means that the sound field may be quickly modeled over a wide frequency range for

systems with a limited number of sound sources. Some examples of the sound field

models may be found in Fig. 4.3. The frequency response is calculated over the space
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(a)

` ` `
(b)

Figure 4.1 A sound field measured by PED, KED, and TED for (a) two
sound sources acting in phase with one another with the same amplitude and
(b) Two sound sources acting 180◦ out of phase from one another with the
same amplitude at 1.9 kHz. The sources are marked by ×.
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(a)

` ` `
(b)

Figure 4.2 A sound field measured by PED, KED, and TED for (a) two
sound sources acting in phase with one another with the same amplitude and
(b) Two sound sources acting 180◦ out of phase from one another with the
same amplitude at 5 kHz. The sources are marked by ×.
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(a)

b b b

(b)

Figure 4.3 The sound field as it would be measured in PED, KED, and
TED. Figure 4.3(a) is an arrangement of two linear arrays consisting of four
point sources each, while Fig. 4.3(b) has five point sources laid out similarly
to those used in a five source surround sound system. Each point source
is marked in these figures by a ×. The axes are marked in meters and a
◦ indicates the center of the sources. These have corresponding animations
over frequency in Appendix E of the digital version of this thesis.
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shown and may be used to generate animations of the sound field over frequency.1

This tool can help determine ideal locations for error sensors.

To make the situation more interesting, the models may be further refined to

include the radiation patterns of directional sound sources in free space. The model of

an axially vibrating cap in a sphere is well suited for these situations. This produces

a radiation pattern similar to that of a dynamic loudspeaker in an enclosure or a

horn type driver. The equations describing these sources are described in Sec. 2.1.2.

Figure 4.4(a) shows the pressure field produced at 1 kHz for a sphere of radius 15

cm and a cap of radius 3 cm. The radiation pattern of a pair of equal strength point

sources, separated by 4 m, radiating together is shown in Fig. 4.4(b). The directivity

patterns for a pair of caps in spheres can be seen in Figs. 4.4(c) and (d). As the

frequency decrease the spacing between nulls decreases, as shown in Fig. 4.4 (d) at a

frequency of 250 Hz.

4.2 Active Noise Control

A basic case for ANC consists of one control point source minimizing sound from

one primary point source. This situation, with a kd value of 0.476, for minimized

sound power can be seen in Fig. 4.5. In the case of a free field, when the control

sources minimize total sound power it is often referred to as the optimal case. A closed

form solution can be found to minimize the total power output from the combination

of sources [9, 10]. The appropriate control source strengths may also be found for

minimizing sound power [49, 72]. It is not practical to measure the sound power

directly for active sound control, thus other acoustic quantities are used for minimizing

1Some animations of sound fields may be found in Appendix E in the electronic version of this

thesis.
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Figure 4.4 Above are figures illustrating the radiation pattern of (a) a single
sphere with a radiating cap, (b) a pair of monopole sound sources, (c) and
(d) a pair of spheres with a radiating cap. Figures (a), (b) and (c) are shown
at 1 kHz and (d) is shown at 250 Hz.
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Figure 4.5 Measurements of the sound field when the control source acts
to minimize the total radiated power. The color scale is in dB referenced to
3× 10−15J/m. The primary source is marked by ◦ and the control source is
marked with ×.

sound fields. Techniques discussed in Sec. 3.1 are used here to examine the prospect

of active sound control in a free field using ED quantities.

4.2.1 Control Using ED Quantities

Measuring total radiated power as an error signal in ANC is impractical due to the

many inherent difficulties. Other quantities, such as ED, are much more practical. To

help determine how well some of the other quantities work as error signals, we look

at the MEDToPO plots described in Sec. 3.1.2. Figure 4.6 shows MEDToPO plots

for two point sources, where kd = 0.1832, kd = 1.823, and kd = 3.664. These plots

show the total radiated power for cases where control is performed at each point using

PED, KED, and TED. These results predict that TED provides sound control that

is more independent of error sensor location than PED or KED alone. This would

suggest that using TED would provide more freedom in the placement of a control

sensor than PED or KED. Upon closer examination, little or no control is achieved
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(b)
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(c)

Figure 4.6 Three MEDToPO plots illustrating the the amount of sound
power produced by a system consisting of one primary source and one control
source at kd = 0.1832 for (a), kd = 1.832 for (b) and kd = 3.664 for (c).
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at in these regions where performance is spatially uniform for the placement of TED.

These regions are just better than the surrounding areas.

Control using TED benefits from spatial uniformity in the geometric near field of

the sound sources. However, it is important to note that the uniformity only occurs

above a certain kd value. The uniformity usually starts at frequencies where kd is

greater than about π. Other researchers have shown that global ANC is limited

to frequencies below this range [72]. Figure 4.7 is similar to a figure found in the

work by Nelson and Elliott that illustrates the maximum possible attenuation of

sound power for various source arrangements as a function of kd [72]. All of the

source arrangements modeled in Figs. 4.7 are coplanar arrays. In the work by Nelson

and Elliot the arraignment with four control sources was arranged in a tetrahedral

arrangement. These plots shows that even in the ideal case, active control in a free

field environment is only reasonable when kd is noticeably less than π. It is important

to note that for kd values at or above π, ANC does not significantly reduce the sound

power and other methods of noise control should be employed.

Returning to Fig. 4.6, it is important to note that at the lowest kd value shown,

there is a large region where a sensor measuring PED performs better than KED or

TED. In fact, in the lower frequency range, where kd is somewhat lower than π, the

PED error signal has greater spatial uniformity than either the KED or TED. Since

the uniformity for TED only exists at kd values that are too high for ANC to function

effectively, this uniformity is of little benefit in ANC applications.

It is also important to note that in ANC applications, error sensors should be

placed where the improvement from the uncontrolled case to the optimally controlled

case is the greatest [2, 73]. Hansen and Snyder state that “the optimum error sensor

location(s) are always at the locations of greatest acoustic pressure attenuation when

the control source is generating the optimum volume-velocity relationship” [2]. Often
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the regions where the improvement is greatest are found in very narrow nulls in the

pressured fields. Figure 4.8 shows an example of this for a single primary source

surrounded by four control sources with a kd value of 0.36 [2, 73]. The scale on this

plot is

10 log10

νo
νu

(4.1)

where νo indicates the field quantity for the optimally controlled case, and νu indicates

the filed quantity for the uncontrolled case.2 For PED their is a path that follows a

2Appendix K contains the MATLAB R© code used to generate figures like those found in Fig. 4.8.

Figure 4.7 The maximum achievable sound power attenuation in dB using
various coplanar sound source arrangements, also depicted here.
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Figure 4.8 This shows the difference between the uncontrolled sound field
and the optimally controlled sound field. Locations with the greatest reduc-
tion of the field measurement are traditionally considered the best locations
for placing error sensors.

Figure 4.9 This is a MEDToPO for the situation given in Figure 4.8.

curve that indicates the recommended placement for a pressure based error sensor.

The PED results for the MEDToPO plot in Fig. 4.9 agree. This verifies that the

traditional method for finding optimal sensor locations does show optimal locations

for error sensors.

In addition to describing where the error sensors should be placed, the MEDToPO

shows necessary accuracy for the placement of an error sensor for producing acceptable

performance. For KED and TED, the MEDToPO plots indicate that there are larger
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regions that produce good sound control performance than are indicated by the plots

of the sound field under optimal control. This verifies that the traditional method for

choosing error sensor locations works but has some limitations. Comparing Fig. 4.8

with Fig. 4.9 reveals that there are some good locations for error sensor placement not

predicted by examining the optimally controlled sound field. The MEDToPO plots

also indicate how sensitive to location the error sensors are. A wider region where

good control is achieved indicates less sensitivity to error sensor placement.

From this analysis, it is apparent that PED produces a better error signal than

KED or TED for ANC. The frequency range where TED has a potential to have more

freedom in choosing an error sensor location only occurs at frequency that are too

high for source coupling to perform well. At low frequencies, the location for PED

error sensor tends to have a more regular optimal location, one example of this was

shown in Fig. 4.9. This figure also indicates that sensitivity to position for PED is

also more regular than KED or TED.

4.2.2 Relationship Between ED and Π

The relations found in Sec. 2.2.4 describe how the ED relates to sound power.

However, these relationships are very dependent on the source arrangements that

they correspond to. To simulate ANC using the expressions, the source arrangement

and its surrounding environment must be very well defined. Even for the case of

two sources in a free field, the expressions quickly became rather complicated in the

simple case of two sources in a free field. Adding just one additional source would

significantly complicate the situation. Making certain assumptions about the source

strengths significantly simplifies this process, at the cost of losing generality of the

results.

In Sec. 2.2.4, the calculations were simplified by assuming that the sensor is located
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half way between two sources. To check the accuracy of the approximation, a few

numerical computations were performed. Figure 4.10 shows the difference between

the exact conversion factor and one approximated by assuming the sensor is at the

origin. The colors represent the difference between the approximate conversion factor

and the exact conversion factor, expressed by

β = 10 log10

Cex
Cap

(4.2)

where Cex indicates the exact relationship between ED and sound power and Cap is the

approximated value. This figure shows how the correction factor changes as a function

of location for three frequencies. Figure 4.10(a) shows that there are curved regions

where the correction factor is valid. These are regions that have the same measured

ED values. These regions change their shape with frequency. However, because these

regions vary over frequency and are very narrow, they are not a convenient or practical

method for approximating sound power.3

To better understand the frequency dependence of the correction factor, Fig. 4.11

shows the correction factors and their corresponding approximations for two posi-

tions. Figure 4.11(a) shows the frequency dependence of the correction factor at the

point 0.2d from the sensor, corresponding to (0, 0.2) on Fig. 4.10. At (0, 0.2) the

approximate and the exact values of the measurement may work well for PED, KED,

and TED. When the error sensor is moved to (0.5, 0.2), as shown in Fig. 4.11(b), the

approximation and the exact relationship intersect at a few positions. However, they

do not stay relatively close to one another as frequency changes.

One significant problem still exists with using the conversion factors: calculating

this approximation requires the source strength of both sources. If the source strength

3An animation over frequency showing the difference in the conversion factor relating ED to sound

power to its approximated version is available in the electronic version of this thesis in Appendix E

in Fig. E.3. The images found in Fig. 4.10 were produced by the same MATLAB R© script.
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(a)
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(b)

××××××

(c)

Figure 4.10 These figures show 10 log10 of the difference between the exact
conversion and an approximation of the conversion from ED quantities to
sound power for a pair of sources, where one source is driven to minimize
sound power of the system. Figure (a) is for kd = 0.128, Fig. (b) is for
kd = 0.348, and Fig. (c) is for kd = 3.792, where the source on the right
leads the source on the left by π/2 radians. The × marks the locations of
the sources.
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(a)

(b)

Figure 4.11 Frequency dependence of the correction factors compared to
their corresponding source if measured at (0, 0.2) in units of the distance
between the sources in (a) and at (0.5, 0.2) in (b) where the coordinates
correspond to those in Fig. 4.10.
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is known, there are numerical methods to calculate the sound power directly [10]. The

relationship between ED and sound power are less useful for theoretical study because

the known numerical methods are more direct and well established. Assuming that

both sources act in phase can reduce the relationship to one that is independent of

the source strengths; this produces difficulty due to the sensitivity of phase inherent

in acoustic systems. If the two sources are acting even slightly out of phase the

conversion factors change, invalidating these approximations. This is not a practical

approach for finding sound power because of the many complications that arise in

developing a ratio that could serve as a conversion factor that relates ED to sound

power.





Chapter 5

Equalization Results

The models previously discussed have been used to compare the effects of different

equalization methods to one another and to unequalized sound fields. This chapter

will discuss equalization from the point of view of the frequency domain and the time

domain, and discuss tactics for correctly evaluating the performance of equalization

methods. At the end of the chapter, a short discussion is given to show how these

techniques could be used to expand this study to enclosures.

5.1 Frequency-Domain Perspective of Equalization

The radiation beam patterns formed by multiple sources with equal amplitude are

well known and readily described [9, 74, 75]. It is important to remember that these

radiation beam patterns do not change when the sources are all equalized the same

way. At a point of equalization in the field, the frequency response should become

uniform over frequency. The frequency responses at all other locations are heard

such that the frequency dependent beam pattern does not change. This is expected,

as consistant equalization of a group of sources only attempts to alter the spectral

81
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nature of the sound field; it does nothing to alter the spatial characteristics of the

sound field.

The effects of equalization can be easily seen by looking at how the sound field

varies as a function of frequency, as shown in Fig. 5.1. Figure 5.1 displays unequalized

sound fields in the left column, and sound fields equalized using PED in the right

column. Comparing Fig. 5.1(a) to Figs. 5.1(b) and 5.1(c), shows that equalization

changes the strength as a function of frequency. In each pair of figures, the same

radiation pattern is visible but the sound level is modified depending on the frequency

for the equalized case. This can be noted by comparing the overall changes in sound

pressure level in parts (a), (b) and (c) of Fig. 5.1.1 Figure 5.2 shows the frequency

response magnitude at three locations for the same pair of monopole sources. The

dashed curve indicates the effect of equalization at the error sensor. The equalized

response becomes perfectly flat over frequency at the error sensor position. The other

two curves vary more drastically than they did without equalization as a function of

frequency, further illustrating how the sound field changes. Equalization using other

metrics has a similar effect on the sound field.

It is useful to get a sense of the frequency response measured by different quanti-

ties. Figures 5.3 and 5.4 display frequency responses of a sound field measured at the

point (0.05,0.2) on the surface plots found in Fig. 5.1 if the axes are marked off in me-

ters. The quantities measured are pressure magnitude, particle velocity magnitude,

PED, KED, TED, the vector magnitude of intensity and spatially averaged pressure

magnitude. Pressure magnitude, particle velocity magnitude, PED and KED follow

the curve of a comb filter. Pressure magnitude and PED have minima and maxima, as

does the vector magnitude of particle velocity and KED. The TED has less variation

1These figures come from the animation found in Appendix E, Fig. E.5, in the digital version of

this work. The variation as a function of frequency is perhaps most easily noted in the animation.
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(a)

(b)

(c)

Figure 5.1 Comparisons of Lp over space of the unequalized sound field
(left column) to the sound field equalized by PED (right column) at the
point marked by ◦. Frequency responses corresponding to this and the other
markers are found in Fig. 5.2. Notice that the interference pattern of the
sound field does not change when both sources are equalized with the same
equalization filter. The whole field is busted or attenuated to equalize the
response at the sensor location.
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◦
�
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Figure 5.2 Frequency response magnitude curves that correspond, as
marked in the legend, to the points mapped on the sound field in Fig. 5.1.
The amplitude is in Decibels referenced to 20 µPa.

over frequency than the other measurements, because it is the sum of PED and KED,

which alternate with one another in the near field. The frequency response of the

vector magnitude of intensity contains information from complex pressure and com-

plex particle velocity, incorporating the information carried in both measurements.

The spatially squared pressure magnitude has a ragged looking frequency response

that contains information from the entire listening area.

5.1.1 Along a Line Above a Reflective Surface

A simple case for equalization of a listening area is to restrict the region to a line. A

set of frequency responses were generated along a line running perpendicular to an axis

that runs between two sources. The boservation line is shown as the horizontal dashed

line in Fig. 5.5. Surface plots were generated for this source receiver arrangement with
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Figure 5.3 Example frequency responses as measured using pressure, the
vector magnitude particle velocity and its components, PED, KED and TED.
These are for a measurement with two point sources. The sensor was at
(0.05,0.2) on the axis found in Fig. 5.1.

Figure 5.4 Example frequency response measurements using the vector mag-
nitude of intensity and the spatially averaged pressure. These plots are for
the same source arrangement and sensor location as found in Fig. 5.3.
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Figure 5.5 The dark circle represents the position of the real source, the
open circle represents the image source used to model the case where the
solid horizontal line is a reflecting surface. The marker on the right is the
sensor used to to determine the equalization. This is the setup used for
producing Figs. 5.6 through 5.8.
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(a) (b)

Figure 5.6 The frequency response over space before any equalization oc-
curs. Figure (a) is looking 10 cm above the surface, while Fig. (b) is 170 cm
above the reflective surface. Below the a curve that indicates the log10 of
the spectral standard deviation is plotted as a function of ds. The source for
these figures is 2 m above the reflective surface.

the distance from the axis running between the two sources represented the horizontal

axis, while the frequency is represented along the vertical axis with colors assigned to

represent the sound levels in dB referenced to 20 µPa. There are several examples of

these plots in Figs. 5.6 through 5.8. Figure 5.6 shows the unequalized case observed

near the reflective surface, where h1 is 10 cm, in (a) of Fig. 5.5, and h1is 170 cm in (b).

The vertical dashed line in Figs. 5.6 through 5.8 indicates the sensor position, labeled

ds in Fig. 5.5. For the cases shown here, the source is placed 2 m above the reflecting

plane (h2 = 2 m). The plots in Figs. 5.7 represent the equalized cases where the

listening height is near the reflecting surface (h1 = 10 cm) to demonstrate the nature

of the sound field. Figure 5.8 contains plots of a more realistic situations where the

listening height (h1 = 170 cm) is farther from the floor. To help assess the quality of

the equalization, a plot of the spectral standard deviation is shown below each of the

surface plots in the various figures. For the arrangements of plots in Figs. 5.7 and
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5.8, the equalization was performed at ds = 2 m and ds = 7 m.

In Figs. 5.7(a), 5.7(b), 5.8(a) and 5.8(b), as seen from equalization at the point

marked by the dotted line, PED works very well. There is a cost for this equalization;

it is apparent that at other locations equalization is much less successful. At each of

the unequalized spectral nulls, the sound source is boosted, causing spectral maxima

for listeners located at other points on the line. A comparable process happens with

the peaks at the measurement locations; dips appear in the frequency response at

positions away from the equalization sensor. These dips can be very deep and wide,

causing important information to be removed from the signal.

For situations where KED sensors are used, the equalization is less dramatic than

when PED is used. For the cases shown in Figs. 5.7 and 5.8, the equalization does not

become ideal at the position of the sensor used to measure the sound field, though it

is improved slightly. This is most visible for equalization performed with ds = 7 m

with h1 = 10 cm as shown in Fig. 5.7. This can be seen by noting the dip in the curve

indicating log10 of the spectral standard deviation. Another sign of the improved

equalization near the sensor location is that along the dotted line marking the point

of equalization, the sound field varies less over frequency than for other values of ds.

It is also interesting to note that the spectral peaks are not as sharp as those from

PED (or pressure) based equalization, this is only noticeable when h1 is short as in

Fig. 5.7.

TED takes into account both the pressure and the particle velocity to determine

the equalization filter. The equalization performed using TED has several similarities

with that performed using KED. Like KED, TED does not result in perfect equal-

ization at a single point. The sharpness of the spectral peaks lies between that of

the KED and the PED methods. Again, this can be seen by noting the dip in the

log10 or by looking at the uniformity along the dashed line indicating the equalization
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7 The frequency response after equalization with a listening region
at h1 = 10 cm above the reflecting plane. The source is at h2 = 2 m. The
left column is for the sensor placed with ds = 2 m. while the right column is
for a sensor placed with ds = 7 m. The rows, listed from top to bottom, are
separated into equalization performed by PED, KED and TED. Below are
curves of the log10 of the spectral sandard deviation as a funciton of ds.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8 The frequency response after equalization with the listening re-
gion at h1 = 170 cm above the reflecting plane. The source is at h2 = 2 m.
The left column is for the sensor placed with ds = 2 m. while the right
column is for a sensor placed with ds = 7 m. The rows, listed from top to
bottom, are separated into equalization performed by PED, KED and TED.
Below are curves of the log10 of the spectral sandard deviation as a funciton
of ds.
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location.

Similar processes may be noted in Figs. 5.7 and 5.8, which may be compared to

the corresponding unequalized situation in Fig. 5.6. There are positions where the

equalization is improved for the three equalization methods. For the cases shown in

Fig. 5.8, the distance from the image source to the points on the measurement line

is significantly longer than the distance from the primary source to the measurement

line. This difference in path length introduces more notches in the frequency response.

This is normal for a system consisting of two sound sources. This means that locations

away from the error sensor will have more peaks in the equalized response. These

peaks are due to compensation for notches determined using the equalizing error

sensor. The resultant plots suggest that the spectral response of the system is more

erratic as the path length from each source to the field point becomes significantly

different. This is not at all surprising because it is expected in situations where two

sound sources interact. This also illustrates that equalization only compensates for

some of the frequency dependence of a listening area.

5.1.2 Using a Reinforcing Source

The computational model used to describe a single source above a reflecting plane,

as described in Sec. 5.1.1, may be used to model a situation where a single pri-

mary sound source is reinforced by a secondary source (or combination of secondary

sources). In this case, the first source produces a signal, while the reinforcing source

generates a copy of that signal. The reinforcing source signal may be altered to

equalize the composite sound system, while the primary source is not altered. This

situation is a good model for representing the direct field produced by a person speak-

ing with a reinforcement sound source. Figure 5.9 shows the source arrangement that

is used to model a reinforced sound source in a simi-free field.



92 Chapter 5 Equalization Results

f

v fc

6

?

h2

6

?

h1

-�
ds

6
?

h3

Figure 5.9 The dark circle represents a primary source, that is not equalized,
the open circle represents a secondary reinforcement source that may be
equalized in an attempt to equalize the overall sound field. The marker on
the right indicates the sensor. The solid line at the bottom of the figure is
a reflecting surface. This is the arrangement used for the initial model that
represents a case where a sound source, in a semi-free field, is reinforced by
a single secondary source.

In the case of a reinforcing sound source, the gain or amplification of the additional

source comes into play. Here the gain is defined in decibels as

G = 10 log10

|Âr|2

|Âp|2
, (5.1)

where Âr is the complex pressure amplitude of the reinforcing sound source at a

set distance r and Âp is the complex pressure amplitude of the primary source at

the same distance r. Figures 5.10 and 5.11 illustrate the effects on a sound field

generated by a primary source and an equalized reinforcement source.2 The vertical

axis indicates the amplification, while the horizontal axis is the distance marked

ds Fig. 5.9. The coloration of the plot indicates the log10 of the spectral standard

deviation of squared pressure magnitude, |p̂|2, as a function of the amplification and

the listening position along the horizontal dashed line on Fig. 5.9. The spatially

averaged frequency response in Figs. 5.10(b) and 5.11(b) were equalized using an

average of the frequency responses along the horizontal dashed line in Fig. 5.9.

Figures 5.10 and 5.11 demonstrate several expected characteristics of equalization.

2Some animations of Figs. 5.10 and 5.11 are shown in Appendix E, Fig. E.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10 The vertical axis indicates the relative amplification of a rein-
forcing sound source the system diagramed in Fig. 5.9, while the horizontal
axis indicates the distance along the horizontal dashed line for the observed
field in meters. The color in the plots indicate the log10 of spectral standard
deviation of |p̂|2. This figure is the result with ds = 12 m (marked by ↑),
h1 = 1 m, h2 = 3 m and h3 = 1 m.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11 This figure is very similar to Fig. 5.10, in this case the error
sensor has been moved to ds = 2 m (marked by ↑) with h1 = 1 m, h2 = 3 m
and h3 = 1 m.
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As the listener gets farther from the sources, the standard deviation decreases, espe-

cially for low amounts of amplification. This feature is more pronounced with less

amplification. This is because the measurable signal decreases as the sensor is moved

further from the source, thus producing smaller numerical values in the measured

frequency response. The smaller values of the frequency response limit the amount of

variation found in a signal. For the equalization methods that depend on single point

measurements, a long narrow blue vertical strip, indicating a region of good equaliza-

tion, occurs near the error sensor location. The color in Figs. 5.10 and 5.11 indicates

the log10 of the spectral standard deviation, thus the blue regions indicate a more

negative value of the spectral standard deviation. These point-measurement equal-

izations inherently produce good results at or near the sensor location, but perform

poorly at many other locations.

Another experiment may be conducted where the sensor location is varied and the

boost applied to the amplification of a reinforcing signal is held constant as shown

in Fig. 5.12. The vertical axis in the plot for this case changes to represent the

sensor location, marked by ds in Fig. 5.9. The horizontal axis still represents the

listening position, and the colors assigned to the plot still indicate the log10 of the

spectral standard deviation. In this case, the blue line rises diagonally to the right for

the point-source based equalization methods. This indicates that the region of best

equalization is located near the sensor location. It is also interesting to note that the

blue line widens as the sensor is moved farther away from the sound sources. Part of

the reason for this is that the response decreases in overall magnitude and thus the

spectral standard deviation decreases because of a decreased amplitude rather than

a more uniform frequency response. This can also be seen by comparing Fig. 5.10 to

5.11 and noting the region of good equalization is much narrower in Fig 5.11 (closer

sensor location) than in Fig 5.11 (farther sensor locations).
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(a)

(b) (c)

(d) (e)

Figure 5.12 These demonstrate the effect of sensor location on equalization
of a sound field generated using a source pair where one is equalizes the
compost field and the other is not. The secondary sound source produces a
signal amplified by 6 dB compared to the unequalized source. The axes are
marked off in meters. The horizontal axis indicates the observed position
along the dashed line found in Fig. 5.9.



5.2 Time-Domain Perspective of Equalization 97

It is also good to note that equalization does not work as well if the sensor is

moved closer to the unequalized sound source. This is because the sound field becomes

dominated by the unequalized sound source. In Fig. 5.12, there is a region of very

poor equalization indicated in red horizontal strip. This is a special case where the

pressure sensor in the model detects very quiet signal, which in turn leads to very large

gains at some frequencies for the equalization process. The filter values in this region

are large enough (approaching infinity in the numerical models) that equalization is

adversely affected. Setting h1 = h2 yields results where equalization works very well

as the sensor is moved closer to the equalized sound source, and the region of poor

equalization does not appear.

5.2 Time-Domain Perspective of Equalization

Equalization is usually done in the time domain by using a filter that has an

impulse response which compensates for the frequency response of the system. Be-

cause of this, equalization in the time domain is sometimes referred to by the term

dereverberation, though equalization usually refers to the adjustment of sources while

dereverberation usually refers to adjustments done for a listening environment [76].

This process of equalizing can result in both spectral corrections and reduction of

reverberation at the sensor location. For many situations, equalization using a time-

domain filter is more efficient because it does not require transforming a signal from

the time domain, altering the response in the frequency domain, then returning to

the time domain. While a correction filter may be defined in the frequency domain,

it must be implemented in the time domain.
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5.2.1 Inverse Filters

Equalization filters are referred to as inverse filters because they are designed by

inverting the frequency response between a source and receiver in a listening envi-

ronment. This filter is intended to negate the effects of the response of the listening

environment. The filter is an inverse filter in the frequency domain, though it may

not be practical to equalize in the frequency domain. The filter can be transformed

from the frequency domain to the time domain in order to equalize the system.

Processing in the frequency domain is performed by multiplying the frequency-

dependent version of the filter by a signal transformed into the frequency domain. In

this case, the signal is transformed in blocks that are the same size as the equalizing

filter. This allows for the multiplication of corresponding terms in the filter and the

signal to occur correctly. In the time domain, the processing is performed using a

convolution. The convolution is performed with a time-domain version of the filter,

which acts on the time-domain representation of the signal. The time-domain filter

may be designed in two ways. First, the filter may be designed by inverting the

measured frequency response, then finding the corresponding impulse response for

use as the equalization filter. The second method is to design a nth order filter

that has frequency response that approximates the inverse of the measured frequency

response.

Because filters are commutative, a recorded signal may be preprocessed in order

to demonstrate equalization in the listening environment. In this case, the signal

may be either transformed to the frequency domain for the equalization or may be

processed in the time domain. An equalizing filter may be tested using a recorded

signal played back through the measured sound system. A recorded signal may be

preprocessed, producing an equalized signal that may be introduced to the listening

environment. This will demonstrate how well the equalization worked.
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In equalization, many frequency-domain measurements may be used to determine

the ideal frequency response of an equalizing filter. Complex measurements, such as

pressure and particle velocity, include phase information. Thus, filters designed using

these measurements inherently address the phase response of a system in addition to

the magnitude response. The result is often a nonminimum phase condition. This

means, as previously mentioned in Sec. 3.2, that the inverse of that filter will not

usually be stable and causal. Care must be taken in this case to verify that the

correction filter will be viable. For simplicity, the pressure magnitude is useful for

equalizing the sound field. This is also acceptable because, as mentioned in Sec. 1.3,

phase equalization is outside of the scope of this research. It may also be impractical

because of the immense phase variation over a large listening area.

Because our hearing is based on pressure, it would intuitively appear that pressure

measurements would be the ideal measurements for equalization. However, pressure

measurements result in very spatially dependent equalization. Because of the lim-

ited size of regions where equalization is effective, it may be more beneficial to use a

measurement that may not equalize as effectively at one point, but provides a larger

region with improved equalization. For this reason it is interesting to look at alterna-

tive measurements such as particle velocity, TED and others as potential candidates

for use with equalization.

Though particle velocity may be complex valued in the frequency domain, it is a

vector quantity, which introduces difficulty in its implementation. Considering global

equalization to be the primary interest, and phase equalization to be of secondary

interest, the vector magnitude and modulus of the particle velocity may be found and

used in place of the complex vector-valued measurements. This removes the phase

information, resulting in equalization identical to equalization based on KED.

Filters designed using ED quantities are zero phase, which in turn result in zero-
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phase filters that do not introduce A zero-phase filter is a situation in which there is

no phase introduced to the system. new phase to the equalized system. A zero-phase

system does not have imaginary components in the frequency domain, so inverting the

frequency response of a zero-phase system results in another zero-phase system. The

ED quantities do not introduce phase because these measurements retain no phase

in their frequency-domain expressions. The vector magnitude of acoustic intensity

also results in a zero phase system. In each of these cases, the filters neglect phase

conditions in the system

Filters may also be designed using the minimum phase portion of a measurement

of the system. A Hilbert transform may be performed to separate the measurement

into two parts, a minimum-phase portion and an all-pass portion. The minimum-

phase portion of the measurement has the same frequency response magnitude, but

has a different phase. The inverse of the minimum phase portion of a measurement

can be used as a filter. This filter is inherently causal and stable, however it introduces

phase to the system.

5.3 Evaluating Equalization

In this section, several graphical and computational methods are considered for

evaluating the success of different equalization procedures. These approaches are used

to evaluate how successful different equalization methods are for achieving a desired

response in a given listening area. Each has advantages and drawbacks.

The listening areas are square in the investigation and point sources are used to

model the systems. Radiation patterns of the sound sources could also be included,

but use of these advanced sources only complicates the sound fields. Including these

advanced models to arrive at a method for evaluating the equalization of a system is
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likely to contribute very little.

5.3.1 Graphical Evaluation of Listening Areas

The graphical tools mentioned previously describe the sound field and may be

appropriately used to evaluate sound control systems. These range from simple curves

representing frequency responses and impulse responses to complicated surface plots

that display the ratio of two standard deviations. Together, they provide information

that is useful for analyzing a sound field.

For convenience, plots involving listening regions that are spread over a line are

considered first in this discussion. Each plot indicating the frequency dependence

over a line in space, found in Figs. 5.6, 5.7, and 5.8, has a corresponding plot below

it. The corresponding plot is a curve representing the spectral standard deviation of

|p̂|2. These standard deviation curves may be overlaid on the same plot to show the

differences in the different methods for determining an equalization filter. While the

curves illustrate the relative performance of different methods of equalization, they

also indicate which equalization tactic performs best overall. Figure 3.6, repeated

in Fig. 5.13 contains a plot indicating the curves over space for seven situations for

equalization. These provide an example of how equalization may be gauged from the

plots; the curve that is lowest is the best while the curve that is highest is the worst.

While these curves help when the listening region is a line, these types of illustra-

tions become more difficult to read and interpret when the listening regions become

two dimensional areas, like those in most listening venus. Instead of plotting the

standard deviations as curves, one must plot them as surface plots or color maps.

Overlaying these standard deviation surface plots does not help to distinguish which

method performs best. Surface plots like these may be seen in Figs. 5.14 and 5.15

and in Sec. 5.3.3. It is also difficult to compare the surface plots side by side. Of-
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Figure 5.13 An example of a curve comparing the standard deviation as
a function of position in a one-dimensional listening area. This figure is
repeated from Fig. 3.6

ten, it is useful to plot the ratio of the standard deviation of the equalized sound

field to the standard deviation of the unequalized sound field. This normalizes the

equalization, providing easier comparison of equalization techniques as well as indi-

cating where equalization has improved. This normalization scheme also removes the

proximity dependance of the spectral standard deviation in a free field. As discussed

in Sec. 3.3.5, this proximity dependance comes from the variation in the sound field

because sound is farther from the sources, while we are primarily interested in the

interference pattern. Plots generated in this manner are found in Figs. 5.14 and 5.15.

This final technique can be used to see where equalization improves or deteriorates

for different equalization methods, which in turn can be used to judge which method

provides better equalization.

Comparing plots like those in Figs. 5.14 and 5.15 reveals some features of equal-

ization methods and sensor placement. It demonstrates a greater disparity among

the performance of the different equalization methods for the case where the sensor is

located farther from the sources. To notice this it is useful to note that the color scale

was adjusted from plot to plot in an attempt to reveal some detail of the variation
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14 The resulting ratio of the spectral standard deviation, from
kd = 0.3664 to kd = 366.4, of an equalized field divided by the spectral
standard deviation of the unequalized field. The portions that are indicated
as being less than one indicate equalization improvement, while values greater
than one show a decrease in equalization. The frequency response of this plot
is calculated over |p̂|2 to increase the contrast in the plot. This figure is a
repeat of Fig. 3.8. The sensor postion is marked by ◦.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15 The resulting ratio of the spectral standard deviation, from
kd = 0.3664 to kd = 366.4, of an equalized field divided by the spectral
standard deviation of the unequalized field. The portions that are indicated
as being less than one indicate equalization improvement, while values greater
than one show a decrease in equalization. The frequency response of this plot
is calculated over |p̂|2 to increase the contrast in the plot. The sensor postion
is marked by ◦.
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of the spectral standard deviation in the plots. These plots also show which methods

perform the best. They are arranged from the best global equalization within the

listening area to the worst.

5.3.2 Development of a Global Listening Area Equalization

Coefficient

It is often convenient to have a single value to describe a control scheme, even if it

means overlooking some of the details. In equalization, it is common to just say that

equalization worked at the error sensor location and mention that it did not succeed

in other locations. In order to determine a best method for equalization, it would be

useful to have a coefficient or figure of merit to decide which procedure works best

over an extended listening area. The computational models developed in this work

provide a convenient set of tools for testing such a global listening area equalization

coefficient (GLAEC).

Several procedures were proposed to determine a single number for rating the

success of equalization techniques. Each included a set of error sensor locations,

along with an identical arrangement of unequalized and equalized sources. For each

setup, the possible values of the figure of merit were calculated using the full set of

data used to generate surface plots of the sound field. Each potential equalization

metric was also calculated using randomly located sensors. Groups of 4, 6, 8, and 10

sensors placed randomly in the listening area were used to calculate the coefficients.

(Area-weighting was not used in the process of computing the coefficients this might

have improved the the reliability of the coefficients. The random positioning of the

sensors used to compute the coefficents was repeated five times for each error sensor

position. The results were judged by visual inspection of the ratio surface plots.
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The success of equalization coefficients was judged using the χ2 test of contingency

and the z-test as an estimator of difference techniques to see which method correctly

ranked equalization methods with the most consistency according to subjective visual

inspections of the corresponding plots.

Eleven quantities were compared for use as global listening area equalization co-

efficients (GLAECs), many of which are similar with those used for acoustic diffuser

evaluation [70]. These were calculated using non-normalized squared pressure data,

squared pressure measurements that were normalized by the maximum value of the

frequency responses, and squared pressure data that were normalized by the average

of the frequency responses for each sample position in the listening field.

The first and most striking difference among the different equalization variables

was the catastrophic failure of the potential GLAEC coefficients to correctly rank the

equalization methods when using normalized data. The equalization factors failed

nearly every time when normalized by the maximum value or the average value of

the frequency responses. In these cases the normalization was performed on the

unprocessed data. These methods for computing the GLAEC were considered for

cases where the error sensor was placed in the listening area far from the sound

sources. In these same situations, all of the equalization methods that were not

normalized worked nearly every time. The difference was so significant that the

normalized methods were thrown out right away. Proper normalization only scales

data, it does not fundamentally alter data. There may have been problems with the

techniques used to normalize the data prior to calculating the GLAEC—problems that

altered the data in the process. One possible reason for this would be the method for

obtaining the normalization factors. The normalization factors were found from the

unequalized sound field, which does take into account the interference patterns of the

sound field.
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Other methods for normalizing the measurements may produce better results.

The plots used as a reference to find the GLAEC were of the equalized spectral

standard deviation divided by the unequalized spectral standard deviation at each

point. For the coefficients where the spectral standard deviation is computed first, the

coefficients could be normalized by dividing the equalized spectral standard deviations

by the unequalized spectral standard deviations. It stands to reason that this method

would produce a coefficient that would perform most like visual inspection of the plots;

however, this requires further research for verification.

It is also important to note that the frequency response used for calculating the

candidates for the GLAEC were calculated using |p̂|2 rather than |p̂|. The effect of this

change is to adjust the contrast on the surface plots used to judge the equalization,

and perhaps increase the sensitivity of candidates for the GLAEC.

The first measurement considered for use as the GLAEC is similar to one used by

Hargreaves and D’Antonio for their acoustic diffuser characterizations [70,77]. First,

the spectral standard deviation σf of the frequency response is measured at several

locations. The spatial average of the standard deviations µs is then used as a number

to evaluate the overall performance of the equalization in the designated listening

area. This method can be described mathematically as µs(σf ). This measurement

provides an average of the standard deviation of the listening area.

The next two values considered for use as GLAECs are also calculated using

spectral standard deviations. One examines how much the spectra change over space

and is determined by calculating the spatial standard deviation σs of the spectral

standard deviation σf and is represented by σs(σf ). This factor shows how much the

variation of the spectral standard deviation changes over space. Another is the sum

of the first two, µs(σf )+σs(σf ). The idea behind this value is that by summing these

two variables, the expression would prohibits the factor from producing ratings that



108 Chapter 5 Equalization Results

predict equalization better than it actually is. That is, if µs(σf ) and σs(σf ) both

correctly rank equalization, but erroneously rank some an equalization factor too

well, summing the values would limit that mistake. However, this correction would

come at the cost of increasing the likelihood of erroneously detecting degradation of

equalization.

Because human hearing is based on variations of pressure, the best measurement

for equalizing a sound field is a spatially averaged pressure frequency response. An-

other potential equalization coefficent takes advantage of this concept. This equaliza-

tion factor is calculated by taking the squared pressure magnitude values over space

in the frequency domain to get a spatially averaged pressure response µs, then finding

its spectral standard deviation σf , and may be expressed as σf (µs). As this value

gets lower, it indicates that the system is closer to being equalized. In an attempt

to keep the units consistent with the actual measured data, a slight variation of the

last measurement was also tested, the standard deviation of the square root of the

spatially averaged pressure, σf (
√
µs).

In the process of gathering the data, it was noted that most of the potential

GLAEC calculations worked well when each of the different methods of equaliza-

tion produces very obvious differences in the ratio-style equalization plots. However,

there are situations where it is less obvious from visual evaluations witch equalization

method performs best. Some of the methods considered for calculating the GLAEC

began to incorrectly rank the equalization methods for these cases. Placing the sensor

in the near field of the sound sources tended to produce results where the diagnosed

equalization performances were more similar, regardless of the equalization method.

This provided useful cases for finding a reliable GLAEC, as can be seen by comparing

Figs. 5.14 to 5.14, and noting that the difference in the equalization performance is

greater in Fig. 5.15, where the sensor is placed farther from the sources. In order to
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find the GLAEC that performed best, the performance of the GLAEC was evaluated

for cases where the error sensor was restricted to a region near the sources. This

produced results where all of the potential GLAEC values would occasionally fail

to predict which method equalized best. Some methods for computing the GLAEC

failed to correctly rank equalization performance more than others, this was used to

find which method had better resolving power. With these results, the χ2 value was

122.25 with a critical value of 18.3. This means that there was a very significant

detectable difference among the different values considered for the GLAEC.

The χ2 test is good for comparing the several variables at the same time, but it

does not mean that every variable performs significantly different from other variables.

Because of the nature of the χ2 test, there is not a guarantee that every equalization

coefficient performs differently, just that some of them do. The z-test can check to

see if the best two or three coefficients perform differently. To compute the χ2 and

z-test information a count of passes and fails were used. If a run of the equalization

test GLAEC ranked the performance in the same order that a visual inspection of

the ratio style surface plots did, it was counted a pass, other wise it was counted as

a fail.

The latter of the statistical tests used is the z-test and estimator of difference

between two proportions [78]. This was specifically used to compare the difference

between the best and second best methods according to the χ2 test. For this test, a

success rate for two variables is calculated, then a z-value is calculated from this data.

The z-value indicates the confidence level, which tells how certain we can be that the

best tested factor really was better than the second factor. Again a large value of

the test statistic indicates a significant difference between the two variables [78]. A

summary of the statistical data is found in Table 5.1.

The three best functioning values for the GLAEC according to the χ2 contingency
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Table 5.1 Summary of the values considered for use as a GLAEC and the statistical results. The row labeled
pass indicates how many times out of 126 measurements that the value correctly ranked equalization performance.
The row labeled fail indicates how many times the measurement failed to correctly rank equalization performance.
The z-value indicates the result of the z-test of the performance of µs(σf ) compared to the performance of the
measurement of a given column. A larger z-value magnitude indicates a more discernible difference between
the compared sampled populations. In this case, a positive value would indicate better performance at correctly
ranking of the equalization methods. The confidence, labeled β, is a fractional comparison indicating the certainty
that there is a difference between two populations. This data comes from the measurements made with the
equalization filter designed for use near the the sound sources.

Tested GLAEC values

µs(σf ) σs(σf ) µs(σf ) + σs(σf ) µs(µf ) σs(µf ) µf (σs) σf (σs) µf (σs) + σf (σs) σf (µs) µf (µs) σf (
√
µs)

Pass 106 80 91 62 38 70 86 84 97 79 95

Fail 20 46 35 64 88 56 40 42 29 47 31

z-value 0 -3.73 -2.29 -5.88 -8.66 -4.94 -2.96 -3.22 -1.43 -3.85 -1.72

β 0.5 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.92 1.00 0.96

χ2 = 122.25 χ2
critical = 18.31
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table were, listed starting with the best, the spatial mean of the spectral standard

deviation (µs(σf )), the spectral standard deviation of the spatial mean (σf (µs)), which

was closely followed by the standard deviation of the square root of the spatial mean

(σf (
√
µs)). According to the z-test of differences, we can claim with a 92% certainty

that µs(σf ) is better than σf (µs). Likewise, there is a 96% certainty that µs(σf ) is

better than σf (
√
µs). At the same time, there was not sufficient evidence to say that

σf (µs) was better than σf (
√
µs). For the sake of simplifying the calculation of the

GLAEC, we may eliminate the method that requires the square root, since there is

no significant advantage to taking the square root.

Because Hargreaves and D’Antonio use the log10 of the data for their diffusion

coefficient, a new sample of measurements was taken using both the log10 of the data

and the raw data to see if this produced a significant benefit [70,77]. This comparison

was only performed using the best performing GLAEC from the previous tests. Again

the results were very statistically significant, for nearly every case the ranking used

was different from one another. This result should not be a surprise, calculating the

average of a sample and then taking the log10 of the data is different than taking the

log10 of the data and then averaging. The version of the GLAEC calculated without

taking the log10 of the data consistently worked better. A z-test of difference verified

that the performance was significantly better.

Recommended GLAEC

The coefficient that performed best at ranking the equalization was the spatial

average of the spectral standard deviation µs(σf ). Because of this, it is used in the

calculation of the recommended GLAEC. To compute the recommended GLAEC

value, compute the spatial averages of both the spectral standard deviation of the

unequalized sound field and the equalized sound field. The latter may be divided by
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the former

GLAEC =
µs(σf )equalized
µs(σf )unequalized

. (5.2)

This produces a value that contains the same data as the best coefficient tested

for the GLAEC, but also has a value that can be interpreted in a straight forward

manner. If this ratio is grater than unity, than the overall equalization in the listening

area is degraded. If it is less than unity than overall equalization in the listening

area is improved. Equation 5.2 could potentially be improved by an appropriate

normalization during the spatial average, similar to that used in Figs. 5.14 and 5.15.

This would result in

µs

(
(σf )equalized

(σf )unequalized

)
, (5.3)

but this coefficient has not yet been tested to check its validity. As mentioned previ-

ously, an area weighted mean may also have some benefits.

Though most of the different coefficents considered for rating equalization suc-

ceeded when the success of the different methods was very different, few of them

had the power to distinguish the equalization when different equalization methods

performed almost equally well. None of the potential equalization factors worked in

every case; however, some performed better than others. The difference in perfor-

mance quickly becomes more notable when there is a limitation on the number of

measurements that may be practically taken to assess the equalization of the listen-

ing area. The difference in the performance of the coefficients considered for use as

a GLAEC was greater when the sensor is moved closer to the sources, as mentioned

previously.

Evaluating the equalization of a given listening area requires several frequency

response measurements. The maximum number of pressure responses that may be

reasonably taken should be used. These measurements should be taken at randomly

distributed positions within the listening area. For the statistical tests in this research,
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combinations of sensor locations and sensor arrangements, ranging from four to thirty

sensors in, were used in an attempt to determine a minimum number of sensors.

However, the data collected were insufficient to determine a minimum number of

sensor locations to ensure success. A larger sample size is necessary to to arrive at a

clear conclusion of how many error sensors are required to make a valid calculation

of the GLAEC.

These frequency response measurements may then be used to calculate a rec-

ommended coefficient for judging the equalization of the sound field. The spectral

standard deviations of the frequency responses may be calculated and the spatial av-

erage of that value may then be found. Ideally, these measurements would be made

with and without equalization at the same microphone positions. The equalization

coefficient for the equalized field may be divided by the coefficient for the unequalized

field. The resultant factor is normalized and may be interpreted without comparing

other factors. If the ratio is less than one, the equalization method was successful;

if it is greater than one, equalization has introduced new problems in the field. This

normalized factor may potentially assist in judging equalizations in different listening

spaces. However, this would require more measurements to arrive at a valid compari-

son. For most applications normalizing an GLAEC by an unequalized GLAEC of the

same listening environment is the most useful form.

As a demonstration, Figs. 5.16 and 5.17 show the resulting equalization from

four different measurements used to equalize a system of five equal-strength point

sources over a frequency range from 20 Hz to 200 Hz. The center of the system is at

the point (0, 2) in the figures, with the sound sources marked by + and the sensor

location marked by ◦. To the left of each plot is the ratio of the proposed GLAEC

of the equalized field divided by the GLAEC of the unequalized system. The plots

are ordered from left to right, top to bottom starting from the best. Notice that the
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ordering is consistent with both the GLAEC value and the surface plot. These results

show the best quantities for equalizing for the given source arrangement and, except

of the case of the spatially averaged equalization, sensor location.

Perhaps some restrictions on sensor number and locations could be made to im-

prove the reliability of the calculated GLAEC value. Further experimental work

could be performed to judge a minimum number of microphones that should be used

to ensure similar constant values of the GLAEC. Another improvement could be a

recommendation on the minimum spacing of the sensors, as would be required to

qualify a reverberation chamber, a process which is described in Nutter’s work as

well as in an ISO standard [48,79].

5.3.3 Observations

The surface plots and the recommended GLAEC allows simple evaluation of the

performed equalization of a sound field. In the process of developing the GLAEC,

several features became apparent. Changing frequency range, source arrangement,

or the sensor location alters the success of attempts to equalize a sound field. The

effects of these changes are discussed here.

Frequency Range

Changing the frequency range over which equalization is performed changes the

size of the regions where equalization is successful. Equalizing a narrow frequency

range can help the performance, especially for low frequencies. At low frequencies the

wavelength is longer, which in turn extends the region where an equalization filter

successfully improves the frequency response of a sound field. Figures 5.18 through

5.22 show equalization over several frequency ranges using spatially averaged pressure,

PED, KED, TED, and the vector magnitude of intensity to design an equalization
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(a) (b)

(b) (c)

(d) (e)

Figure 5.16 Examples of ranking equalization performance using the
GLAEC and plots of the spectral standard deviation. Here the sensor is
located 1 cm from the center point of the five source arrangement of point
sources and marked by a ◦. The axes are labeled in meters.
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(a) (b)

(b) (c)

(d) (e)

Figure 5.17 Examples of ranking equalization performance using the
GLAEC and plots of the spectral standard deviation. The sensor is located
at (1.7,2.6) and marked by a ◦. The axes are labeled in meters.
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filter respectively. These plots show the spectral standard deviation of pressure mag-

nitude over space.3 These figures show that equalization over a large region is more

likely for narrower frequency ranges. One item to note in these plots is that the

position of the equalization sensor did not line up with the grid of the positions used

to compute the spectral standard deviations on the sound field. Because of this, the

color inside of the circle a combination of the points around the sensor. This is ap-

parent in Fig. 5.19 and Fig. 5.23(d), especially at wider frequency ranges where the

spectral standard deviation has more spatial variation due to the shorter wavelengths

considered in the calculations.

Source Arraignment

Two source arrangements were principally used in this research; one consisted of a

pair of point sources, the other consisted of five equal-strength point sources arranged

like a five point surround sound system. Figure 5.23 shows plots of the spectral

standard deviation of the equalized sound field produced by two equal-strength sound

sources equalized over a frequency range of 20 Hz to 2 kHz divided by the spectral

standard deviation over the same range of the unequalized sound field. Comparing

Fig. 5.23 to Fig. 5.24, where the only difference is the source arrangement, shows

the difference in the size of the region where equalization improves. Equalization of

the two point source sound field produces a region with a curve where equalization

is successful. This leads to a very limited region where equalizing the frequency

response improves the sound field. However, equalization performed with five sources

surrounding the listening region tended to have larger regions within the listening

area with improved equalization. Remembering from Sec. 2.1.3 that a sound field in

3Using the pressure magnitude instead of the squared pressure magnitude adjusts the color scale

but not the meaning of the results.
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(a) (b)

(c) (d)

Figure 5.18 The standard deviation of the frequency response equalized
using a spatially averaged squared pressure magnitude frequency response
over a frequency range of (a) 20 Hz to 200 Hz, (b) 20 Hz to 2 kHz, (c) 20
Hz to 6 kHz, and (d) 20 Hz to 20 kHz. The sound sources are marked by +.
The axes are labeled in meters.
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(a) (b)

(c) (d)

Figure 5.19 The standard deviation of the frequency response equalized
using a PED frequency response over a frequency range of (a) 20 Hz to 200
Hz, (b) 20 Hz to 2 kHz, (c) 20 Hz to 6 kHz, and (d) 20 Hz to 20 kHz.
The sound sources are marked by + while the sensor is located at the point
marked by ◦. The axes are labeled in meters.
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(a) (b)

(c) (d)

Figure 5.20 The standard deviation of the frequency response equalized
using a KED frequency response over a frequency range of (a) 20 Hz to 200
Hz, (b) 20 Hz to 2 kHz, (c) 20 Hz to 6 kHz, and (d) 20 Hz to 20 kHz.
The sound sources are marked by + while the sensor is located at the point
marked by ◦. The axes are labeled in meters.
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(a) (b)

(c) (d)

Figure 5.21 The standard deviation of the frequency response equalized
using a TED frequency response over a frequency range of (a) 20 Hz to 200
Hz, (b) 20 Hz to 2 kHz, (c) 20 Hz to 6 kHz, and (d) 20 Hz to 20 kHz.
The sound sources are marked by + while the sensor is located at the point
marked by ◦. The axes are labeled in meters.
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(a) (b)

(c) (d)

Figure 5.22 The standard deviation of the frequency response equalized
using the vector magnitude of intensity frequency response over a frequency
range of (a) 20 Hz to 200 Hz, (b) 20 Hz to 2 kHz, (c) 20 Hz to 6 kHz, and
(d) 20 Hz to 20 kHz. The sound sources are marked by + while the sensor
is located at the point marked by ◦. The axes are labeled in meters.
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an enclosure may be modeled using many image sources, suggests that equalization

of an enclosed field may be more successful than equalization of a few sources in a

free field.

Reinforced Sound Fields

Cases where one or more of the sound sources contributing to a sound field is a

reinforcing source introduces interesting complexities for equalization. To examine

this situation, Figs. 5.25 and 5.26 have a side by side comparison of sound fields

equalized with the filter designed for a point near the equalized source, marked by

+, to one with a filter designed for a point near the unequalized source, marked

by ×. Equalization is better globally within the listening area when the sensor is

placed near the equalized source. One reason for the improved performance with the

sensor placed near the equalized source is that the field near the equalized source

benefits more from the filter, while the filter does less to alter the sound field near

the unequalized sound source.

An interesting change happens with the symmetry of the system as well. When

the sensor is placed near the unequalized source, there is a region near the equalized

source where equalization is improved when using a filter designed using TED or

intensity. The region where the equalization improves is opisit to the position of the

location of the sensor used to design the equalization filter (see Fig. 5.26). With PED

and KED, the same symmetry occurs, but the equalization is only degraded less, not

improved, in the region away from the sensor (see Fig. 5.25). The same symmetric

pattern results with the sensor placed near the equalized source for filters deigned

using PED, TED, and the vector magnitude of intensity, but the improvement is

much less drastic.
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(a) (b)

(c) (d)

(d) (f)

Figure 5.23 Two sound sources equalized with a filter designed for the point
marked by ◦ over the frequency range of 20 Hz to 2 kHz.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.24 Five sound sources equalized with a filter designed for the point
marked by ◦ over the frequency range of 20 Hz to 2 kHz.
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(a) (b)

(c) (d)

Figure 5.25 Comparison of a sound field equalized for a position near the
equalized sound source, (a) and (c), to a sound field equalized with a position
near the unequalized sound source, (b) and (d). Figures (a) and (b) show
fields equalized using PED, while Figs. (c) and (d) show sound fields equalized
using KED. These sound field is equalized from 20 Hz to 2 kHz. The ×
indicates the unequalized sound source, + indicates the unequalized sound
source and ◦ indicates the sensor location.
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(a) (b)

(c) (d)

Figure 5.26 Comparison of a sound field equalized for a position near the
equalized sound source, (a) and (c), to a sound field equalized with a position
near the unequalized sound source, (b) and (d). Figures (a) and (b) show
fields equalized using TED, while Figs. (c) and (d) show sound fields equalized
using the vector magnitude of intensity. These sound field is equalized from
20 Hz to 2 kHz. The × indicates the unequalized sound source, + indicates
the unequalized sound source and ◦ indicates the sensor location.
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Symmetry

In the equalization plots throughout this thesis, it is apparent that equalizing

symmetrically arranged equal-strength sound sources result in a sound field that is

also symetric. This means that equalizing a symmetric sound field at one point

will produce a corresponding equalized location on the opposite side of the axis of

symmetry. This symmetry brakes down in cases when a source is driven with a

different signal than the source that is located on the opposite side of the axis of

symmetry. This property of symmetry is expected. An equivalent pattern would be

generated using the sources on one side of the axis of symmetry and a reflecting plane

placed along the axis of symmetry.

Sensor Position

To examine the effects of sensor location, a method that produces a plot similar

to the MEDToPO plots for equalization has been generated. It involves calculating

the GLAEC for equalization performed for different measurements at each point of

a grid in a listening area. For each of these points the GLAEC is saved to an array

of data. The data is used to generate a plot showing the value of the GLAEC as a

function of the location of the sensor used to design the equalization filter. Examples

of these visualizations are found in Figs. 5.27, 5.28, and 5.29.

Examining Fig. 5.27 reveals that placement of the sensor used to acquire data

to design the filter does change the success of global equalization in the listening

area. Comparing Fig. 5.27(a), which indicates good sensor locations, to Figs. 5.18(a),

5.19(a), 5.20(a), 5.21(a), and 5.22(a), which plots regions where equalization is im-

proved over the same frequency range, there are some similarities in appearance. The

regions where equalization is improved has a similar, but not identical, spatial ar-

rangement to the regions where placing a pressure based sensor improves performance
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(a) (b)

(c) (d)

Figure 5.27 The GLAEC normalized by the GLAEC of the unequalized
field as a function of sensor location for equalizing over a frequency range of
20 Hz to 200 Hz in 10 Hz increments. The sources are marked by +.
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(a) (b)

(c) (d)

Figure 5.28 The GLAEC normalized by the GLAEC of the unequalized
field as a function of sensor location for equalizing over a frequency range of
20 Hz to 800 Hz in 10 Hz increments. The sources are marked by +.
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(a) (b)

(c) (d)

Figure 5.29 The GLAEC normalized by the GLAEC of the unequalized
field as a function of sensor location for equalizing over a frequency range of
20 Hz to 2 kHz in 10 Hz increments. The sources are marked by +.
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globally in the listening area. Figure 5.27 also reveals that for many locations in the

region surrounded by the point sources a TED sensor will produce good global equal-

ization of the listening area. It is relatively insensitive to sensor position. Figure 5.27

also reveals that any of the measurements may be used to improve equalization glob-

ally if the placement is chosen carefully to optimize the performance.

Expanding the frequency range, as shown in Fig. 5.28 for 20 Hz to 800 Hz and in

Fig. 5.29 for 20 Hz to 2 kHz, decreases the success of the equalization of the sound

field. Equalization over a broad band region using a single error sensor does not im-

prove the equalization of the listening environment. For most sensor locations, using

single measurement to design an equalization filter actually degrades the global equal-

ization equalization when PED, KED or intensity are used. The best measurement

for designing an equalization filter employing a single sensor is TED.

In the cases tested here, a filter designed using the TED measurements with

a sensor placed inside the listening area can improve equalization over a limited

low-frequency band, for example 20 Hz to 200 Hz, as shown in Fig. 5.27. With

the TED sensor, care should still be taken to chose a good sensor location, but

randomly placing the sensor within a listening region is less likely to result in degraded

performance than the other measurements considered. With a TED sensor, for many

sensor locations, the equalization is not degraded when a wider band is equalized, as

shown in Fig. 5.28 for 20 Hz to 800 Hz and in Fig. 5.29 for 20 Hz to 2 kHz. For broad-

band equalization a better strategy may be to equalize the sources individually, rather

than applying an identical filter to each source. For equalization, filters designed using

TED measurements provide the best opportunity for successful global equalization

with the least risk of degraded equalization for the use of a single sensor in a free

field. TED also gives the best equalization over an extended region using a single

measurement location to define the equalization filter.



5.3 Evaluating Equalization 133

5.3.4 Auralization

The method of images, discussed in Sec. 2.1.3, can be used to model an enclosed

sound field. The point source model used in this research was used to generate an

impulse response to produce auralizations of a recording in a room. Some of these

recordings may be heard in the electronic version of Appendix F. These auralizations

demonstrate the effects of equalization.

An auralization made using the techniques discussed in Sec. 3.3.1 may be con-

volved with the impulse response of an equalization filter to demonstrate the results

of the equalization techniques. The result will demonstrate the success or failure of

the equalization filter. This process may be written,

s(t)⊗ r(t)⊗ e(t) = p(t), (5.4)

where ⊗ denotes convolution, S(t) is the recorded signal, R(t) is the response of the

listening area, E(t) is the response of the equalizing filter, and P (t) is the resulting

auralization showing the effects of equalization.

The equalization filter may also be convolved with the impulse response of a

listening environment to show graphically the effects of equalization. Equation (5.4)

may be transformed to the frequency domain to demonstrate this,

Ŝ(f)R̂(f)Ê(f) = P̂ (f). (5.5)

Dividing Eq. (5.5) by the input signal, R̂(f), yields the ratio of the output signal

of the system to the input signal of the system, which is the definition of frequency

response. This gives the combined frequency response of the listening environment

and the filter, which may be expressed

Ŝ(f)Ê(f) =
P̂ (f)

R̂(f)
= Ĥ(f). (5.6)
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The resulting system impulse response may than be written,

s(t)⊗ e(t) = h(t). (5.7)

The resulting responses may be plotted to visually understand the equalization pro-

cess. Ideally, equalization will result in an impulse response that is a Dirac delta,

δ(t), function and the the frequency response will be uniform over the spectrum.4

Some Example Cases

Using a single measurement point to equalize a sound field results in a more uni-

form frequency response at the measurement location; at other locations the resulting

frequency response is often less uniform. To demonstrate this, equalization filters were

designed for a free field sound environment using the computational models in this

research. One set of equalization filters was made using measurements at one listen-

ing position while another set of equalization filters was deigned at another point.

The impulse and frequency response measurements were generated for the equaliza-

tion at the equalization point and at a point several centimeters away. These filters

were convolved with the auralization of the room for a listener at the first location to

provide a pair of auralizations. One auralization models what would be heard for a

listener at the filter’s correct position. The other demonstrates what would be heard

by a listener at a position away from the filter’s target location. Figures displaying

the resulting responses were also made to illustrate the effects of equalization. For

comparison, the unequalized responses are provided in Fig. 5.30. The examples in

Figs. 5.31 through 5.36 an array of seven sources placed at (0,0,n/2) meters where n

is the source number was used, expressed in Cartesian coordinates. In these figures,

4The following figures are shown a second time in Appendix F.3 along with the corresponding

auralizations. This demonstrates how the plots indicate equalization.
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Figure 5.30 The impulse and frequency responses for the unequalized case
are presented here.

the plot labeled (a) is for a sensor at (4.2,0,0) meters, and the plot labeled (b) has a

sensor at at (4.0,0.2,0) meters.

Typically, the equalization filters designed using complex pressure performed the

worst at locations away from the location for which the filter is designed, compared to

the other measurements considered in this research. Figure 5.31 shows the equalized

frequency responses. The impulse and frequency responses at the location that the

filter was designed for match the ideal case. The impulse and responses at locations

away from the sound source are much different when compared to the unequalized

case. This can be seen by comparing Fig. 5.31 to Fig. 5.30.

Using the minimum phase portion of the pressure measurement to design the

equalization filter produces a very similar result to those found using the entire com-

plex pressure measurement. The resulting frequency responses are nearly identical;

however, there are some notable differences in the impulse responses, see Figs. 5.31

and 5.32. The impulse response for the minimum-phase filter equalization has the

Dirac delta function at time zero, while the complex equalization puts the function

at another, delayed, location. The impulse response for the complex pressure equal-

ization displays some pre-ringing suggesting that the modeled filter may not meet
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(a) (b)

(c)

Figure 5.31 These are responses for a system equalized using (a) a filter de-
signed for the listening position and (b) using a filter designed for a listening
position several centimeters away. The equalization filters in this figure were
designed using complex pressure. Plot (c) is a zoomed in version of (b).
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(a) (b)

Figure 5.32 These are responses for a system equalized using (a) a filter de-
signed for the listening position and (b) using a filter designed for a listening
position several centimeters away. The equalization filters in this figure were
designed using the minimum phase portion of complex pressure.

the causality requirements of a real filter. The pre-ringing does not appear when the

minimum phase of the pressure response is used to design a filter. This is shown

to be true for both cases. A slight ringing is audible in the auralization represent-

ing equalization performed with a minimum phase filter designed for the listening

position of the model. This ringing goes away if the impulse response is designed

using a much longer impulse response, or if the sources of the frequency response are

clustered closer together, thus resulting in a shorter duration of the excited portion

of the impulse response.

Filters designed using potential energy density perform differently than those de-

signed using complex pressure. At the location where the response is measured, equal-

ization is less successful than for the equalization performed using complex pressure.

When the filter designed for the other location is used, the potential energy density

performs better than the filter designed using complex pressure. The equalization is

still worse than the system would have been had no equalization been applied. This
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(a) (b)

Figure 5.33 These are responses for a system equalized using (a) a filter de-
signed for the listening position and (b) using a filter designed for a listening
position several centimeters away. The equalization filters in this figure were
designed using PED.

can be seen comparing the plots of the responses given in Fig. 5.33 to those found in

Figs. 5.30 and 5.31. The degradation of equalization at points away from the filters

target location occurs because the filters response is finely tuned to the specific lo-

cation of the source. With complex pressure, the phase information is also included,

so a filter designed using the complex pressure is more sensitive to position than one

that only deals with the squared magnitude of the sources.

Filters designed using KED measurements typically perform worse than the PED

counterparts. Still, in the case where the equalization filter is designed for a position

away from the actual listener location, the results are better than those using equal-

ization filters designed using complex pressure. The peaks in the complex pressure

frequency response produce strong resonances shown in Fig. 5.31. The majority of

the peaks in the frequency response for equalization performed using KED, are not as

dominant as those for equalization performed using complex pressure, see Fig. 5.34.

Equalization filters designed using TED perform better than the the KED and
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(a) (b)

Figure 5.34 These are responses for a system equalized using (a) a filter de-
signed for the listening position and (b) using a filter designed for a listening
position several centimeters away. The equalization filters in this figure were
designed using KED.

PED versions of equalization. At the location where the filter is designed, the fre-

quency response can become better than the unequalized sound measurement. The

equalized frequency response still deteriorated with the equalization filter designed

for the remote location, approximately 28 cm away. However, the filter designed us-

ing a TED measurement caused less deterioration at other locations than the other

equalization methods discussed here.

In the process of evaluating the performance of the equalizing filters, it became

apparent that the the impulse response used to equalize the sound field needs to be

much longer than just the time length of the modeled sound source arrangement.

The preceding figures were generated from calculations where the sound field and

filters were built using responses 217 terms long at a sample frequency of 44.1 kHz.

Figure 5.36 shows the same equalization setup as that found in Fig. 5.31, but this

time the sound field was modeled using 213 terms. The resulting impulse response has

some extra ripples, indicating some residual reverberations. The frequency response
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(a) (b)

Figure 5.35 These are responses for a system equalized using (a) a filter de-
signed for the listening position and (b) using a filter designed for a listening
position several centimeters away. The equalization filters in this figure were
designed using TED.

for the filter designed for the listening location results in a frequency response with

some deviations from the ideal case. In the case where the filter was designed for

another location, there is more visible modulation in the frequency response. The

auralizations demonstrate this degradations as well. The degradation is apparent

as a slight echo, which is indicated by additional ripples in the plot of the impulse

response.

This example shows the inefficiency of these techniques for designing an equal-

ization filter. The filters designed using the 217 points correspond to a real world

measurement on the order of 143 thousand years. The filterers designed using 213

points correspond to a measurement taking 14 years. This method does show a proof

of concept that a filter with an inverse frequency response can equalize the frequency

response at a point. This also shows that the spatial sensitivity of equalization. Per-

haps a better approach to equalization could be to use smoothing or curve fitting

technique.
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(a) (b)

Figure 5.36 These are responses for a system equalized using (a) a filter de-
signed for the listening position and (b) using a filter designed for a listening
position several centimeters away. The equalization filters in this figure were
designed using complex pressure. This is similar to Fig. 5.31, the difference
is that this model used significantly fewer terms to generate the responses
for designing the filter an the model.

5.4 Toward Enclosures

The method of images may be used to model a sound field in an enclosure. This is

done by generating many virtual sound sources to model the sound field. This model

will produce frequency and impulse responses that represent a sound field that may

be used to generate auralizations that simulate the sound field. One big constraint

for modeling a sound field using these virtual sources is the time it can take for a

single point. Another limitation comes from modeling absorptive absorptive surfaces

for multiple reflections in a three dimensional field.

One important thing to note with this model is that it quickly become unreliable

for room impulse responses that last more than a few hundred milliseconds. Even

with classical air absorption added to the model, the reverberation becomes excessive

for long impulse responses. For this reason the auralizations included in this work are

generated using limited time length impulse responses. Even though the model used
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to verify the model was for a reverberant room with dimensions of 5x6x7 m, which

should have a reverberation time on the order of several seconds, it was difficult to

model a response longer than a couple of seconds. The longer frequency responses

did not sound like a reverberant room in the computer model used.5 One possible

necessity for this model is a practical method for modeling the wall absorption on each

reflection. This type of correction is outside of the scope of the research considered

here.

5Two auralizations showing the sound for the modeled room using different length impulse re-

sponses are found in Appendix F.2 in Table F.2.
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Conclusions

The preceding chapters have discussed methods for controlling sound in a free

field. Analytical and computational models have been used to evaluate the perfor-

mance of different error sensors used for active noise control (ANC) and equalization.

Minimized energy density total power output (MEDToPO) plots were developed to

show the effect of sensor location on the performance of global ANC. The investiga-

tion of equalization motivated the exploration of an objective factor for evaluating

the performance of equalization in a listening environment. This chapter summarizes

the results discussed in the previous chapters, draws conclusions, and suggests further

research.

6.1 Near Field Sensor Active Noise Control

The research for ANC indicates that there are limitations on using near field

error sensors. The results show that the total energy density (TED) is spatially

uniform in the near field, which would allow freedom in choosing the placement of

the error sensor. However, this uniformity only exists at higher frequencies for which

143
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active control techniques based on strong acoustic coupling fail to produce satisfactory

results. Kinetic energy density (KED) measurements did not improve the success of

active sound control either. Potential energy density (PED) was shown to produce

better results than TED or KED for controllable lowe frequencys. Regardless, there

are still many limitations on the use of error sensors in the near field for active noise

control.

The MEDToPO plots presented in the thesis verifiy the assertion made by Hansen

and Snyder concerning the placement of error sensors for ANC [2]. They indicated

that error sensors should be placed where the detected measurement is attenuated the

most when comparing the field generated by the uncontrolled source to the optimally

controlled field [2]. Comparing plots that indicated where the error sensors should

be placed (according to Hansen and Snyder) to MEDToPO plots reveals excellent

agreement for pressure based measurements. For KED and TED, the MEDToPO

plots show that the positions suggested for use by Hansen and Snyder are correct,

but the MEDToPO shows additional locations where control may also perform well.

Another feature of the MEDToPO is that it indicates the sensitivity of ANC

performance to the exact location of error sensors. In some applications an error

sensor may be placed a small distance away from the best location for performing

ANC, while other applications require very accurate and precise placement of the error

sensor. The MEDToPO scheme was used to determine the best measurement cases

of free-field ANC. It was useful because it shows the maximum possible attenuation

using a given error quantity, as well as indicating the regions where sensors using that

error quantity perform the best.
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6.2 Equalization

The global listening area equalization coefficient (GLAEC), defined in Sec. 5.3.2,

and surface plots of the spectral standard deviation of the equalized sound field di-

vided by the spectral standard deviation of the unequalized field were used to evalu-

ate the success of sensor techniques used to design equalization filters. As expected,

equalization with filters designed using a spatial average of the pressure frequency re-

sponse performed better than any other filter designs. The Lagrangian density filters

performed worse than the other measurements considered. The PED and complex

pressure consistently performed poorly for global equalization. These two measure-

ments provided filters that successfully equalized at the sensor location, but they

performed very poorly in the rest of the listening region. This was noted from the

surface plots of the spectral standard deviation of the equalized fields divided by

the spectral standard deviation of the unequalized fields and also by looking at the

frequency response at the sensor location. Other measurements—KED, TED, and

the vector magnitude of intensity—did not improve equalization globally in the free

field environment for a wide frequency range when the sensor was not surrounded

by sources. The performance of these measurements suggest that, in a free field,

equalization filters should be designed using more than one measurement location.

Equalization over a narrower low frequency band performed better for all of the

measurements used to design the equalization filters. Because of the long wave-

lengths, there is less variation in the frequency response over position at these lower

frequencies. In fact, filters designed using PED, KED, TED, and intensity had much

better success at low frequency over limited ranges than for broad-band ranges. For

equalization on these narrow band frequency ranges, global improvement is achievable

using PED, KED, TED and intensity. Over the narrow-band frequency ranges, TED
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yielded more freedom in the placement of the sensor used for designing the equaliza-

tion filter, and thus is the recommended measurement for designing an equalization

filter in a free field, especially when the listening region is surrounded by sources.

Cases where equalization was performed using TED, where the listening region was

surrounded by five equal-strength point sources with a limited low-frequency band-

width, provided freedom in choosing the error-sensor location, while still achieving

equalization over an extended region.

Though the chosen single point filters did not successfully improve equalization

over a large listening area over a broad-band, they were useful for finding a factor

that helps evaluate the performance of equalization in an extended region. This

was called the global listening area equalization coefficient (GLAEC). The techniques

discussed previously were used to generate plots and calculate potential equalization

factors to establish the GLAEC. These plots and equalization factors were compared

to one another to find a factor that correctly and consistently evaluates the success

of equalization.

The quantity that performed best, µs(σf ), is found by taking the spatial average

of the spectral standard deviation from several measurement positions. However, this

value did not perform correctly in every case. The primary difficulty for all of the

proposed equalization coefficients was their inability to distinguish small differences

in global equalization. The factor µs(σf ) performed better than the other coefficients

in tests intended to make distinguishing the performance of equalization methods

difficult. In order to give this coefficient clear meaning, it is recommended to use it

in the form of a ratio

GLAEC =
µs(σf )equalized
µs(σf )unequalized

. (5.2)

When this value is less than one, the overall equalization of the listening area is

improved by the equalization method.
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Plots of the GLAEC as a function of space demonstrated that equalization could

be performed to find good locations for placing an error sensor to equalize a sound

field. These plots showed that over a low-frequncy limited band, TED provided the

most freedom for placing an error sensor and achieving an overall improvement of the

equalization in a listening region. These plots may also be used to choose optimal

locations for the error sensors in an experiment.

6.3 Further Research

Most research involving equalization is focused on improving high fidelity sound

systems. However, there are other situations in which equalization may be useful.

Equalizing a system can produce some dereverberation of the detected signal in a

listening space. Commonly, public address systems are used to make announcements.

In some situations, subway stations for example, the reverberation destroys speech in-

telligibility. In theory, implementing a good equalization filter in line with the existing

public address system could reduce the reverberation at a discrete listening position.

Further research could determine if dereverberation could work more globally for a

defined listening area. The issues at hand are first, determining the appropriate equal-

ization filter, and second, checking whether other options such as installing absorptive

materials in these rooms would perform better and be more cost effective. In some

cases a combination of passive and active approaches may be prudent.

Equalization using more exotic methods, like ED and intensity, may produce more

successful results for other cases. In enclosures, ED measurements can perform better

for ANC than they do in the free field. A similar improvement in performance may ex-

ist for equalization. Equalization filters designed using an average PED measurement

produce better equalization than those designed using one pressure measurement. A



148 Chapter 6 Conclusions

spatial average of several measurements may improve equalization employing filters

defined by other measurements. A minimum number of measurements necessary to

adequately design an equalization filter should also be investigated if the spatial av-

erage of other measurements does indeed improve equalization results. The spacing

of the error sensors should also be determined.

The GLAEC relies on a number of randomly located measurements. A limitation

on the number of sensors necessary to consistently calculate the GLAEC value could

be found. Work could also be done to recommend an appropriate sensor spacing to

improve the consistency of the value. Currently, the GLAEC only works well to rank

equalization methods. Specific requirements on sample size and sensor spacing may

improve the consistency of the GLAEC value. With these requirements, the GLAEC

could be used to compare equalization of different listening spaces. Area weighting

the effective sample areas of the sensors and methods for appropriately normalizing

the data used to compute the GLAEC may improve its consistency.
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Appendix A

Explicit Derivation of Particle

Velocity

Euler’s equation relates between the two fundamental measurements in acoustics,

acoustic pressure and particle velocity. As mentioned in Sec. 2.1, Eulers equation is

−∇p̂ = jωρ0~̂u = jckρ0~̂u. (2.5)

Acoustic pressure may be described as it is written in Eq. (2.1), but for the purposes

here a frequency domain expression is sufficent. The acoustic pressure in the frequency

domain may be expressed by

p̂ =
Â

r
e−jkr. (A.1)

The first step to find an expression for particle velocity is to take the gradient of

pressure. It is useful to move any terms out in front of the gradient that are not

altered, as follows:

∇p̂ = ∇Â
r
e−jkr = Â∇e

−jkr

r
. (A.2)

For convenience in MATLAB R©, the expression for particle velocity derived here will

be found in Cartesian coordinates. In Cartesian coordinates, the gradient of the
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spatially dependent terms of acoustic pressure is written [80]

Â∇e
−jkr

r
= Â

[
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

]e−jkr
r

, (A.3)

where

r =
√

(x− x1)2 + (y − y1)2 + (z − z1)2. (A.4)

Because the derivative function acts identically on each of the three Cartesian coor-

dinates. The Cartesian coordinates each appear in the expression for pressure in the

same form, so the following steps are shown only for the x component here. Leaving

the amplitude out simplifies Eq. (A.2) to

∂

∂x

e−jkr

r
=

1

r

∂

∂x
e−jkr + e−jkr

∂

∂x
r−1, (A.5)

remembering that r depends on x. Explicitly writing out the coordinate dependence

of r further simplifies the expression to

∂

∂x

e−jkr

r
=

1

r

∂

∂x
e−jk
√

(x−x1)2+(y−y1)2+(z−z1)2+ (A.6)

e−jkr
∂

∂x
((x− x1)2 + (y − y1)2 + (z − z1)2)−

1
2 .

The next step is to differentiate

∂

∂x

eikr

r
=

1

r

(−jk)1
2
2(x− x1)√

(x− x1)2 + (y − y1)2 + (z − z1)2
e−jk
√

(x−x1)2+(y−y1)2+(z−z1)2+

e−jkr
−1

2
2(x− x1)

(x− x1)2 + (y − y1)2 + (z − z1)2)(3/2)

=
−jk(x− x1)

r2
e−jkr − e−jkr (x− x1)

r3

=
−jkr(x− x1)

r3
e−jkr − e−jkr (x− x1)

r3

=
−(jkr + 1)(x− x1)

r3
e−jkr

This result may be substituted in to Eq. (A.2), keeping in mind that an identical

derivative is performed for each of the three Cartesian coordinates. This simplifies
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Eq. (A.2) to

∇p̂ = − Â
r3
ejkr(jkr + 1)


x− x1

y − y1

z − z1

 (A.7)

The result of the the gradient includes a term that describes the vector between the

source and receiver positions. At this point it is appropriate to substitute the pressure

amplitude, Eq. (2.2) [21–23]

Â =
jρ0ckq̂

4π
, (A.8)

into the expression for −∇p̂, yielding

−∇p̂ =
jρ0ckq̂

4πr3
ejkr(jkr + 1)


x− x1

y − y1

z − z1

 . (A.9)

Now it is useful to begin to consider the right hand side of Eulers equation, Eq. (2.5),

∇p̂ =
jρ0ckq̂

4πr3
ejkr(jkr + 1)


x− x1

y − y1

z − z1

 = jckρ0~̂u. (A.10)

It is helpful to note that the density ρ0, wave number k, and wave speed c are on

both sides of the equation so they may be removed from the expression, yielding

~̂u =
q̂

4πr3
ejkr(jkr + 1)


x− x1

y − y1

z − z1

 . (A.11)

which describes the particle velocity of a point source. Placing the source at the

origin further simplifies the expression to

ûr =
q̂

4πr2
e−jk(r−ct)(jkr + 1) (A.12)
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which agrees with expressions found in the works by Beranek, Morse and Ingard,

Kinsler et al., and Pierce and for particle velocity in the r direction [23, 25–27].

Another way to arrive at the expression here would be to use the result in spherical

coordinates and convert it to cartesian coordinates. The particle velocity expression

can be used for multiple point sources, where the Cartesian components of the particle

velocity are summed. This generalizes Eq. (A.11) to

~̂u =
N∑
n=1

 q̂n
4πr3

n

eik(rn−ct)(ikrn − 1)


x− xn

y − yn

z − zn


 . (A.13)

The result is a vector expression for particle velocity caused by a set of point sources.



Appendix B

Statistical Techniques

B.1 Derivation of an Alternate Expression for Stan-

dard Deviation

Lawson and Erjavec have an expression for the population standard deviation

that functions well without the need of all of the data available simultaneously. This

expression is expressed as [68,81]

s2 =

NP
i=1

(yi − ȳ)2

N − 1
(B.1)

or

NP
i=1
y2
i −

(
NP
i=1

yi

)2

N

N − 1
. (B.2)

Strictly speaking, s2 is a variance, the square root of which is the standard deviation.

Expression (B.2) provides an alternate method that produces an identical result. The

two methods described in Eqs. (B.1) and (B.2) both follow standard methods for cal-

culating standard deviation, however they have different situations in which one is

more practical than the other. When the mean is already known, Eq. (B.1) is more
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convenient; however, this is not always the case. In some of the computer models

discussed in this work, the entire set of data in the sample is not available simul-

taneously. For such cases, Eq. (B.1) requires acquisition of the data twice, once to

find the mean and again to calculated the sample standard deviation. Equation (B.2)

only requires access to the data once. This helps improve computational efficiency

and speed.

In order to verify the equality of these expressions we must show that

N∑
i=1

(yi − ȳ)2 =
N∑
i=1

y2
i −

(
NP
i=1
yi

)2

N
. (B.3)

Working from the left side of the equation, we can expand the expression such that

N∑
i=1

(yi − ȳ)2 =
N∑
i=1

(y2
i − 2yiȳ + ȳ2). (B.4)

By using the standard definition for the sample mean [68,82]

ȳ =

NP
i=1
xi

N
, (B.5)

the expression may be further expanded to

N∑
i=1

(yi − ȳ)2 =
N∑
i=1

(y2
i − 2yiȳ + ȳ2)

=
N∑
i=1

y2
i − 2ȳ

N∑
i=1

yi +Nȳ2

=
N∑
i=1

y2
i − 2

NP
i=1
yi

N

N∑
i=1

yi +N

(NP
i=1
yi

N

)2

=
N∑
i=1

y2
i −

2

N

(
N∑
i=1

yi

)2

+

(
NP
i=1
yi

)2

N

=
N∑
i=1

y2
i +

(
N∑
i=1

yi

)2
1− 2

N
(B.6)

=
N∑
i=1

y2
i −

(
NP
i=1
yi

)2

N
.
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When the denominator is included, this result is exactly the value listed by Law-

son and Erjavec as stated in Eq. (B.1). This calculation shows that the equations

published by Lawson and Erjavec are truly equal.

The convenience of using Eq. (B.2) to calculat the standard deviation when only

partial amounts of data can be found comes at the cost of susceptibility to numerical

error. When the standard deviation is very small, calculating the standard deviation

from a small sample can result in an estimate of the standard deviation that is nega-

tive. It is important to note that by definition standard deviation is a positive-valued

number. The negative standard deviation problem disappears with large sample sizes.

The error in this calculations of standard deviation tend to be less than 10−5, which

is in the realm of numerical error. At this point there is no resolution or clear expla-

nation for the numerical discrepancy. Because of the small size of the error, it will be

left for to resolve this issue.

B.2 Statistical Values of Energies

Calculating averages and standard deviations on a dB scale unfairly weights lower

values. This is because the equalizations incorporate a summing process, which is

invalid because dB measurements inherently do not superpose. Several methods have

been proposed to deal with the inherent errors when a statistical evaluation of energy

is desired.

It is important to remember when calculating the sound, that it is an energy value

that is expressed on a logarithmic scale. For Lp, the sound level is a squared pressure

measurement. Sound pressure level may be averaged using the expression [70]

L̄p = 10 log10

1

N

N∑
i=1

10
SPLi

10 . (B.7)
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This expression may be simplified by substituting in the expression for Lp found in

Eq. 2.45. This results in

Lp = 10 log10

1

N

N∑
i=1

|p̂|2

2p2
ref

, (B.8)

which is the same as finding the Lp from the average of squared pressure, which is

proportional to energy. This process is an energetic average, which may be performed

without multiplying by 10 and taking the log10 of the average. This procedure avoids

the mess of averaging a decibel value, and additionally avoids the problems of trying

to average a complex valued data set.

Some argue that standard deviation of levels describes the frequency variation

that is sensed by human listeners [70]. However, these calculations are weighted in a

way that is undesirable. One suggestion has been to replace the average term in the

standard deviation with the average level expression from Eq. (B.7), resulting in [70]

s2 =
1

N

N∑
i=1

(Li − L̄)2. (B.9)

The standard deviation may be thought of as an average of the deviation from the

mean. Equation (B.9) is actually calculating the deviation from the mean of another

measurement. Though these two measurements are related, they are not linearly

related and thus produce, a mixed metric. A more appropriate measure would be to

look at the standard deviation of energetic quantities. This would correspond nicely

with the calculation for averages found in Eq. (B.8). In order to keep the method

for calculating the average and standard deviation consistent, the variance may be

calculated using

s2 =

NP
i=1

(|p̂|2 − | ¯̂p|2)2

N − 1
. (B.10)

In order to keep units consistent with conventional sound pressure levels, it is im-

portant to calculate s rather than s2 before taking the log10. Standard deviation has

the same units the values in the data set, while the variance has units that are the
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square of the units of the data set. This would require a reference value with units

of Pa4. Fortunately, this type of energetic standard deviation works well with the

method described in Appendix B.1 which demonstrates how to calculate a standard

deviation in a computer model as the field is calculated.





Appendix C

Calculations for MEDToPO

The simplest case for the MEDToPO is the case where one control source is used

to minimize the sound radiated by a single primary source. In this appendix the

calculations for the minimization of the ED quantities for this specific case are shown

in Secs. C.1, C.2 and C.3. The MEDToPO may also be applied to a more general case.

The generalization is applied in Secs. C.4, C.5, and C.6 for a case where the primary

sources all have the same source strength, as do the control sources. The results are

given as a magnitude and phase of the source strength that provide minimization of

the ED quantities at a given error sensor location. These results are than used to find

the total sound power radiated from the combination of sources and used to produce

the MEDToPO plots found in Secs. 3.1.2, 4.2.1, and E.1.

C.1 Minimizing PED for One Primary Source and

One Control Source

Minimizing pressure squared or PED result in the same control source strength

calculations because they are related to one another by a constant. The calculations
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are perfumed here for pressure squared starting with an expression simplified from

Eqs. (2.1) and (2.2)

p̂ =
jρ0ck

4π

N∑
n=1

q̂ne
−jkRn

Rn

(C.1)

For our simple case, a single primary source q̂p and single control source q̂s the pressure

becomes

p̂ =
jρ0ck

4π

(
N∑

pn=1

q̂pe
−jkRpn

Rpn

+
N∑

sn=1

q̂se
−jkRsn

Rsn

)
. (C.2)

The squared magnitude pressure is calculated by multiplying pressure by its complex

conjugate,

|p̂|2 =p̂p̂∗

=

(
ρ0ck

4π

)2(
q̂p
e−jkRpn

Rpn

+ q̂s
e−jkRsn

Rsn

)(
q̂p
e−jkRpn

Rpn

+ q̂s
e−jkRsn

Rsn

)∗
. (C.3)

This may be simplified to

|p̂|2 =
(ρ0ck)2

16π2R2
pR

2
s


|q̂p|2R2

s + |q̂s|2R2
p+

RpRs|q̂p||q̂s|e−j(φp−φs)e−jk(Rp−Rs)+

RpRs|q̂p||q̂s|ej(φp−φs)ejk(Rp−Rs)

 (C.4)

where

q̂n = |q̂n|e−jφn . (C.5)

At this point it is convenient to express the difference in phase between the control

source and the primary source as

φp − φs = γ. (C.6)

The result simplifies to

|p̂|2 =
(ρ0ck)2

16π2R2
pR

2
s

 |q̂p|2R2
s + |q̂s|2R2

p+

RpRs|q̂s||q̂p|
(
e−jγe−jk(Rp−Rs) + ejγejk(Rp−Rs)

)
 . (C.7)
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Using Euler’s identity ejx = cosx+ j sinx, this may be further simplified to

|p̂|2 =
(ρ0ck)2

16π2R2
pR

2
s


|q̂p|2R2

s + |q̂s|2R2
p+

RpRs|q̂s||q̂p|

 cos γ cos (k(Rp −Rs)) +

− sin γ sin (k(Rp −Rs))


 . (C.8)

This form also shows explicitly that the squared pressure magnitude is real, as we

would expect. It is helpful to define the ratio

B =
|q̂s|
|q̂p|

(C.9)

when it comes time to find the source strength that minimizes PED at the field point.

Applying this definition to Eq. (C.8) gives

|p̂|2 =
(ρ0ck)2

16π2R2
pR

2
s

|q̂p|2

R2
s +B2R2

p + 2RpRsB

 cos γ cos (k(Rp −Rs)) +

− sin γ sin (k(Rp −Rs))


 .

(C.10)

C.1.1 Finding the Phase Difference of the Control Source

To minimize a measured quantity, the appropriate phase and magnitude of the

control source must be found. The phase of the control sources are found by differ-

entiating with respect to the phase difference, setting the result equal to zero, and

solving for the phase difference. Differentiating the result from Eq. (C.10) yealds

∂

∂γ
|p̂|2 =

−(ρ0ck)2

16π2R2
pR

2
s

|q̂p|2 [sin γ cos (k(Rp +Rs))− cos γ sin (k(Rp −Rs))] (C.11)

The trigonometric identity sin θ cosφ+cos θ sinφ = sin(θ+φ) simplifies the expression

to

∂

∂γ
|p̂|2 =

−(ρ0ck)2

16π2R2
pR

2
s

|q̂p|2 sin (γ + k(Rp −Rs)) (C.12)
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Setting this derivative equal to zero and simplifying the expression gives the relation-

ship

sin (γ + k(Rp −Rs)) = 0. (C.13)

Because the sin function is periodic,

γ + k(Rp −Rs) = nπ, (C.14)

where n is an integer. The optimal value for γ depends on the position of the error

sensor and wave number such that

γ = −k(Rp −Rs). (C.15)

C.1.2 Finding the Magnitude of the Control Source

A process similar to that used to find the optimal phase is performed to find the

relative source strength, B which in turn reveals the optimal control source strength.

Starting by differentiating the result in Eq. (C.10) we find

∂

∂B
|p̂|2 =

(ρ0ck)2

16π2R2
pR

2
s

|q̂p|2

2BR2
p + 2RpRs

 cos γ cos (k(Rp −Rs)) +

− sin γ sin (k(Rp −Rs))


 . (C.16)

Setting this equation to zero and solving for B gives the relationship

B = −Rs

Rp

[cos γ cos (k(Rp −Rs))− sin γ sin (k(Rp −Rs))] . (C.17)

Using the definition for B found in Eq. (C.9). This expression further simplifies to

|q̂s| = −|q̂p|
Rs

Rp

[
cos γ cos (k(Rp −Rs))− sin γ sin (k(Rp −Rs))

]
. (C.18)
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Using the trig identity cos θ cosφ− sin θ sinφ = cos(θ+φ) the source strength further

simplifies to

|q̂s| = −|q̂p|
Rs

Rp

cos (γ + k(Rp −Rs)) . (C.19)

Now the result for the relative phase γ, found in Eq. (C.15) is substituted in order to

find the correct control magnitude,

|q̂s| = −|q̂p|
Rs

Rp

. (C.20)

C.2 Minimizing KED for One Primary Source and

One Control Source

Minimizing the magnitude of particle velocity squared is the same as minimizing

KED because they are related to one another by a constant. Derivation of the control

source strength starts with Eqs. (2.6) and (2.7).

~̂u =
N∑
n=1

q̂ne
−jkRn

4πR3
n

(jkRn + 1)~Rn (2.6)

where

~Rn =


x− xn

y − yn

z − zn

 , (2.7)

For the special case of a single primary source and a single control source the expres-

sion for ~̂u becomes

~̂u =
q̂p
4π

e−jkRp

R3
p

(jkRp + 1)~Rp +
q̂s
4π

e−jkRs

4πR3
s

(jkRs + 1)~Rs. (C.21)
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The expression for the squared vector magnitude of the particle velocity is found

using

|~̂u|2 = ~̂u · ~̂u∗ = ûxû
∗
x + ûyû

∗
y + ûzû

∗
z = |ûx|2 + |ûy|2 + |ûz|2. (2.52)

In Cartesian coordinates, the squared magnitude of each of the components may be

found separately than summed in order to find expression for the squared vector mag-

nitude of particle velocity. The calculations for squared particle velocity are identical

for each component, so the computations will be performed for the x component, and

than applied to the y and z components as in Appendix A.

Calculating the x component multiplied by its complex conjugate results in

|ûx|2 =

(
q̂p
4π

e−jkRp

R3
p

(jkRp + 1)(x− xp) +
q̂s
4π

e−jkRs

4πR3
s

(jkRs + 1)(x− xs)
)
×(

q̂p
4π

e−jkRp

R3
p

(jkRp + 1)(x− xp) +
q̂s
4π

e−jkRs

4πR3
s

(jkRs + 1)(x− xs)
)∗

. (C.22)

Simplifying this expression and substituting |q̂n|e−jφn for q̂n produces

|ûx|2 =
|q̂p|2

16π2R6
p

(k2R2
p + 1)(x− xp)2 +

|q̂s|2

16π2R6
s

(k2R2
s + 1)(x− xs)2+

|q̂p|e−jφp |q̂s|ejφs

16π2R3
pR

3
s

e−jk(Rp−Rs)(jkRp + 1)(−jkRs + 1)(x− xp)(x− xs)+

|q̂s|e−jφs|q̂p|ejφp

16π2R3
pR

3
s

ejk(Rp−Rs)(jkRs + 1)(−jkRp + 1)(x− xp)(x− xs). (C.23)

Remembering from Eq. (C.6) that φp − φs = γ simplifies the express for the squared

magnitude of the x component of particle velocity to

|ûx|2 =
|q̂p|2

16π2R6
pR

6
s



R6
s(k

2R2
p + 1)(x− xp)2 +B2R6

p(k
2R2

s + 1)(x− xs)2+

2B(x− xp)(x− xs)R3
pR

3
s



 (ξ) cos(χ)+

χ sin(χ)

 cos γ+

 χ cos(χ)−

(ξ) sin(χ)

 sin γ




(C.24)
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where k(Rp−Rs) = χ and k2RpRs + 1 = ξ. Performing the same calculations on the

y and z components, and summing the results, as prescribed in Eq. (2.52), gives

|~̂u|2 =

|q̂p|2



R6
s(k

2R2
p + 1)(x− xp)2 +B2R6

p(k
2R2

s + 1)(x− xs)2+

2B(x− xp)(x− xs)R3
pR

3
s



 (ξ) cos(χ)+

χ sin(χ)

 cos γ+

 χ cos(χ)−

(ξ) sin(χ)

 sin γ


+

R6
s(k

2R2
p + 1)(y − yp)2 +B2R6

p(k
2R2

s + 1)(y − ys)2+

2B(y − yp)(y − ys)R3
pR

3
s



 (ξ) cos(χ)+

χ sin(χ)

 cos γ+

 χ cos(χ)−

(ξ) sin(χ)

 sin γ


+

R6
s(k

2R2
p + 1)(z − zp)2 +B2R6

p(k
2R2

s + 1)(z − zs)2+

2B(z − zp)(z − zs)R3
pR

3
s



 (ξ) cos(χ)+

χ sin(χ)

 cos γ+

 χ cos(χ)−

(ξ) sin(χ)

 sin γ




16π2R6

pR
6
s

. (C.25)

Further simplification reduces this expression to

|~̂u|2 =
|q̂p|2

16π2R4
pR

4
s



R4
s(k

2R2
p + 1) +B2R4

p(k
2R2

s + 1)+

2BRpRs



 (ξ) cos(χ)+

χ sin(χ)

 cos γ+

 χ cos(χ)−

(ξ) sin(χ)

 sin γ


∆


, (C.26)

where ∆ = (x− xp)(x− xs) + (y − yp)(y − ys) + (z − zp)(z − zs).
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C.2.1 Finding the Phase Difference of the Control Source

To find the appropriate phase difference for the control source to to minimize

KED we differentiate |~̂u|2 with respect to γ, than set the result to zero and solve for

γ. Ignoring the constants in front of the expression, the derivative is

∂

∂γ
|~̂u| = ∂

∂γ
2BRpRs∆



 (k2RpRs + 1) cos(k(Rp −Rs))+

k(Rp −Rs) sin(k(Rp −Rs))

 cos γ+

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))

 sin γ


. (C.27)

Setting the derivative equal to zero and simplifying the expression yields

tan γ =
k(Rp −Rs) cos(k(Rp −Rs))− (k2RpRs + 1) sin(k(Rp −Rs))

(k2RpRs + 1) cos(k(Rp −Rs)) + k(Rp −Rs) sin(k(Rp −Rs))
. (C.28)

There is an ambiguity whenever the arctangent is calculated so care must be taken

in finding the appropriate phase difference to minimize KED at an error sensor.

C.2.2 Finding the Magnitude of the Control Source

Differentiating Eq. (C.26) with respect to B gives

∂

∂B
|~̂u|2 =

|q̂p|2

16π2R4
pR

4
s



2BR4
p(k

2R2
s + 1)+

2RpRs



 (ξ) cos(χ)+

χ sin(χ)

 cos γ+

 χ cos(χ)−

(ξ) sin(χ)

 sin γ


∆


. (C.29)



C.2 Minimizing KED for One Primary Source and One Control Source 177

By setting the derivative equal to zero and solving for B we arrive at

B =− RpRs

R4
p(k

2R2
s + 1)



 (k2RpRs + 1) cos(k(Rp −Rs))+

k(Rp −Rs) sin(k(Rp −Rs))

 cos γ+

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))

 sin γ


∆. (C.30)

Remembering that B = |q̂s|/|q̂p| as defined in Eq. (C.9), we find that the magnitude

of the source strength is

|q̂s| =−
|q̂p|Rs

R3
p(k

2R2
s + 1)



 (k2RpRs + 1) cos(k(Rp −Rs))+

k(Rp −Rs) sin(k(Rp −Rs))

 cos γ+

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))

 sin γ


∆ (C.31)

where ∆ = (x− xp)(x− xs) + (y − yp)(y − ys) + (z − zp)(z − zs).
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C.3 Minimizing TED for One Primary Source and

One Control Source

As described in Eq. (2.8), TED is calculated by

〈w〉t = 〈wp〉t + 〈wk〉t =
|p̂|2

4ρ0c2
+
ρ0

4
~̂u · ~̂u∗. (C.32)

Using Eq. (C.9)

|p̂|2 =
(ρ0ck)2

16π2R2
pR

2
s

|q̂p|2

R2
s +B2R2

p + 2RpRsB

 cos γ cos (k(Rp −Rs)) +

− sin γ sin (k(Rp −Rs))



(C.33)

and Eq. (C.26)

|~̂u|2 =
|q̂p|2

16π2R4
pR

4
s



R4
s(k

2R2
p + 1) +B2R4

p(k
2R2

s + 1)+

2BRpRs



 (k2RpRs + 1) cos(k(Rp −Rs))+

k(Rp −Rs) sin(k(Rp −Rs))

 cos γ+

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))

 sin γ


∆


(C.34)
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in Eq. (C.32) yields this expression for TED

〈w〉t =
(ρ0ck)2

16π2R2
pR

2
s

|q̂p|2

R2
s +B2R2

p + 2RpRsB

 cos γ cos (k(Rp −Rs)) +

− sin γ sin (k(Rp −Rs))




4ρ0c2
+

+
ρ0

4

|q̂p|2

16π2R4
pR

4
s



R4
s(k

2R2
p + 1) +B2R4

p(k
2R2

s + 1)+

2BRpRs



 (k2RpRs + 1) cos(k(Rp −Rs))+

k(Rp −Rs) sin(k(Rp −Rs))

 cos γ+

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))

 sin γ


∆


.

(C.35)

The expression for TED simplifies to

〈w〉t =
|q̂p|2ρ0

64π2R4
pR

4
s



2k2R4
sR

2
p +R4

s +B2(2k2R4
pR

2
s +R4

p)+

+2k2R3
pR

3
sB

 cos γ cos (k(Rp −Rs)) +

− sin γ sin (k(Rp −Rs))

+

+2BRpRs∆



 (k2RpRs + 1) cos(k(Rp −Rs))+

k(Rp −Rs) sin(k(Rp −Rs))

 cos γ+

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))

 sin γ





.

(C.36)

C.3.1 Finding the Phase Difference of the Control Source

Again, to find the ideal phase the field quantity is differentiated with respect to

the relative phase of the system. The derivative of TED with respect to the phase
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difference γ is

∂

∂γ
〈w〉t =

|q̂p|2ρ0

64π2R4
pR

4
s



2k2R3
pR

3
sB

 − sin γ cos (k(Rp −Rs)) +

− cos γ sin (k(Rp −Rs))

+

+2BRpRs∆


−

 (k2RpRs + 1) cos(k(Rp −Rs))+

k(Rp −Rs) sin(k(Rp −Rs))

 sin γ+

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))

 cos γ




(C.37)

Setting the derivative equal to zero and isolating γ results in

tan γ =

B


−k2R3

pR
3
s sin (k(Rp −Rs)) +

RpRs∆

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))




B


k2R3

pR
3
s cos (k(Rp −Rs)) +

+RpRs∆

 (k2RpRs + 1) cos(k(Rp −Rs))+

k(Rp −Rs) sin(k(Rp −Rs))



. (C.38)

At this point we do not know the ideal relationship for the magnitudes of the sound

sources, represented by B. Assuming that B 6= 0, B cancels in the devision, resulting

in a phase difference of

γ = tan−1


−k2R3

pR
3
s sin (k(Rp −Rs)) +

RpRs∆

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))





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3
s cos (k(Rp −Rs)) +

+RpRs∆

 (k2RpRs + 1) cos(k(Rp −Rs))+
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
. (C.39)
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Since B = |q̂s|/|q̂p|, assuming that B 6= 0 is true unless the secondary source turned

off. Again care must be taken to determine the appropriate quadrant for minimizing

sound at the error sensor.

C.3.2 Finding the Magnitude of the Control Source

To find the source strength of the control sources, we differentiate TED by the

ratio of the source strength magnitudes B giving

∂

∂B
〈w〉t =

|q̂p|2ρ0
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4
s
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(C.40)

Setting the derivative equal to zero and solving for B gives

B = −

RpRs
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2
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(k2RpRs + 1) sin(k(Rp −Rs))

 sin γ




(2k2R4

pR
2
s +R4

p)
.

(C.41)
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Finally, we use the identity B = |q̂s|/|q̂p| found in Eq. (C.9) to arrive at the magnitude

of the control source that will minimize TED.

|q̂s| = −

|q̂p|Rs



k2R2
pR

2
s [cos γ cos (k(Rp −Rs))− sin γ sin (k(Rp −Rs))] +

+∆



 (k2RpRs + 1) cos(k(Rp −Rs))+

k(Rp −Rs) sin(k(Rp −Rs))

 cos γ+

 k(Rp −Rs) cos(k(Rp −Rs))−

(k2RpRs + 1) sin(k(Rp −Rs))

 sin γ




R3
p(2k

2R2
s + 1)

(C.42)

where ∆ = (x− xp)(x− xs) + (y − yp)(y − ys) + (z − zp)(z − zs).

C.4 Minimizing PED

The process for finding a more general solution to the minimization problem is

very similar to that used for finding the specific case of a single control source and

a single primary source. First, a general expression that describes the sound field is

found. The phase and magnitude that of the control source is found by differentiating

with respect to those variables and setting the derivatives equal to zero. The resulting

equations are than solved for phase and magnitude respectively.

A minimizing a completely general expression is very complicated. For our pur-

poses, we assume that all of primary sources have identical source strengths as do the

control sources. These assumptions turn Eqs. (2.1) and (2.2) into

p̂ =
jρ0ck

4π

(
q̂p

N∑
pn=1

e−jkRpn

Rpn

+ q̂s

N∑
sn=1

e−jkRsn

Rsn

)
. (C.43)

Computing the pressure is very cumbersome, assigning variables to the sums helps
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simplify this issue. Here ψp and ψs are defined as

ψp =
N∑

pn=1

e−jkRpn

Rpn

(C.44)

ψs =
N∑

sn=1

e−jkRsn

Rsn

(C.45)

which reduces the expression for pressure to

p̂ =
jρ0ck

4π
(q̂pψp + q̂sψs) . (C.46)

At this point, the squared pressure magnitude is computed by multiplying the pressure

by its complex conjugate

|p̂|2 = p̂p̂∗ =
jρ0ck

4π
(q̂pψp + q̂sψs)

−jρ0ck

4π

(
q̂∗pψ

∗
p + q̂∗sψ

∗
s

)
. (C.47)

After simplification the magnitude of pressure squared is expressed as

|p̂|2 =

(
ρ0ck

4π

)2 (
|q̂p|2|ψp|2 + |q̂s|2|ψs|2 + 2|q̂p||q̂s| (<{ψ∗sψp} cos γ + ={ψ∗sψp} sin γ)

)
(C.48)

where q̂n = |q̂n|e−jφn and γ = φp− φs as defined in Eqs. (C.5) and (C.6) respectively.

C.4.1 Finding the Phase Difference of the Control Source

Differentiating squared pressure magnitude by the phase difference γ yields

∂

∂γ
|p̂|2 =

(
ρ0ck

4π

)2

2|q̂p||q̂s| (−<{ψ∗sψp} sin γ + ={ψpψ∗s} cos γ) . (C.49)

Solving this expression for γ produces

γ = tan−1

(
={ψpψ∗s}
<{ψ∗sψp}

)
. (C.50)

Care must be taken to assure that the appropriate quadrant is used when γ is found

using the arctangent.
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C.4.2 Finding the Magnitude of the Control Source

It is useful to again define B as |q̂s|/|q̂p| as in Eq. (C.9), which simplifies Eq. (C.48)

to

|p̂|2 =

(
ρ0ck

4π

)2

|q̂p|2
(
|ψp|2 +B2|ψs|2 + 2B (<{ψ∗sψp} cos γ + ={ψpψ∗s} sin γ)

)
.

(C.51)

Differentiating with respect to B gives

∂

∂B
|p̂|2 =

(
ρ0ck

4π

)2

|q̂p|2
(
2B|ψs|2 + 2 (<{ψ∗sψp} cos γ + ={ψpψ∗s} sin γ)

)
. (C.52)

Setting the derivative equal to zero and solving for B gives

B = −(<{ψ∗sψp} cos γ + ={ψpψ∗s} sin γ)

|ψs|2
(C.53)

which becomes

|q̂s| = −|q̂p|
(<{ψ∗sψp} cos γ + ={ψpψ∗s} sin γ)

|ψs|2
(C.54)

when the definition for B is used.

C.5 Minimizing KED

Again, we address the problem of minimizing KED, this time for a case with

identical primary sources and identical control sources. Using these assumptions,

Eqs. (2.6) and (2.7) become

~̂u =
q̂s
4π

N∑
sn=1

e−jkRsn

R3
sn

(jkRsn + 1)~Rsn +
q̂p
4π

N∑
pn=1

e−jkRpn

R3
pn

(jkRpn + 1)~Rpn. (C.55)

To keep the computations for particle velocity from becoming unwieldy, it is useful

to find the vector magnitude of the particle velocity component by component. In
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Cartesian coordinates, the calculations are performed for one component, and the

others follow the same process. To start out we express the x component as

ûx =
q̂s
4π

N∑
sn=1

e−jkRsn

R3
sn

(jkRsn + 1)(x− xsn) +
q̂p
4π

N∑
pn=1

e−jkRpn

R3
pn

(jkRpn + 1)(x− xpn).

(C.56)

Again it is useful to define the sums in the equation as

ξsx =
N∑

sn=1

e−jkRsn

R3
sn

(jkRsn + 1)(x− xsn) (C.57)

ξpx =
N∑

pn=1

e−jkRpn

R3
pn

(jkRpn + 1)(x− xpn). (C.58)

Expressions for the y and z components also may be defined in a similar manner.

These definitions simplify the expression for ûx to

ûx =
q̂s
4π
ξsx +

q̂p
4π
ξpx. (C.59)

Next we multiply the x component of particle velocity by its complex conjugate

|ûx|2 =

(
q̂s
4π
ξsx +

q̂p
4π
ξpx

)(
q̂s
4π
ξsx +

q̂p
4π
ξpx

)∗
. (C.60)

This further simplifies to

|ûx|2 =
1

16π2

(
|q̂s|2|ξsx|2 + |q̂p|2|ξpx|2 + 2|q̂s||q̂p| (<{ξ∗sxξpx} cos γ + ={ξ∗sxξpx} sin γ)

)
.

(C.61)

where q̂n = |q̂n|e−jφn and γ = φp− φs as defined in Eqs. (C.5) and (C.6) respectively.

The magnitude of the components may be combined as in Eq. (2.52)

|~̂u|2 = |ûx|2 + |ûy|2 + |ûz|2, (2.52)
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which results in

|~̂u|2 =
1

16π2

(
|q̂s|2|ξsx|2 + |q̂p|2|ξpx|2 + 2|q̂s||q̂p| (<{ξ∗sxξpx} cos γ + ={ξ∗sxξpx} sin γ)

)
+

1

16π2

(
|q̂s|2|ξsy|2 + |q̂p|2|ξpy|2 + 2|q̂s||q̂p|

(
<{ξ∗syξpy} cos γ + ={ξ∗syξpy} sin γ

))
+

1

16π2

(
|q̂s|2|ξsz|2 + |q̂p|2|ξpz|2 + 2|q̂s||q̂p| (<{ξ∗szξpz} cos γ + ={ξ∗szξpz} sin γ)

)
.

(C.62)

The vector magnitude of particle velocity simplifies to

|~̂u|2 =
1

16π2



|q̂p|2 (|ξpx|2 + |ξpy|2 + |ξpz|2) +

|q̂s|2 (|ξsx|2 + |ξsy|2 + |ξsz|2) +

2|q̂s||q̂p|

 (
<{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz}

)
cos γ+(

={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}
)

sin γ




.

(C.63)

C.5.1 Finding the Phase Difference of the Control Source

Differentiating Eq. (C.63) with respect to the phase difference γ results in

∂

∂γ
|~̂u|2 =

2|q̂s||q̂p|
16π2

 − (<{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz}
)

sin γ+(
={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}

)
cos γ

 . (C.64)

Setting the derivative equal to zero and solving for γ simplifies to

γ = tan−1

(={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}
<{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz}

)
. (C.65)

As always, care must be taken to assure that the correct quadrant is used for finding

the appropriate phase difference.
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C.5.2 Finding the Magnitude of the Control Source

Using the identity B = |q̂s|/|q̂p| from Eq. (C.9) in Eq. (C.63) produces

|~̂u|2 =
|q̂p|2

16π2



(|ξpx|2 + |ξpy|2 + |ξpz|2) +

B2 (|ξsx|2 + |ξsy|2 + |ξsz|2) +

2B

 (
<{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz}

)
cos γ+(

={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}
)

sin γ




(C.66)

as an expression for the vector magnitude of particle velocity. Differentiating this

result by B gives

∂

∂B
|~̂u|2 =

|q̂p|2

16π2


2B (|ξsx|2 + |ξsy|2 + |ξsz|2) +

2

 (
<{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz}

)
cos γ+(

={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}
)

sin γ


 (C.67)

which we set equal to zero and solve for B. After applying the definition given by

Eq. (C.9), we find that the magnitude of the control source strength should be

|q̂s| = −|q̂p|

 (
<{ξsxξ∗px}+ <{ξsyξ∗py}+ <{ξszξ∗pz}

)
cos γ+(

={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}
)

sin γ


(|ξsx|2 + |ξsy|2 + |ξsz|2)

. (C.68)

C.6 Minimizing TED

To find the TED we use Eq. (C.48) for squared pressure magnitude and Eq. (C.63)

for the squared vector magnitude of particle velocity in

〈w〉t =
|p̂|2

4ρ0c2
+
ρ0

4
~̂u · ~̂u∗ (C.69)
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as described in Eq. (2.8). The resulting expression for time averaged TED is

〈w〉t =
1

4ρ0c2

(
ρ0ck

4π

)2

 |q̂p|2|ψp|2 + |q̂s|2|ψs|2+

2|q̂p||q̂s| (<{ψ∗sψp} cos γ + ={ψpψ∗s} sin γ)

+

+
ρ0

4

1

16π2



|q̂p|2 (|ξpx|2 + |ξpy|2 + |ξpz|2) +

|q̂s|2 (|ξsx|2 + |ξsy|2 + |ξsz|2) +

2|q̂s||q̂p|

 (
<{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz}

)
cos γ+(

={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}
)

sin γ




.

(C.70)

Simplifying TED results in

〈w〉t =
ρ0

64π2



|q̂p|2 (|ψp|2k2 + |ξpx|2 + |ξpy|2 + |ξpz|2) +

|q̂s|2 (|ψs|2k2 + |ξsx|2 + |ξsy|2 + |ξsz|2) +

2|q̂s||q̂p|


<{ψ∗sψp}k2 cos γ + ={ψpψ∗s}k2 sin γ+(
<{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz}

)
cos γ+(

={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}
)

sin γ




.

(C.71)

To simplify the expression further, it is useful to make some definitions:

τp =|ψp|2k2 + |ξpx|2 + |ξpy|2 + |ξpz|2 (C.72)

τs =|ψs|2k2 + |ξsx|2 + |ξsy|2 + |ξsz|2 (C.73)

χ< = <{ψpψ∗s}k2 + <{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz} (C.74)

χ= = ={ψpψ∗s}k2 + ={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}. (C.75)

Using these definitions, TED simplifies to

〈w〉t =
ρ0

64π2

(
|q̂p|2τp + |q̂s|2τs + 2|q̂s||q̂p| (χ< cos γ + χ= sin γ)

)
. (C.76)

This expression for TED is much less cumbersome for the process of finding optimal

control source strengths for minimizing TED at the error sensor location.
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C.6.1 Finding the Phase Difference of the Control Source

Again, the first step in finding the phase is to differentiate with respect to the

phase difference γ. The derivative of time averaged particle velocity with respect to

γ is.

∂

∂γ
〈w〉t =

ρ0

64π2
2|q̂s||q̂p| (−χ< sin γ + χ= cos γ) = 0 (C.77)

Setting the derivative equal to zero and solving for the phase difference γ gives

γ = tan−1

(
χ=
χ<

)
. (C.78)

Using Eqs. (C.74) and (C.75), a more explicit description for phase difference is

γ = tan−1

(={ψpψ∗s}k2 + ={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}
<{ψpψ∗s}k2 + <{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz}

)
. (C.79)

Again, care must be taken to assure that γ falls within the correct quadrant.

C.6.2 Finding the Magnitude of the Control Source

Using Eq. (C.9) to change |q̂s|/|q̂p| to B to simplify Eq. (C.76) we express TED

as

〈w〉t =
ρ0

64π2
|q̂p|2

(
τp +B2τs + 2B (χ< cos γ + χ= sin γ)

)
(C.80)

Differentiating with respect to B yields

∂

∂B
〈w〉t =

ρ0

64π2
|q̂p|2 [2Bτs + 2(χ< cos γ + χ= sin γ)] (C.81)

After setting the derivative equal to zero and solving for B we find that the control

source strength is

|q̂s| = −|q̂p|
χ< cos γ + χ= sin γ

τs
. (C.82)
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Replacing the definitions from Eqs. (C.73), (C.74), and (C.75) produces

|q̂s| = −|q̂p|

 (
<{ψpψ∗s}k2 + <{ξ∗sxξpx}+ <{ξ∗syξpy}+ <{ξ∗szξpz}

)
cos γ+

+
(
={ψpψ∗s}k2 + ={ξ∗sxξpx}+ ={ξ∗syξpy}+ ={ξ∗szξpz}

)
sin γ


|ψs|2k2 + |ξsx|2 + |ξsy|2 + |ξsz|2

,

(C.83)

a more explicit expression for the magnitude of the control source strengths.

C.7 Issues With Arctangents

Care must be taken when an arctangent is used in calculations in order to assure

that the result pertains to the correct quadrant. A very simple method is used in

this research to find the correct quadrant. This is done by finding the result of the

arctangent for all four quadrants. The result is used to calculate the power output

of the system with that phase angle. This results in four values for the total sound

power of the system. The smallest of these four values is chosen for the MEDToPO

plots. In this way the ambiguity is thoroughly explored to avoid potential errors that

may arise in minimizing a field quantity at a chosen field point.



Appendix D

Finding an Impulse Response from

a Frequency Response

In this research, the computer model was developed in the frequency domain.

However, in order to examen the effect in the time domain, it is useful to have a

time domain representation of that system as well as a time domain representation

that shows the effect of control on the system. The correcting method needs to be

implemented using a time domain description in order to implement it in a practical

situation. Fortunately, the impulse response, which is simply the inverse Fourier

transform of the frequency response, is the time domain description of an acoustic

system.

The frequency spectrum may be calculated using the information discussed in

Ch. 2. This spectrum may be divided by the input signal, in general the response

of a system may be described by the output divided by the input. In the frequency

domain, the response may be written [83,84]

H(f) =
Soutput(f)

Sinput(f)
. (D.1)
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This may be inverse Fourier transformed to get the impulse response of the system.1

To find an impulse response using a discrete model, care must be taken when taking

the Fourier transform.

One feature of a realistic impulse response is that the it must only be real-valued.

Certain features must exist in the frequency response in order to assure that this

happens . The real part of the frequency response must be symmetric, while the

imaginary portion of the frequency response must be antisymmetric [85]. Also, the

first element in the frequency response represents the 0 Hz, or DC, portion of the

response, which should be zero. In order to meat this requirement, it is helpful to

remember that the DFT assumes a periodic system, and that as a sequence goes

from the time domain to the frequency domain through a Fourier transform, the

result ends up with negative frequencies. If negative frequencies are not deleted, then

an inverse DFT (IDFT) will result in the original time domain signal [85]. These

negative frequencies are not generated in the typical model, however they must be

generated to arrive at a realistic impulse response using a Fourier transform. The

appropriate technique for finding negative frequents depend on the length of the

array representing the frequency response. Both techniques involve approximately

doubling the length of the array. If the desired length of the resulting array is odd,

a zero may be inserted at the start of the remaining terms in the array, and may be

built from the known frequency response such that

Hr[n] =


0 n = 0

H[n− 1] 1 ≤ n ≤ N

H∗[2N − n] N + 1 ≤ n ≤ 2N

(D.2)

where N is the length of the original frequency response, n indicates the numbered

1There are other forms of the equation for frequency response that are less susceptible to noise

in the measurement. These other methods could work equally well for this discussion.
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element in the response, ∗ indicates taking the complex conjugate, and H[n] is the

original frequency response. The IDFT may be operated on the reflected frequency

response, Hr[n], to find an impulse response that is 2N +1 long. If the desired length

of the impulse response is even the expression is slightly different. It may be expressed

Hr[n] =



0 n = 0

H[n− 1] 1 ≤ n ≤ N

0 n = N + 1

H∗[2N − n] N + 2 ≤ n ≤ 2N + 1.

(D.3)

The resulting reflected frequency response will be 2N + 2 long. It is also possible

to make the array shorter. It may be convenient to make the array 2N long, for

example, if the initial array is radix 2 and the chosen fast Fourier transform (FFT)

algorithm to be used requires such a data set. To do this the last term in the initial

frequency response may be dropped before entering the array into Eq. (D.3). This

may also be done by changing Eq. (D.3) to

Hr[n] =



0 n = 0

H[n− 1] 1 ≤ n ≤ N − 1

0 n = N

H∗[2N − n] N + 1 ≤ n ≤ 2N − 1.

(D.4)

This method finds an impulse response that is exactly 2N long, however the cost is

the destruction of some information already obtained.

One important thing to note is that the sample rate is changed when using this

process to find the impulse response. Sampling period, τ , may be expressed by [85]

τ =
1

fs
=

1

fmax
(D.5)

where fs is the sample frequency, which is equal to the highest frequency corre-

sponding to the frequency response array. When the reflected arrays are created, the
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maximum frequency is extended, but the time spent sampling does not change, the

resolution does. This means that if the frequency range, or equivalently array length,

is doubled in the sample frequency is doubled so the sample period is halved. The

modeled frequency response may be designed such that the final sample frequency

matches that of the signal with which it will be convolved. Alternatively, the resultant

impulse response may be decimated by a factor of two. To perform this alternating

terms in the discrete array are deleted. The resulting array represents an impulse

response taken at half the sample frequency.



Appendix E

Animations

In the process of analyzing the sound fields, it became useful to look at four di-

mensions simultaneously. One way to easily visualize four dimensions simultaneously

is to animate a plot over one of the demotions. Because it is not reasonable to include

these animations in a paper copy of a thesis, these animations have been reserved for

this appendix for use in digital copies of this thesis. A digital copy of this thesis may

be found in the back of this thesis.

E.1 MEDToPO Animation

The MEDToPO plot is used to illustrate the minimum sound power possible for

a given error sensor location. This can be done because sound power is a global

quantity, so it is independent of the location where it is measured. Each point on the

plot has a color assigned to it representing the sound power that would be radiated

from the combination of sources if the error sensor in an ANC system were placed at

that position.
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Figure E.1 This is an animated MEDToPO plot for two sound sources where
one source is minimizing the given ED quantity, while the other is putting
out a predetermined signal. See also Figs. 3.1 and 4.6 and the accompanying
discussions found in Secs. 3.1.2 and 4.2.1. The × indicates the control sources
while the ◦ indicates the primary source.

Figure E.2 This is an animated MEDToPO plot for five sound sources
where four sources are minimizing the given ED quantity, while the other is
putting out a predetermined signal. See also Fig. 4.9 and the accompanying
discussions found in Secs. 3.1.2 and 4.2.1. The ×s indicate the control sources
while the ◦ indicates the primary source.
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Figure E.3 This animation shows the conversion factor from ED to sound
power, discussed in Secs. 2.2.4 and 4.2.2, animated over frequency.

E.2 Relations Between ED and Power

Two important measurements in sound control are ED and Sound Power. Though

there are difficulties with ED measurements, it is more convenient to measure ED

than sound power in a real system. Unfortunately, if the relationship between ED

and power depend on exact knowledge of the positions of the sound sources, sensor

locations, and source strengths. In theoretical calculations this is all that is needed to

calculate the sound power, and there are methods to approximate sound power that

are more efficient for approximating sound power. This means that the relationship

investigated here does not simplify computation of sound power. The animation in

Fig. E.3 shows the comparison of exact and approximate solutions of the conversion

factor discussed in Secs. 2.2.4 and 4.2.2.

E.3 Sound Fields

In Sec. 3.3.5 it is mentioned that some measurements, such as Lagrangian density,

may be used to equalize a sound field, but will produce undesirable results. To
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Figure E.4 This is a comparison of equalization using Lagrangian density,
on the right and the sound field without equalization on the left. This shows
how poorly Lagrangian density performs as a metric for equalizing a sound
field.

demonstrate the effects of a bad equalization method, an animation of equalization

using Lagrangian density is compared, in Fig. E.4, with an unequalized sound field.

The Lagrangian density shows that the Lp of the field increases and decreases wildly

at nearly every location in the listening area. Further discussion of this can be found

in Sec. 3.3.5.

In order to visualize the effects of equalizing different sound fields it was convenient

to animate the sound field over frequency. Equalization performed using PED, or

squared pressure, works well at the point where the error sensor is located, this is

shown in Fig. E.5 at the point marked by ◦. This figure also shows that in locations

other than the position of the error sensor experiences degradation to equalization.

This Fig. E.5 corresponds to Figs. 5.1 and 5.2.

In Sec. 5.1.2, the effect of amplification of a reinforcing source is examined on a long

narrow listening region. Here the effects are animated as a function of the placement

of the error sensor. The region around the sensor where equalization is successful

increases as the error sensor is moved farther form the sources. The improvement as

the sensor moves is not due to better equalization, but due to diminished signal at

sensor locations from the sound source. These animations can be seen in Fig. E.6.
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Figure E.5 This animation illustrates how the sound field changes when
equalized at a point using PED. Note that the beam pattern is not altered by
the equalization, while the sound level adjusts to keep the frequency response
constant at the sensor location marked by ◦. This corresponds to Figs. 5.1
and 5.2.

Several movies were made using with MATLAB R© to demonstrate the flexibility

of the methods used in this research. Two of these animations are shown here. The

first animation shows the sound field generated by two arrays consisting of four point

sources. The second shows five point sources arranged in a pattern similar to a 5.0

surround sound system. The third shows the sound field generated by two sources

modeled by a vibrating cap in a sphere.
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Figure E.6 These movies shows the effect of equalizing a reinforcing loud-
speaker as a function of gain and is animated over error sensor location. See
Figs. 5.10 and 5.11
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Figure E.7 The above animations demonstrate the flexibility of the methods
used in this research. These animations correspond to Figs. 4.3 and 4.4.
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Figure E.8 These are some more animations that were generated to show
the power of the computational approach to modeling a sound field. These
do not correspond to other figures found in the text.
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Appendix F

Auralizations

Auralizations demonstrate what would be heard in a given sound environment.

These tools are made by convolving recorded anechoic signal with an impulse re-

sponse that characterizes the listening situation. This appendix contains several

auralizations. A digital copy of this thesis may be found in the back of this thesis.

F.1 Verification of Convolution

Secs. 3.2.2 and 3.3.1 discuss the use of the convolution to produce auralizations.

In order to verify that linearconv.m, written in MATLAB R©, is correct a convolution

using an impulse response of a tube model convolved with prerecorded anechoic speech

to produce an auralization. The anechoic speech and impulse response are convolved

using GratisVolverTM and MATLAB R© producing a pair of auralizations. Figure 3.5

contains plots comparing the resulting auralizations; these auralizations, found in

Table F.1, may be listened to in the digital version of this thesis. The code for

linearconv.m can be found in Appendix G.
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Table F.1 This table compares the results of using the MATLAB R© function
linearconv.m to produce auralizations to using GratisVolvertM to generate
auralizations.

Auralization using GratisVolver.exe to perform the convolution

Auralization using linearconv.m to perform the convolution

F.2 Example of Room Response

The method used in this research to model the response at a point in a sound field

has some limitations. The model produces more realistic results when a truncated

impulse response is used. Three auralizations are given in Table F.2. The first pres-

sure based auralization is an anechoic recording of speech that is used to produce the

other two auralizations. The second auralization was built with an impulse response

consisting of 212 terms. The third auralization was created using an impulse response

with 216 terms. There is significantly more distortion for the third case compared to

the second case.

F.3 Examples of Equalization

Section 5.3.4 describes some equalization results that can be demonstrated using

auralizations. Here, the figures from Sec. 5.3.4 are displayed again along with their

corresponding auralizations. These auralizations were performed for a simple case

consisting of seven sources arranged in a collinear array. The initial auralization
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Table F.2 This table compares an auralization of a reverberant room gen-
erated using a simulated impulse response 212 terms long to one generated
with an impulse response 216 terms long. Both responses are too long for
realistic measurements, but provide a proof of concept.

Auralization of anechoic speech.

Auralization generated with 212 term impulse response.

Auralization generated with 216 term impulse response.

was generated at a point near the sound sources. One set of equalization filters

were designed at the listening position, while a second set of equalization filters was

designed for a point several centimeters away. The auralization of the unequalized

sound field was used to show the effect of the equalizing filters at the listening position.
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Table F.3 The impulse and frequency responses for the unequalized case
are presented here. This is the same figure shown in Fig. 5.30. Below is an
auralization of the unequalized case considered in Sec. 5.3.4. Compare with
anechoic speech in Table F.2
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Table F.4 These are responses for a system equalized using a filter designed
for the listening position (a) and using a filter designed for a listening position
several centimeters away (b). The equalization filters in this figure were
designed using complex pressure.

(a) (b)

Equalization defined at sensor location, (a).

Equalization defined away from sensor location, (b).
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Table F.5 These are responses for a system equalized using a filter designed
for the listening position (a) and using a filter designed for a listening position
several centimeters away (b). The equalization filters in this figure were
designed using the minimum phase of complex pressure.

(a) (b)

Equalization defined at sensor location, (a).

Equalization defined away from sensor location, (b).
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Table F.6 These are responses for a system equalized using a filter designed
for the listening position (a) and using a filter designed for a listening position
several centimeters away (b). The equalization filters in this figure were
designed using PED.

(a) (b)

Equalization defined at sensor location, (a).

Equalization defined away from sensor location, (b).
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Table F.7 These are responses for a system equalized using a filter designed
for the listening position (a) and using a filter designed for a listening position
several centimeters away (b). The equalization filters in this figure were
designed using KED.

(a) (b)

Equalization defined at sensor location, (a).

Equalization defined away from sensor location, (b).
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Table F.8 These are responses for a system equalized using a filter designed
for the listening position (a) and using a filter designed for a listening position
several centimeters away (b). The equalization filters in this figure were
designed using TED.

(a) (b)

Equalization defined at sensor location, (a).

Equalization defined away from sensor location, (b).
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Table F.9 These are responses for a system equalized using a filter designed
for the listening position (a) and using a filter designed for a listening position
several centimeters away (b). The equalization filters in this figure were
designed using complex pressure. This is similar to Table F.4, the difference
is that this model used significantly fewer terms to generate the responses
than the one used for Table F.4.

(a) (b)

Equalization defined at sensor location, (a).

Equalization defined away from sensor location, (b).
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Appendix G

linearconv.m

% This function determines the linear convolution of signal x with

% signal y function z=linearconv(x,y)

function z=linearconv(x,y)

lx=length(x); ly=length(y);

L=lx+ly;

if lx>=ly % determines which file is the longer of the two

sig=x;

fil=y;

ls=lx; lf=ly;

else

sig=y;

fil=x;

ls=ly; lf=lx;

end

nr=ceil(ls/lf); % find how many times to convolve the pieces

sig=[sig,zeros(1,nr*lf-ls)];

% zero pads the system so that the signal has a

% matching length for the last convolution

fif=fft([fil,zeros(1,lf)]);

z=zeros(1,lf+length(sig));

for n=1:nr % performing the convolution using the fft and an

% overlap save technique.

si=fft([sig((n-1)*lf+1:n*lf),zeros(1,lf)]);
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co=ifft(fif.*si);

z((n-1)*lf+1:n*lf+lf)=z((n-1)*lf+1:n*lf+lf)+co;

end

z=z(1:L-1); % removing the data caused by the extra zeros from

% the zero padding of the signals.



Appendix H

MEDToPO.m

H.1 Main File

The following MATLAB R© code generates an animated MEDToPO plot. The

comments point out portions of the code that may be used to modify the code for

use with other source arrangements. This version of the code works with one point

source and an arbitrary number of point control sources.

MEDToPO.m

% This porduces a Minimized Energy Density Total Power Output

% (MEDToPO) plot for cases with a single primary source and

% multaple control sources. Notes within the code indicate point

% where the code may be altered for the desired locations. This

% version produces and animation over a range of frequencys.

% This could easily be altered for dealing with multiple primary

% sources.

clear all, close all

tic

fprintf(’\n running\n’)

global rho c

c=343; rho=1.21;
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dx=0.0010;

L=0.10;

X=-L:dx:L;

X=X*2.5;

[x,y]=ndgrid(X,X);

z=0;

clear X

N=size(x);

df=10;

f=df:df:5000; % This defines the frequency range for the

% animation

k=2*pi*f/c;

M=length(f);

d=0.0318; % d is the value used for calculating k*d

cd=sqrt(d^2/2);

% Coord gives the Cartisian coordinates of the sound sources. The

% first source is the primary source, the rest are control sources.

coord=[ 0, 0,0;

cd, cd,0;

-cd, cd,0;

cd,-cd,0;

-cd,-cd,0];

Rp= sqrt((x-coord(1,1)).^2+(y-coord(1,2)).^2+(z-coord(1,3)).^2);

qp=.00002./(k); % The source strength of the primary source.

[a,b]=size(coord);

save(’PowerOutput\Setup4SevralAlt’,’x’,’y’,’k’,’f’,’coord’,’d’,’a’);

%%

for m=1:M

Pp1=zeros(N);

Pp2=Pp1;

Pp3=Pp1;

Pp4=Pp1;

Pk1=Pp1;
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Pk2=Pp1;

Pk3=Pp1;

Pk4=Pp1;

Pt1=Pp1;

Pt2=Pp1+1000;

Pt3=Pp1+1000;

Pt4=Pp1+1000;

% Potential ED

psip=exp(-j.*k(m).*Rp)./Rp;

psis=zeros(N);

for n=2:a

Rs= sqrt((x-coord(n,1)).^2+(y-coord(n,2)).^2+...

(z-coord(n,3)).^2);

psis=psis+exp(-j.*k(m).*Rs)./Rs;

end

psips=psip.*conj(psis);

gp=atan2(imag(psips),real(psips));

qsp1=-abs(qp(m)).*(real(psips).*cos(gp)+imag(psips).*sin(gp))./...

abs(psis).^2;

gp=atan2(-imag(psips),real(psips));

qsp2=-abs(qp(m)).*(real(psips).*cos(gp)+imag(psips).*sin(gp))./...

abs(psis).^2;

gp=atan2(imag(psips),-real(psips));

qsp3=-abs(qp(m)).*(real(psips).*cos(gp)+imag(psips).*sin(gp))./...

abs(psis).^2;

gp=atan2(-imag(psips),-real(psips));

qsp4=-abs(qp(m)).*(real(psips).*cos(gp)+imag(psips).*sin(gp))./...

abs(psis).^2;

% Kinetic ED

xipx=(exp(-j.*k(m).*Rp)./Rp.^3).*(j.*k(m).*Rp+1).*(x-coord(1,1));

xipy=(exp(-j.*k(m).*Rp)./Rp.^3).*(j.*k(m).*Rp+1).*(y-coord(1,2));

xipz=(exp(-j.*k(m).*Rp)./Rp.^3).*(j.*k(m).*Rp+1).*(z-coord(1,3));

xisx=zeros(N);

xisy=zeros(N);

xisz=zeros(N);

for n=2:a

Rs= sqrt((x-coord(n,1)).^2+(y-coord(n,2)).^2+...

(z-coord(n,3)).^2);

xisx=xisx+(exp(-j.*k(m).*Rs)./Rs.^3).*(j.*k(m).*Rs+1).*...
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(x-coord(n,1));

xisy=xisy+(exp(-j.*k(m).*Rs)./Rs.^3).*(j.*k(m).*Rs+1).*...

(y-coord(n,2));

xisz=xisz+(exp(-j.*k(m).*Rs)./Rs.^3).*(j.*k(m).*Rs+1).*...

(z-coord(n,3));

end

xipsx=xipx.*conj(xisx);

xipsy=xipy.*conj(xisy);

xipsz=xipz.*conj(xisz);

gkn=imag(xipsx)+imag(xipsy)+imag(xipsz);

gkd=real(xipsx)+real(xipsy)+real(xipsz);

gk=atan2(gkn,gkd);

qsk1=-abs(qp(m)).*...

((gkd).*cos(gk)+(gkn).*sin(gk))./...

(xisx.*conj(xisx)+xisy.*conj(xisy)+xisz.*conj(xisz));

gk=atan2(-gkn,gkd);

qsk2=-abs(qp(m)).*...

((gkd).*cos(gk)+(gkn).*sin(gk))./...

(xisx.*conj(xisx)+xisy.*conj(xisy)+xisz.*conj(xisz));

gk=atan2(gkn,-gkd);

qsk3=-abs(qp(m)).*...

((gkd).*cos(gk)+(gkn).*sin(gk))./...

(xisx.*conj(xisx)+xisy.*conj(xisy)+xisz.*conj(xisz));

gk=atan2(-gkn,-gkd);

qsk4=-abs(qp(m)).*...

((gkd).*cos(gk)+(gkn).*sin(gk))./...

(xisx.*conj(xisx)+xisy.*conj(xisy)+xisz.*conj(xisz));

% Total ED

taus=(psis.*conj(psis)).*k(m).^2+xisx.*conj(xisx)+...

xisy.*conj(xisy)+xisz.*conj(xisz);

chii=imag(psip.*conj(psis)).*k(m).^2+imag(xipx.*conj(xisx))+...

imag(xipy.*conj(xisy))+imag(xipz.*conj(xisz));

chir=real(psip.*conj(psis)).*k(m).^2+real(xipx.*conj(xisx))+...

real(xipy.*conj(xisy))+real(xipz.*conj(xisz));

gt=atan2(chii,chir);

qst1=-abs(qp(m)).*(chir.*cos(gt)+chii.*sin(gt))./taus;

gt=atan2(-chii,chir);
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qst2=-abs(qp(m)).*(chir.*cos(gt)+chii.*sin(gt))./taus;

gt=atan2(chii,-chir);

qst3=-abs(qp(m)).*(chir.*cos(gt)+chii.*sin(gt))./taus;

gt=atan2(-chii,-chir);

qst4=-abs(qp(m)).*(chir.*cos(gt)+chii.*sin(gt))./taus;

% Calculating power from the prescribed control values.

for nx=1:N(1)

for ny=1:N(2)

Pp1(nx,ny)=PowerFun(qp(m),qsp1(nx,ny),coord,k(m));

Pp2(nx,ny)=PowerFun(qp(m),qsp2(nx,ny),coord,k(m));

Pp3(nx,ny)=PowerFun(qp(m),qsp3(nx,ny),coord,k(m));

Pp4(nx,ny)=PowerFun(qp(m),qsp4(nx,ny),coord,k(m));

Pk1(nx,ny)=PowerFun(qp(m),qsk1(nx,ny),coord,k(m));

Pk2(nx,ny)=PowerFun(qp(m),qsk2(nx,ny),coord,k(m));

Pk3(nx,ny)=PowerFun(qp(m),qsk3(nx,ny),coord,k(m));

Pk4(nx,ny)=PowerFun(qp(m),qsk4(nx,ny),coord,k(m));

Pt1(nx,ny)=PowerFun(qp(m),qst1(nx,ny),coord,k(m));

Pt2(nx,ny)=PowerFun(qp(m),qst2(nx,ny),coord,k(m));

Pt3(nx,ny)=PowerFun(qp(m),qst3(nx,ny),coord,k(m));

Pt4(nx,ny)=PowerFun(qp(m),qst4(nx,ny),coord,k(m));

end

end

Pp=min(min(Pp1,Pp2),min(Pp3,Pp4));

Pk=min(min(Pk1,Pk2),min(Pk3,Pk4));

Pt=min(min(Pt1,Pt2),min(Pt3,Pt4));

Pref1=k(m).^2.*rho.*c./(8.*pi).*qp(m).*conj(qp(m));

save([’PowerOutput\Power4OneAlt’ num2str(m)],’Pp’,’Pk’,’Pt’,’Pref1’)

end

toc

%% Refresh the RAM and make plots and animations.

clear all

load ’PowerOutput\Setup4SevralAlt’

x=x*100; y=y*100; coord=coord*100;

Xlime=[min(min(x)),max(max(x))];

Ylime=[min(min(y)),max(max(y))];

Pref=10^-12;

cax=[-5,15]; % Set the color range for the plots.
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% Set the plotting space, tick marks and unit labels.

yntics=[-20,-10,0,10,20];

yltics=[’-20’;’-10’;’ 0 ’;’ 10’;’ 20’];

xntics=[-20,-10,0,10,20,25];

xltics=[’-20’;’-20’;’ 0 ’;’ 10’;’ 20’;’ cm’];

M=length(k);

figure

set(gcf,’Position’,[6 350 1270 500])

time=clock;

mov=avifile([’MEDToPO_’ sprintf(’%2.2d%2.2d’,time(4),time(5)) ...

’hours’ sprintf(’%2.2d’,time(3)) ’day’ num2str(time(2)) ...

’month’ num2str(time(1)) ’.avi’],’compression’,...

’Cinepak’,’quality’,100,’fps’,20);

for m=1:M

load([’PowerOutput\Power4OneAlt’ num2str(m)])

subplot(’Position’,[.03 .17 .3 .75])

surf(x,y,10*log10(Pp/Pref1))

hold on

plot3(coord(1,1),coord(1,2),11250,’ko’,’markersize’,10,...

’linewidth’,3)

for n=2:a

plot3(coord(n,1),coord(n,2),250,’kx’,’markersize’,17,...

’linewidth’,3)

end

view(0,90)

shading interp

caxis(cax)

xlim(Xlime);

ylim(Ylime);

set(gca,’fontsize’,13)

title(’PED’,’FontSize’,13)

set(gca,’XTick’,xntics)

set(gca,’YTick’,yntics)

set(gca,’XTickLabel’,xltics)

set(gca,’YTickLabel’,yltics)

hold off

subplot(’Position’,[.36 .03 .3 .89])

surf(x,y,10*log10(Pk/Pref1))
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hold on

plot3(coord(1,1),coord(1,2),1250,’ko’,’markersize’,10,...

’linewidth’,3)

for n=2:a

plot3(coord(n,1),coord(n,2),250,’kx’,’markersize’,17,...

’linewidth’,3)

end

view(0,90)

shading interp

caxis(cax)

xlim(Xlime);

ylim(Ylime);

set(gca,’fontsize’,13)

colorbar(’horiz’), set(gca,’fontsize’,13)

title(’KED’,’FontSize’,13)

set(gca,’XTick’,xntics)

set(gca,’YTick’,yntics)

set(gca,’XTickLabel’,xltics)

set(gca,’YTickLabel’,yltics)

hold off

text(max(max(x))*1.5,-max(max(x))*1.25,0,...

sprintf(’kd = %2.4g’,k(m)*d),’Rotation’,0,’FontSize’,16)

text(-max(max(x))*2.75,-max(max(x))*1.25,0,...

sprintf(’k = %2.4g 1/m f = %2.4g Hz’,k(m),f(m)),...

’Rotation’,0,’FontSize’,16)

text(max(max(x))*2.35,-max(max(x))*1.25,0,...

sprintf(’d = %2.4g cm’,d*100),’FontSize’,16)

subplot(’Position’,[.69 .17 .3 .75])

surf(x,y,10*log10(Pt/Pref1))

hold on

plot3(coord(1,1),coord(1,2),1250,’ko’,’markersize’,10,...

’linewidth’,3)

for n=2:a

plot3(coord(n,1),coord(n,2),250,’kx’,’markersize’,17,...

’linewidth’,3)

end

view(0,90)

shading interp

caxis(cax)

xlim(Xlime);

ylim(Ylime);
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set(gca,’fontsize’,13)

title(’TED’,’FontSize’,13)

set(gca,’XTick’,xntics)

set(gca,’YTick’,yntics)

set(gca,’XTickLabel’,xltics)

set(gca,’YTickLabel’,yltics)

hold off

MEDToPO=getframe(gcf);

mov=addframe(mov,MEDToPO);

end

mov=close(mov);

toc

H.2 Required Function: PowerFun.m

The following code calculates total power output for an array of sound sources.

The following code was designed using notes from the work by Nelson and Elliott [38].

PowerFun.m

% This function calculates the radiated sound power output for a system

% of sources. To understand how it works look at Nelson and Elliot

% pages 269 and 270.

function Po=PowerFun(qp,qs,coord,k)

global rho c

[a,b]=size(coord);

q=zeros(a,1)+qs;

q(1)=qp;

d=zeros(a,a);

for n=1:a

for m=n:a

d(n,m)=sqrt((coord(n,1)-coord(m,1))^2+...
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(coord(n,2)-coord(m,2))^2+...

(coord(n,3)-coord(m,3))^2);

end

end

for n=2:a

for m=1:n-1

d(n,m)=d(m,n);

end

end

% this is the impedance for point sources

Z=sinc((k/pi)*d); % the matlab definition of sinc is

% sinc(x)=sin(pi*x)/(pi*x)

Po=rho*c/(8*pi)*k.^2.*(q’*Z*q);





Appendix I

STDofEQ.m

This set of MATLAB R© m-files was used to generate the plots that indicate the

spectral standard deviation as a function of position in a given sound field. Each func-

tion should be saved in the same folder as a separate m-files. Plots of the GLAEC

value as a function of sensor location can be generated by making a few miner modi-

fications to the function titled STDofEQ.m running it as a MATLAB R© function and

calling it in a new m-file. An example m-file that uses STDofEQ.m to perform this

calculation is fund in Appendix I.3.

I.1 Main File: STDofEQ.m

This file uses three other function files to calculate the spectral standard deviations

and generate the plots. In this section of code, there are comments that indicate where

things may be changed for use with other source arraignments and sensor locations.

There are also some lines of MATLAB R© code that are commented out, including

these lines and commenting out the lines where fHigh and mic are defined converts

this code to a function. This function may be used in another MATLAB R© file,

225
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found in Appendix I.3, to generate a plot that indicates where the spectral standard

deviation is minimized.

STDofEQ.m

% function STDofEQ(fHigh,mic)

clear all, close all

tic

global c rho ci

c=343; rho=1.21; ci=1./c;

%% frequncy arrays

fLow=0; df=10; % Define the frequency range

fHigh=200.00;

f=fLow+df+df:df:fHigh;

k=2*pi*f*ci;

%% source location / sensor location

% Define the location(s) of a source that will not be equalized.

chord=[2*sin(-pi/6),-2*cos(-pi/6)+2,0];

% Define the locations of sources that do get equalized.

chordR=[0,-2+2,0;

2*sin(pi/6),-2*cos(pi/6)+2,0;

2*sin(11*pi/18),-2*cos(11*pi/18)+2,0;

2*sin(-11*pi/18),-2*cos(-11*pi/18)+2,0];

Gain=1; % This can be set to adjust gain on the equalized

% sources. This is just a multiplier.

mic=[1.3,2.2,0];

%% spatial arrays

% This section defines the grid for the listening space.

dx=.2;

MaxX=1.75;

MinX=-MaxX;

X=(MinX:dx:MaxX);

space=.5;

[x,y]=ndgrid(X,X+MaxX+space);

clear X
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z=mic(3);

%% source charactaristics

q0=(zeros(size(k))+0.007*(1+j))./k; % Adjust q0 for the source

% strength of the unequalized

% source strength.

A0=j*rho*c*k.*q0/(4*pi);

A0sq=A0.*conj(A0);

%% useful dsp numbers

N=length(k);

s=size(x);

schord=size(chord);

schR=size(chordR);

%% fundamental error sensor measurments

[p,ux,uy,uz]=FundamentalAcoustics(q0,k,chord,chordR,Gain,mic);

usq=ux.*conj(ux)+uy.*conj(uy)+uz.*conj(uz);

u=sqrt(usq);

[stdpNoEq,avgfpNoEq,maxpNoEq,stdsNoEq,avgsNoEq] = ...

pressurefield(q0,q0,k,chord,chordR,Gain,x,y,z,...

’C:\Temprary\Equalization5b\STDofEQ6\Datum\NoEq’);

%% more exotic error sensor measurments

wkm=usq*rho/4;

wpm=p.*conj(p)/(4*rho*c^2);

wtm=wkm+wpm;

wLm=wkm-wpm;

wIm=sqrt((real(p.*conj(ux))).^2+(real(p.*conj(uy))).^2...

+(real(p.*conj(uz))).^2)/2;

%% ploting

figure

subplot(3,1,1)

plot(f/1000,10*log10(p.*conj(p)/(2*(4e-10))),’b’,’LineWidth’,4)

% Note: (20e-6)^2 = 4e-10

set(gca,’FontSize’,20)

title(’pressure magnitude’)

xlabel(’kHz’),ylabel(’dB re 20\mu Pa’)

ylim([70,100])
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subplot(3,1,2)

plot(f/1000,10*log10(ux.*conj(ux)/(2*25e-16)),’b’,’LineWidth’,4)

% Note: 50 nm/s = 50e-9 m/s = 5e-8 m/s

% (5e-8 m/s)^2 = 2.5e-15 (m/s)^2 = 25e-16

hold on

plot(f/1000,10*log10(uy.*conj(uy)/(2*25e-16)),’r--’,’LineWidth’,4)

plot(f/1000,10*log10(uz.*conj(uz)/(2*25e-16)),’g-.’,’LineWidth’,4)

plot(f/1000,10*log10(usq/(2*25e-16)),’k-.’,’LineWidth’,4)

set(gca,’FontSize’,20)

title(’particle velocity magnitude’)

legend(’u_x’,’u_y’,’u_z’,’|u|’,4);

xlabel(’kHz’),ylabel(’dB re 50 nm/s’)

ylim([70,100])

subplot(3,1,3)

plot(f/1000,10*log10(wpm/(3e-15)),’b’,’LineWidth’,4);

hold on

plot(f/1000,10*log10(wkm/(3e-15)),’r--’,’LineWidth’,4);

plot(f/1000,10*log10(wtm/(3e-15)),’k-.’,’LineWidth’,4);

set(gca,’FontSize’,20)

title(’Energy Density magnitude’)

legend(’potential’,’kinetic’,’total’,4);

xlabel(’kHz’),ylabel(’dB re 3x10^{-15} J/m^3’)

ylim([70,100])

%%

figure

subplot(2,1,1)

plot(f/1000,10*log10(wIm/10^-12),’linewidth’,2)

set(gca,’FontSize’,13)

title(’Intensity’)

xlabel(’kHz’),ylabel(’dB re 10^{-12} W/m^2’)

% figure

subplot(2,1,2)

plot(f/1000,10*log10((avgsNoEq)/(2*4e-10)),’linewidth’,2)

% Note: 1/(2*(2e-5)^2) = 1.25e+9

set(gca,’FontSize’,13)

title(’Average Pressure Response’)

xlabel(’kHz’),ylabel(’dB re 20\mu Pa’)

%% Design equalizatoin filter This is 1/H(f)

Eqcp = abs(A0./p);
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Eqcu = abs(A0sq./u);

Eqwp = sqrt(A0sq./(2*wpm));

Eqwk = sqrt(A0sq./(2*wkm));

Eqwt = sqrt(A0sq./(2*wtm));

EqwL = sqrt(A0sq./(2*wLm));

EqwI = sqrt(A0sq./(2*wIm));

Eqavgs=sqrt(A0sq./(2*avgsNoEq));

%% Setting the appropreate source strengths for equalizatoin

qcp = Eqcp.*q0/mean(abs(Eqcp));

qcu = Eqcu.*q0/mean(abs(Eqcu));

qwp = Eqwp.*q0/mean(abs(Eqwp));

qwk = Eqwk.*q0/mean(abs(Eqwk));

qwt = Eqwt.*q0/mean(abs(Eqwt));

qwL = EqwL.*q0/mean(abs(EqwL));

qwI = EqwI.*q0/mean(abs(EqwI));

qavgs=Eqavgs.*q0/mean(abs(Eqavgs));

%% Checking on the resulting pressure response

eqcp = pressure(q0,qcp,k,chord,chordR,Gain,mic);

eqcu = pressure(q0,qcu,k,chord,chordR,Gain,mic);

eqwp = pressure(q0,qwp,k,chord,chordR,Gain,mic);

eqwk = pressure(q0,qwk,k,chord,chordR,Gain,mic);

eqwt = pressure(q0,qwt,k,chord,chordR,Gain,mic);

eqwL = pressure(q0,qwL,k,chord,chordR,Gain,mic);

eqwI = pressure(q0,qwI,k,chord,chordR,Gain,mic);

eqavgs = pressure(q0,qavgs,k,chord,chordR,Gain,mic);

%% Plotting the magnitude response of the equalization filters

figure

subplot(2,1,1)

plot(f/1000,abs(eqcp),’b’,’LineWidth’,2)

hold on

plot(f/1000,abs(eqcu),’g’,’LineWidth’,2)

plot(f/1000,abs(eqwp),’r--’,’LineWidth’,2)

plot(f/1000,abs(eqwk),’k--’,’LineWidth’,2)

plot(f/1000,abs(eqwt),’m’,’LineWidth’,2)

plot(f/1000,abs(eqwL),’c’,’LineWidth’,2)

plot(f/1000,abs(eqwI),’color’,[.87,.35,0],’LineWidth’,2)

plot(f/1000,abs(eqavgs),’y’,’LineWidth’,2)

legend(’p’,’u’,’ped’,’ked’,’ted’,’Ld’,’I’,’avg_s’)

xlabel(’kHz’), ylabel(’Pa’)

title(’measured equalized field’)
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subplot(2,1,2)

plot(f/1000,10*log10(eqcp.*conj(eqcp)./(A0sq)),’b’,’LineWidth’,2)

hold on

plot(f/1000,10*log10(eqcu.*conj(eqcu)./(A0sq)),’g’,’LineWidth’,2)

plot(f/1000,10*log10(eqwp.*conj(eqwp)./(A0sq)),’r--’,’LineWidth’,2)

plot(f/1000,10*log10(eqwk.*conj(eqwk)./(A0sq)),’k--’,’LineWidth’,2)

plot(f/1000,10*log10(eqwt.*conj(eqwt)./(A0sq)),’m’,’LineWidth’,2)

plot(f/1000,10*log10(eqwL.*conj(eqwL)./(A0sq)),’c’,’LineWidth’,2)

plot(f/1000,10*log10(eqwI.*conj(eqwI)./(A0sq)),’color’,[.87,.35,0],...

’LineWidth’,2)

plot(f/1000,10*log10(eqavgs.*conj(eqavgs)./A0sq),’y’,’LineWidth’,2)

legend(’p’,’u’,’ped’,’ked’,’ted’,’Ld’,’I’,’avg_s’,4)

xlabel(’kHz’), ylabel(’dB’)

title(’equalized response’)

toc

%% Calculating the standard deviation and pressure field

[stdpcp,avgfpcp,maxpcp,stdspcp,avgspcp] = ...

pressurefield(q0,qcp,k,chord,chordR,Gain,x,y,z,...

’C:\Temprary\Equalization5b\STDofEQ6\Datum\Eqp’);

[stdpcu,avgfpcu,maxpcu,stdspcu,avgspcu] = ...

pressurefield(q0,qcu,k,chord,chordR,Gain,x,y,z,...

’C:\Temprary\Equalization5b\STDofEQ6\Datum\Equ’);

[stdpwp,avgfpwp,maxpwp,stdspwp,avgspwp] = ...

pressurefield(q0,qwp,k,chord,chordR,Gain,x,y,z,...

’C:\Temprary\Equalization5b\STDofEQ6\Datum\Eqwp’);

[stdpwk,avgfpwk,maxpwk,stdspwk,avgspwk] = ...

pressurefield(q0,qwk,k,chord,chordR,Gain,x,y,z,...

’C:\Temprary\Equalization5b\STDofEQ6\Datum\Eqwk’);

[stdpwt,avgfpwt,maxpwt,stdspwt,avgspwt] = ...

pressurefield(q0,qwt,k,chord,chordR,Gain,x,y,z,...

’C:\Temprary\Equalization5b\STDofEQ6\Datum\Eqwt’);

[stdpwL,avgfpwL,maxpwL,stdspwL,avgspwL] = ...

pressurefield(q0,qwL,k,chord,chordR,Gain,x,y,z,...

’C:\Temprary\Equalization5b\STDofEQ6\Datum\EqwL’);

[stdpwI,avgfpwI,maxpwI,stdspwI,avgspwI] = ...

pressurefield(q0,qwI,k,chord,chordR,Gain,x,y,z,...

’C:\Temprary\Equalization5b\STDofEQ6\Datum\EqwI’);

[stdpavgs,avgfpavgs,maxavgs,stdsavgs,avgsavgs] = ...

pressurefield(q0,qavgs,k,chord,chordR,Gain,x,y,z,...

’C:\Temprary\Equalization5b\STDofEQ6\Datum\Eqavgs’);
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save(’Fields\Data’,’mic’,’chord’,’chordR’,’q0’,’N’,’x’,’y’,’z’)

toc

cax=[0.0,2]; % Set the color scale of the plots.

PI=-pi:pi/720:pi;

%%

[AA,BB]=find(stdpNoEq==0);

aa=size(AA);

for n=1:aa(1);

stdpNoEq(AA,BB)=1e-7;

end

%% difference from NoEq in standard deviatoin and wp

figure

ratwp=(stdpwp./stdpNoEq);

surf([x(1,1),x(1,end);x(end,1),x(end,end)],...

[y(1,1),y(1,end);y(end,1),y(end,end)],cax(1)+zeros(2,2))

hold on

surf(x,y,(ratwp));

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),2,’kx’,’LineWidth’,3,’MarkerSize’,20)

end

for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),2,’k+’,’LineWidth’,3,...

’MarkerSize’,20)

end

plot3(mic(1),mic(2),20,’ko’,’LineWidth’,3,’MarkerSize’,8)

plot3(2*sin(PI),2*cos(PI)+2,0*PI+2,’k-’)

ylabel([’GLAEC/GLAEC_{no eq} = ’ num2str(mean2(stdpwp)/...

mean2(stdpNoEq))],’fontsize’,13)

axis equal

shading interp

caxis(cax)

colorbar

view([0,90])

set(gca,’FontSize’,20)

xlim([x(1,1)-space x(end,1)+space])
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ylim([y(1,1)-space y(1,end)+space])

title(’Potential ED’)

saveas(gcf,[’post\STDEV_wp_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’fig’)

saveas(gcf,[’post\STDEV_wp_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap gray

saveas(gcf,[’post\STDEV_wp_rat_gray’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap jet

%% difference from NoEq in standard deviatoin and wk

figure

ratwk=(stdpwk./stdpNoEq);

surf([x(1,1),x(1,end);x(end,1),x(end,end)],...

[y(1,1),y(1,end);y(end,1),y(end,end)],cax(1)+zeros(2,2))

hold on

surf(x,y,(ratwk));

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),2,’kx’,’LineWidth’,3,’MarkerSize’,20)

end

for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),2,’k+’,’LineWidth’,3,...

’MarkerSize’,20)

end

plot3(mic(1),mic(2),20,’ko’,’LineWidth’,3,’MarkerSize’,8)

plot3(2*sin(PI),2*cos(PI)+2,0*PI+2,’k-’)

ylabel([’GLAEC/GLAEC_{no eq} = ’ num2str(mean2(stdpwk)/...

mean2(stdpNoEq))],’fontsize’,13)

axis equal

shading interp

caxis(cax)

colorbar

view([0,90])

set(gca,’FontSize’,20)

xlim([x(1,1)-space x(end,1)+space])

ylim([y(1,1)-space y(1,end)+space])

title(’Kinetic ED’)
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saveas(gcf,[’post\STDEV_wk_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’fig’)

saveas(gcf,[’post\STDEV_wk_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap gray

saveas(gcf,[’post\STDEV_wk_rat_gray’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap jet

%% difference from NoEq in standard deviatoin and wt

figure

ratwt=(stdpwt./stdpNoEq);

surf([x(1,1),x(1,end);x(end,1),x(end,end)],...

[y(1,1),y(1,end);y(end,1),y(end,end)],cax(1)+zeros(2,2))

hold on

surf(x,y,(ratwt));

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),2,’kx’,’LineWidth’,3,’MarkerSize’,20)

end

for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),2,’k+’,’LineWidth’,3,...

’MarkerSize’,20)

end

plot3(mic(1),mic(2),20,’ko’,’LineWidth’,3,’MarkerSize’,8)

plot3(2*sin(PI),2*cos(PI)+2,0*PI+2,’k-’)

ylabel([’GLAEC/GLAEC_{no eq} = ’ num2str(mean2(stdpwt)/...

mean2(stdpNoEq))],’fontsize’,13)

axis equal

shading interp

caxis(cax)

colorbar

view([0,90])

set(gca,’FontSize’,20)

axis equal

xlim([x(1,1)-space x(end,1)+space])

ylim([y(1,1)-space y(1,end)+space])

title(’Total ED’)

saveas(gcf,[’post\STDEV_wt_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’fig’)
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saveas(gcf,[’post\STDEV_wt_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap gray

saveas(gcf,[’post\STDEV_wt_rat_gray’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap jet

%% difference from NoEq in standard deviatoin and wL

figure

ratwL=(stdpwL./stdpNoEq);

surf([x(1,1),x(1,end);x(end,1),x(end,end)],...

[y(1,1),y(1,end);y(end,1),y(end,end)],cax(1)+zeros(2,2))

hold on

surf(x,y,(ratwL));

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),2,’kx’,’LineWidth’,3,’MarkerSize’,20)

end

for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),2,’k+’,’LineWidth’,3,...

’MarkerSize’,20)

end

plot3(mic(1),mic(2),20,’ko’,’LineWidth’,3,’MarkerSize’,8)

plot3(2*sin(PI),2*cos(PI)+2,0*PI+2,’k-’)

ylabel([’GLAEC/GLAEC_{no eq} = ’ num2str(mean2(stdpwL)/...

mean2(stdpNoEq))],’fontsize’,13)

axis equal

shading interp

caxis(cax);

colorbar

view([0,90])

set(gca,’FontSize’,20)

xlim([x(1,1)-space x(end,1)+space])

ylim([y(1,1)-space y(1,end)+space])

title(’Lagrangian Density’)

saveas(gcf,[’post\STDEV_wL_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’fig’)

saveas(gcf,[’post\STDEV_wL_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap gray
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saveas(gcf,[’post\STDEV_wL_rat_gray’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap jet

%% difference from NoEq in standard deviatoin and wI

figure

ratwI=(stdpwI./stdpNoEq);

surf([x(1,1),x(1,end);x(end,1),x(end,end)],...

[y(1,1),y(1,end);y(end,1),y(end,end)],cax(1)+zeros(2,2))

hold on

surf(x,y,(ratwI));

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),2,’kx’,’LineWidth’,3,’MarkerSize’,20)

end

for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),2,’k+’,’LineWidth’,3,...

’MarkerSize’,20)

end

plot3(mic(1),mic(2),20,’ko’,’LineWidth’,3,’MarkerSize’,8)

plot3(2*sin(PI),2*cos(PI)+2,0*PI+2,’k-’)

ylabel([’GLAEC/GLAEC_{no eq} = ’ num2str(mean2(stdpwI)/...

mean2(stdpNoEq))],’fontsize’,13)

axis equal

shading interp

caxis(cax)

colorbar

view([0,90])

set(gca,’FontSize’,20)

xlim([x(1,1)-space x(end,1)+space])

ylim([y(1,1)-space y(1,end)+space])

title(’Intensity’)

saveas(gcf,[’post\STDEV_wI_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’fig’)

saveas(gcf,[’post\STDEV_wI_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap gray

saveas(gcf,[’post\STDEV_wI_rat_gray’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap jet
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%% difference from NoEq in standard deviatoin and avgs

figure

ratpavgs=(stdpavgs./stdpNoEq);

surf([x(1,1),x(1,end);x(end,1),x(end,end)],...

[y(1,1),y(1,end);y(end,1),y(end,end)],cax(1)+zeros(2,2))

hold on

surf(x,y,(ratpavgs));

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),2,’kx’,’LineWidth’,3,’MarkerSize’,20)

end

for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),2,’k+’,’LineWidth’,3,...

’MarkerSize’,20)

end

plot3(2*sin(PI),2*cos(PI)+2,0*PI+2,’k-’)

ylabel([’GLAEC/GLAEC_{no eq} = ’ num2str(mean2(stdpavgs)/...

mean2(stdpNoEq))],’fontsize’,13)

axis equal

shading interp

caxis(cax)

colorbar

view([0,90])

set(gca,’FontSize’,20)

xlim([x(1,1)-space x(end,1)+space])

ylim([y(1,1)-space y(1,end)+space])

title(’Spatially Averaged Pressure’)

saveas(gcf,[’post\STDEV_avgp_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’fig’)

saveas(gcf,[’post\STDEV_avgp_rat’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap gray

saveas(gcf,[’post\STDEV_avgp_rat_gray’ num2str(mic(1)*100) ’_’ ...

num2str(mic(2)*100) ’_’ num2str(fHigh)],’png’)

colormap jet

%% Making a time stamp (prevents overwriting previous calculations)

time=clock;

save([’post\dataB’ num2str(mic(1)*100) ’_’ ...
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num2str(mic(2)*100) ’_’ num2str(fHigh)]);

%% Saveing/Exporting Statistical Data

% The important data.

statdat={’’,’avg(std_f)’,’std(avg_f)’,’avg(std_f)/noeq’,...

’std(avg_f)/noeq’;

’NoEq’,mean2(stdpNoEq),std2(avgfpNoEq),1,1;

’complex p’,mean2(stdpcp),std2(avgfpcp),mean2(stdpcp)/...

mean2(stdpNoEq),std2(avgfpcp)/std2(avgfpNoEq);

’complex u’,mean2(stdpcu),std2(avgfpcu),mean2(stdpcp)/...

mean2(stdpNoEq),std2(avgfpcu)/std2(avgfpNoEq);

’ped’,mean2(stdpwp),std2(avgfpwp),mean2(stdpwp)/...

mean2(stdpNoEq),std2(avgfpwp)/std2(avgfpNoEq);

’ked’,mean2(stdpwk),std2(avgfpwk),mean2(stdpwk)/...

mean2(stdpNoEq),std2(avgfpwk)/std2(avgfpNoEq);

’ted’,mean2(stdpwt),std2(avgfpwt),mean2(stdpwt)/...

mean2(stdpNoEq),std2(avgfpwt)/std2(avgfpNoEq);

’Ld’,mean2(stdpwL),std2(avgfpwL),mean2(stdpwL)/...

mean2(stdpNoEq),std2(avgfpwL)/std2(avgfpNoEq);

’spatial avg p’,mean2(stdpavgs),std2(avgfpavgs),...

mean2(stdpavgs)/mean2(stdpNoEq),...

std2(avgfpavgs)/std2(avgfpNoEq);

’I’,mean2(stdpwI),std2(avgfpwI),mean2(stdpwI)/...

mean2(stdpNoEq),std2(avgfpwI)/std2(avgfpNoEq);

};

warning off MATLAB:xlswrite:AddSheet

file=[’F:\post\GLAEC_’ num2str(mic(1)*100) ’_’ num2str(mic(2)*100) ...

’_’ num2str(fHigh)];

xlswrite(file,statdat,’measured’)

% This time the full data set.

statdat={’’,’avg(std_f)’,’std(std_f)’,’avg(std_f)+std(std_f)’,...

’avg(avg_f)’,’std(avg_f)’,’avg(std_s)’,’std(std_s)’,...

’avg(std_s)+std(std_s)’,’stdev(avg_s)’,’avg(avg_s)’,...

’std(sqrt(avg_s))’;

’NoEq’,mean2(stdpNoEq),std2(stdpNoEq),mean2(stdpNoEq)+...

std2(stdpNoEq),mean2(avgfpNoEq),std2(avgfpNoEq),...

mean(stdsNoEq),std(stdsNoEq),mean(stdsNoEq)+...

std(stdsNoEq),std(avgsNoEq),mean(avgsNoEq),...

std(sqrt(avgsNoEq));

’complex p’,mean2(stdpcp),std2(stdpcp),mean2(stdpcp)+...
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std2(stdpcp),mean2(avgfpcp),std2(avgfpcp),...

mean(stdspcp),std(stdspcp),mean(stdspcp)+std(stdspcp),...

std(avgspcp),mean(avgspcp),std(sqrt(avgspcp));

’complex u’,mean2(stdpcu),std2(stdpcu),mean2(stdpcu)+...

std2(stdpcu),mean2(avgfpcu),std2(avgfpcu),...

mean(stdspcu),std(stdspcu),mean(stdspcu)+std(stdspcu),...

std(avgspcu),mean(avgspcu),std(sqrt(avgspcu));

’ped’,mean2(stdpwp),std2(stdpwp),mean2(stdpwp)+...

std2(stdpwp),mean2(avgfpwp),std2(avgfpwp),...

mean(stdspwp),std(stdspwp),mean(stdspwp)+std(stdspwp),...

std(avgspwp),mean(avgspwp),std(sqrt(avgspwp));

’ked’,mean2(stdpwk),std2(stdpwk),mean2(stdpwk)+...

std2(stdpwk),mean2(avgfpwk),std2(avgfpwk),...

mean(stdspwk),std(stdspwk),mean(stdspwk)+...

std(stdspwk),std(avgspwk),mean(avgspwk),...

std(sqrt(avgspwk));

’ted’,mean2(stdpwt),std2(stdpwt),mean2(stdpwt)+...

std2(stdpwt),mean2(avgfpwt),std2(avgfpwt),...

mean(stdspwt),std(stdspwt),mean(stdspwt)+...

std(stdspwt),std(avgspwt),mean(avgspwt),...

std(sqrt(avgspwt));

’Ld’,mean2(stdpwL),std2(stdpwL),mean2(stdpwL)+...

std2(stdpwL),mean2(avgfpwL),std2(avgfpwL),...

mean(stdspwL),std(stdspwL),mean(stdspwL)+std(stdspwL)...

,std(avgspwL),mean(avgspwL),std(sqrt(avgspwL));

’spatial avg p’,mean2(stdpavgs),std2(stdpavgs),...

mean2(stdpavgs)+std2(stdpavgs),mean2(avgfpavgs),...

std2(avgfpavgs),mean(stdsavgs),std(stdsavgs),...

mean(stdsavgs)+std(stdsavgs),std(avgsavgs),...

mean(avgsavgs),std(sqrt(avgsavgs));

’I’,mean2(stdpwI),std2(stdpwI),mean2(stdpwI)+std2(stdpwI),...

mean2(avgfpwI),std2(avgfpwI),mean(stdspwI),...

std(stdspwI),mean(stdspwI)+std(stdspwI),std(avgspwI),...

mean(avgspwI),std(sqrt(avgspwI));

};

warning off MATLAB:xlswrite:AddSheet

xlswrite(file,statdat,’More Measured’)

toc

The following files are functions required for the preceding MATLAB R© code to

run.
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I.2 Required Functions

I.2.1 Required Function: FundamentalAcoustics.m

FundamentalAcoustics.m

function [p,ux,uy,uz]=FundamentalAcoustics(q,k,chord,chordR,Gain,mic)

global rho c

A=j*rho*c*k.*q/(4*pi);

s=size(chord);

sR=size(chordR);

p=zeros(size(k));

ux=zeros(size(k));

uy=zeros(size(k));

uz=zeros(size(k));

for n=1:s(1)

dx=chord(n,1)-mic(1);

dy=chord(n,2)-mic(2);

dz=chord(n,3)-mic(3);

r=sqrt(dx.^2+dy.^2+dz.^2);

p=p+A.*exp(-j*k*r)/r;

dk=exp(-j.*r.*k).*(j.*k.*r+1).*q;

ux=ux+dk.*(dx)./r.^3;

uy=uy+dk.*(dy)./r.^3;

uz=uz+dk.*(dz)./r.^3;

end

for n=1:sR(1)

dx=chordR(n,1)-mic(1);

dy=chordR(n,2)-mic(2);

dz=chordR(n,3)-mic(3);

r=sqrt(dx.^2+dy.^2+dz.^2);

p=p+Gain*A.*exp(-j*k*r)/r;

dk=Gain*exp(-j.*r.*k).*(j.*k.*r+1).*q;

ux=ux+dk.*(dx)./r.^3;

uy=uy+dk.*(dy)./r.^3;

uz=uz+dk.*(dz)./r.^3;

end

ux=ux/(4*pi);

uy=uy/(4*pi);

uz=uz/(4*pi);
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I.2.2 Required Function: pressurefield.m

pressurefield.m

function [stdevf,avgf,maxpf,stds,avgs,stdevfL,avgfL,stdsL,avgsL]=...

pressurefield7(q0,q,k,chord,chordR,Gain,x,y,z,name)

global c rho

A=j*rho*c*k.*q/(4*pi);

A0=j*rho*c*k.*q0/(4*pi);

sch=size(chord);

schR=size(chordR);

sx=size(x);

N=length(k);

avgs=zeros(size(k));

stds=zeros(size(k));

Bsq=zeros(sx); B=zeros(sx);

avgsL=zeros(size(k));

stdsL=zeros(size(k));

BsqL=zeros(sx); BL=zeros(sx);

maxpf=zeros(sx);

for n=1:N

K=k(n);

p=zeros(sx);

for m=1:sch(1)

r=sqrt((chord(m,1)-x).^2+(chord(m,2)-y).^2+...

(chord(m,3)-z).^2);

[xx,yy]=find(r==0);

t=size(xx);

if t(1)~=0;

if xx>=0 || xx<=0

r(xx,yy)=0.000001;

end

end

p=p+A0(n).*exp(-j*r*K)./r;

end

for m=1:schR(1)

r=sqrt((chordR(m,1)-x).^2+(chordR(m,2)-y).^2+...

(chordR(m,3)-z).^2);

[xx,yy]=find(r==0);

t=size(xx);

if t(1)~=0;

if xx>=0 || xx<=0

r(xx,yy)=0.000001;
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end

end

p=p+Gain*A(n).*exp(-j*r*K)./r;

end

psq=sqrt(p.*conj(p));%;(abs(p).^2)

Bsq=Bsq+psq.^2;

B=B+psq;

maxpf=max(maxpf,abs(p));

avgs(n)=sum(sum(psq))/(sx(1)*sx(2));

stds(n)=sum(sum((psq-avgs(n)).^2))/(sx(1).*sx(2)-1);

psqL=log10(p.*conj(p));%;(abs(p).^2)

BsqL=BsqL+psqL.^2;

BL=BL+psqL;

avgsL(n)=sum(sum(psqL))/(sx(1)*sx(2));

stdsL(n)=sum(sum((psqL-avgsL(n)).^2))/(sx(1).*sx(2)-1);

save([name num2str(n)],’p’,’K’)

end

var=(Bsq-((B.*conj(B))/N))/(N-1);

varL=(BsqL-((BL.*conj(BL))/N))/(N-1);

if min(min(var))>=-10e-6

var=abs(var);

else

fprintf(’Error in Standard deviation of Unequalized\n’)

min(min(var))

end

if min(min(varL))>=-10e-6

varL=abs(varL);

else

fprintf(’Error in Standard deviation of Unequalized\n’)

min(min(varL))

end

stdevf=sqrt(var);

avgf=B/N;

stdevfL=sqrt(varL);

avgfL=BL/N;
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I.2.3 Required Function: pressure.m

pressure.m

function p=pressure(q0,q,k,chord,chordR,Gain,mic)

global c rho

A0=j*rho*c*k.*q0/(4*pi);

A=j*rho*c*k.*q/(4*pi);

s=size(chord);

sR=size(chordR);

p=zeros(size(k));

for n=1:s(1)

r=sqrt((chord(n,1)-mic(1)).^2+(chord(n,2)-mic(2)).^2+...

(chord(n,3)-mic(3)).^2);

p=p+A0.*exp(-j*k.*r)./r;

end

for n=1:sR(1)

r=sqrt((chordR(n,1)-mic(1)).^2+(chordR(n,2)-mic(2)).^2+...

(chordR(n,3)-mic(3)).^2);

p=p+Gain*A.*exp(-j*k.*r)./r;

end

I.3 Optional Controlling m-file: SpatialGLAEC.m

This function can be used to call a slightly modified version of STDofEQ.m to

generate plots of the GLAEC as a function of the sensor location. The STDofEQ.m

file must be made into a function and the lines indicating the fHigh and mic values

must be commented out. It is also very highly recommended to remove all of the

plotting procedures from STDofEQ.m to make the process run faster.

SpatialGLAEC.m

clear all; close all;

fhigh=[200,800,2000,20000,6000];

en=3;

tic
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dx=.05;

MaxX=1.75;

MinX=-MaxX;

X=(MinX:dx:MaxX);

space=.5;

[x,y]=ndgrid(X,X+MaxX+space);

Xs=length(X);

xs=size(x);

chord=[];

schord=size(chord);

chordR=[0,-2+2,0;

2*sin(pi/6),-2*cos(pi/6)+2,0;

2*sin(-pi/6),-2*cos(-pi/6)+2,0;

2*sin(11*pi/18),-2*cos(11*pi/18)+2,0;

2*sin(-11*pi/18),-2*cos(-11*pi/18)+2,0];

schR=size(chordR);

PI=-pi:.1:pi;

for en=3

Gwp=zeros(xs);

Gwk=zeros(xs);

Gwt=zeros(xs);

Gi=zeros(xs);

for n=1:Xs

for m=1:Xs

[Gwp(n,m),Gwk(n,m),Gwt(n,m),Gi(n,m)]=STDofEQ7_3Feb16GLAECspace(fhigh(en),[x(n,m),y(n,m),0]);

end

end

save([’GLAEC\PsicoticMessOfData2’ num2str(fhigh(en))])

toc

%% PED

figure

surf([x(1,1),x(1,end);x(end,1),x(end,end)],[y(1,1),y(1,end);y(end,1),y(end,end)],zeros(2,2))

hold on

surf(x,y,Gwp)

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),20,’kx’,’LineWidth’,3,’MarkerSize’,20)
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end

for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),20,’k+’,’LineWidth’,3,’MarkerSize’,20)

end

plot3(2*sin(PI),2*cos(PI)+2,0*PI+20,’k-’)

axis equal

shading interp

colorbar

view([0,90])

set(gca,’FontSize’,20)

xlim([x(1,1)-space x(end,1)+space])

ylim([y(1,1)-space y(1,end)+space])

title(’GLAEC from PED’)

toc

saveas(gcf,[’GLAEC\GLAEC_PED’ num2str(fhigh(en))],’fig’)

saveas(gcf,[’GLAEC\GLAEC_PED’ num2str(fhigh(en))],’png’)

colormap gray

saveas(gcf,[’GLAEC\GLAEC_PED_gray’ num2str(fhigh(en))],’png’)

colormap jet

%% KED

figure

surf([x(1,1),x(1,end);x(end,1),x(end,end)],[y(1,1),y(1,end);y(end,1),y(end,end)],zeros(2,2))

hold on

surf(x,y,Gwk)

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),20,’kx’,’LineWidth’,3,’MarkerSize’,20)

end

for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),20,’k+’,’LineWidth’,3,’MarkerSize’,20)

end

plot3(2*sin(PI),2*cos(PI)+2,0*PI+20,’k-’)

axis equal

shading interp

colorbar

view([0,90])

set(gca,’FontSize’,20)

xlim([x(1,1)-space x(end,1)+space])

ylim([y(1,1)-space y(1,end)+space])

title(’GLAEC from KED’)

toc
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saveas(gcf,[’GLAEC\GLAEC_KED’ num2str(fhigh(en))],’fig’)

saveas(gcf,[’GLAEC\GLAEC_KED’ num2str(fhigh(en))],’png’)

colormap gray

saveas(gcf,[’GLAEC\GLAEC_KED_gray’ num2str(fhigh(en))],’png’)

colormap jet

%% TED

figure

surf([x(1,1),x(1,end);x(end,1),x(end,end)],[y(1,1),y(1,end);y(end,1),y(end,end)],zeros(2,2))

hold on

surf(x,y,Gwt)

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),20,’kx’,’LineWidth’,3,’MarkerSize’,20)

end

for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),20,’k+’,’LineWidth’,3,’MarkerSize’,20)

end

plot3(2*sin(PI),2*cos(PI)+2,0*PI+20,’k-’)

axis equal

shading interp

colorbar

view([0,90])

set(gca,’FontSize’,20)

xlim([x(1,1)-space x(end,1)+space])

ylim([y(1,1)-space y(1,end)+space])

title(’GLAEC from TED’)

toc

saveas(gcf,[’GLAEC\GLAEC_TED’ num2str(fhigh(en))],’fig’)

saveas(gcf,[’GLAEC\GLAEC_TED’ num2str(fhigh(en))],’png’)

colormap gray

saveas(gcf,[’GLAEC\GLAEC_TED_gray’ num2str(fhigh(en))],’png’)

colormap jet

%% intensity

figure

surf([x(1,1),x(1,end);x(end,1),x(end,end)],[y(1,1),y(1,end);y(end,1),y(end,end)],zeros(2,2))

hold on

surf(x,y,Gi)

for n=1:schord(1)

plot3(chord(n,1),chord(n,2),20,’kx’,’LineWidth’,3,’MarkerSize’,20)

end
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for n=1:schR(1)

plot3(chordR(n,1),chordR(n,2),20,’k+’,’LineWidth’,3,’MarkerSize’,20)

end

plot3(2*sin(PI),2*cos(PI)+2,0*PI+20,’k-’)

axis equal

shading interp

colorbar

view([0,90])

set(gca,’FontSize’,20)

xlim([x(1,1)-space x(end,1)+space])

ylim([y(1,1)-space y(1,end)+space])

title(’GLAEC from Intensity’)

toc

saveas(gcf,[’GLAEC\GLAEC_intensity’ num2str(fhigh(en))],’fig’)

saveas(gcf,[’GLAEC\GLAEC_intensity’ num2str(fhigh(en))],’png’)

colormap gray

saveas(gcf,[’GLAEC\GLAEC_intensity_gray’ num2str(fhigh(en))],’png’)

colormap jet

%%

end
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EDfields.m

This MATLAB R© script produces an animation over frequency of PED, KED and

TED fields. This code can be modified for different source arrangements. The progam

can be further modified to have different source strengths on each source. This file

makes plots and animations like those found in Figs. 4.1, 4.3, E.7(a) and (b), and

E.8.

EDfields.m

clear all, close all

tic

%% Define universal constants

global c rho

c=343; rho=1.21;

%% Define frequency arrays

fLow=0; df=10.00; fHigh=10000;

f=fLow+df:df:fHigh;

w=2*pi*f;

k=w/c;

N=length(f);

d=2;

dx=0.0050;
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L=1;

X=-L:dx:L;

X=X*0.25;

[x,y]=ndgrid(X,X);

z=0;

clear X

sx=size(x);

%% Define source

coord=[-0.1,0,0;0.1,0,0];

scoord=size(coord);

r=zeros(sx(1),sx(2),scoord(1));

dx=r; dy=r; dz=r;

for n=1:scoord(1)

rtemp=sqrt((coord(n,1)-x).^2+(coord(n,2)-y).^2+(coord(n,3)-z).^2);

[xx,yy]=find(rtemp==0);

if min(size(xx))~=0

if xx >= 0 || xx <= 0

rtemp(xx,yy) = 0.000001;

end

end

r(:,:,n)=rtemp;

dx(:,:,n)=(coord(n,1)-x)./rtemp.^3;

dy(:,:,n)=(coord(n,2)-y)./rtemp.^3;

dz(:,:,n)=(coord(n,3)-z)./rtemp.^3;

end

clear rtemp xx yy

%% Define source strengths (volume velocity)

q=(.0005+.00025*j)./k; % The source strength.

% The code may be modified for different valuse of q for each source

% loacation.

A=j*rho*c*k.*q/(4*pi);

%% Build the sound fields as measured by ED

w=zeros(size(x));

v=zeros(size(x));

for n=1:N

p=zeros(size(x));

ux=p; uy=p; uz=p;

for m=1:scoord(1)

p=p+A(n).*exp(-j*k(n)*r(:,:,m))./r(:,:,m);
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dq=q(n).*(j*k(n)*r(:,:,m)+1).*exp(-j*k(n)*r(:,:,m));

ux=ux+dq.*dx(:,:,m);

uy=uy+dq.*dy(:,:,m);

uz=uz+dq.*dz(:,:,m);

end

wp=p.*conj(p)./(4*rho*c^2);

usq=(ux.*conj(ux)+uy.*conj(uy)+uz.*conj(uz));

wk=rho*usq/(64*pi^2);

wt=wp+wk;

wL=wk-wp;

cop=conj(p);

Ix=cop.*ux;

Iy=cop.*uy;

Iz=cop.*uz;

X=sqrt(imag(Ix*.5).^2+imag(Iy*.5).^2+imag(Iz*.5).^2);

I=sqrt(real(Ix*.5).^2+real(Iy*.5).^2+real(Iz*.5).^2);

w=w+abs(p);

v=max(v,abs(p));

save([’Fields\Data’ num2str(n)],’p’,’wp’,’wk’,’wt’,’wL’,’X’,...

’I’,’ux’,’uy’,’uz’,’d’)

end

w=w/N;

save(’Fields\info’,’x’,’y’,’f’,’k’,’N’,’scoord’,’coord’,’w’,’v’)

toc

%% Generate surfac plot and animation

clear all

load Fields\info

cax=[50,90];

figure

set(gcf,’Position’,[6 350 1270 500])

MinX=min(min(x));

MaxX=max(max(x));

MinY=min(min(y));

MaxY=max(max(y));
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yntics=[-.2,-.1,0,.1,.2];

yltics=[’-20’;’-10’;’ 0’;’ 10’;’ 20’];

xntics=[-.2,-.1,0,.1,.2,.24];

xltics=[’-20’;’-10’;’ 0’;’ 10’;’ 20’;’cm ’];

time=clock;

mov=avifile([’Field_’ sprintf(’%2.2d%2.2d’,time(4),time(5)) ...

’hours’ sprintf(’%2.2d’,time(3)) ’day’ ...

num2str(time(2)) ’month’ num2str(time(1)) ’.avi’],...

’compression’,’Cinepak’,’quality’,100,’fps’,20);

for n=1:N

load([’Fields\Data’ num2str(n)])

subplot(’Position’,[.03 .17 .3 .75])

surf(x,y,10*log10(wp./3e-15))

hold on

surf(x,y,50+zeros(size(x)))

for m=1:scoord(1)

plot3(coord(m,1),coord(m,2),250,’kx’,’markersize’,...

17,’linewidth’,3)

end

hold off

view(0,90)

set(gca,’fontsize’,13)

axis equal

xlim([MinX,MaxX])

ylim([MinY,MaxY])

title(’PED’,’fontsize’,13)

shading interp

set(gca,’XTick’,xntics)

set(gca,’YTick’,yntics)

set(gca,’XTickLabel’,xltics)

set(gca,’YTickLabel’,yltics)

caxis(cax)

subplot(’Position’,[.36 .03 .3 .89])

surf(x,y,10*log10(wk./3e-15))

hold on

surf(x,y,50+zeros(size(x)))

for m=1:scoord(1)

plot3(coord(m,1),coord(m,2),250,’kx’,’markersize’,17,...

’linewidth’,3)
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end

hold off

view(0,90)

set(gca,’fontsize’,13)

axis equal

xlim([MinX,MaxX])

ylim([MinY,MaxY])

title(’KED’,’fontsize’,13)

shading interp

caxis(cax)

colorbar(’horiz’)

shading interp

set(gca,’XTick’,xntics)

set(gca,’YTick’,yntics)

set(gca,’XTickLabel’,xltics)

set(gca,’YTickLabel’,yltics)

set(gca,’fontsize’,13)

text(max(max(x))*1.5,-max(max(x))*1.25,0,sprintf(’kd = %2.4g’,...

k(n)*d),’Rotation’,0,’FontSize’,16)

text(-max(max(x))*2.75,-max(max(x))*1.25,0,sprintf(’k = %2.4g ...

1/m f = %2.4g Hz’,k(n),f(n)),’Rotation’,0,’FontSize’,16)

text(max(max(x))*2.35,-max(max(x))*1.25,0,sprintf(’d = %2.4g ...

m’,d),’FontSize’,16)

subplot(’Position’,[.69 .17 .3 .75])

surf(x,y,10*log10(wt./3e-15))

hold on

surf(x,y,50+zeros(size(x)))

for m=1:scoord(1)

plot3(coord(m,1),coord(m,2),250,’kx’,’markersize’,17,...

’linewidth’,3)

end

hold off

view(0,90)

set(gca,’fontsize’,13)

axis equal

xlim([MinX,MaxX])

ylim([MinY,MaxY])

title(’TED’,’fontsize’,13)

shading interp

shading interp

set(gca,’XTick’,xntics)
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set(gca,’YTick’,yntics)

set(gca,’XTickLabel’,xltics)

set(gca,’YTickLabel’,yltics)

caxis(cax)

EdField=getframe(gcf);

mov=addframe(mov,EdField);

end

mov=close(mov);

saveas(gcf,’Field’,’fig’)

saveas(gcf,’Field’,’png’)
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HandS.m

This MATLAB R© script produces an animated plot that follows the method de-

scribed by Hansen and Snyder [2]. They point out that the error sensors used for

ANC should be placed at locations where attenuation is the greatest when the the

control sources are acting optimally. The results of this can be seen in Figs. 4.8.

HandS.m

clear all, close all

tic

%% Define universal constants

global c rho chord d

c=343; rho=1.21;

%% Define frequency arrays

fLow=0; df=10; fHigh=5000;

f=fLow+df:df:fHigh;

w=2*pi*f;

k=w/c;

N=length(f);

%% Build grid for maping fields

dx=0.001;
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MaxX=.10;

MinX=-.10;

X=MinX:dx:MaxX;

MaxY=.10;

MinY=-.10;

Y=MinY:dx:MaxY;

sizing=.7;

X=X*sizing; Y=Y*sizing;

MinX=min(X); MaxX=max(X);

MinY=min(Y); MaxY=max(Y);

[x,y]=ndgrid(X,Y);

z=0;

sx=size(x);

scl=(-3:.4:3)*.25;

%% Define source / recever loctions

% This array chord has the first source as the primary source and the

% following sources are the control sources. Sorry, it is just easyer to

% do it this way.

de=0.0318;

cd=sqrt(de^2/2);

chord=[0, 0, 0;

cd, cd, 0;

-cd, cd, 0;

-cd,-cd, 0;

cd,-cd, 0];

schord=size(chord);

%% Finding distances between the control source and the primary sources.

% This is for finding the appropreate source strengths to minimize the

% sound field.

d=zeros(schord(1),schord(1));

for n=1:schord(1)

for m=n:schord(1)

d(n,m)=sqrt((chord(n,1)-chord(m,1)).^2+(chord(n,2)-chord(m,2)).^2+(chord(n,3)-chord(m,3)).^2);

d(m,n)=d(n,m);

end

end

%% Define source strengths (volume velocity)

% In this step, I need to find the appropreate source strengths to

% minimize the sound power. To do this will use an altered version of
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% Homework 3 from Dr. Sommerfeldt’s phys. 566 course.

sizek=size(k);

qp=(.001+.001*j)*1e-1./k;

q=zeros(schord(1),sizek(2));

q(1,:)=qp;

zscal=rho*c/(4*pi);

kk=k.^2;

Pi=zeros(sizek);

A=zeros(schord(1),sizek(2));

for nf=1:sizek(2)

Z=kk(nf).*sinc((k(nf)/pi)*d)*zscal;

Zss=Z(2:end,2:end);

Zpp=Z(1,1);

Zps=Z(2:end,1);

Aa=real(Zss)*.5;

B=qp(nf)*real(Zps)*.5;

C=qp(nf)’*real(Zpp)*qp/2;

Ainv=inv(Aa);

q(2:end,nf)=-(Ainv)*B;

Pi(nf)=C(nf)-(B’*Ainv*B);

A(:,nf)=k(nf)*q(:,nf);

end

Pi_monopole=kk*rho*c.*qp.*conj(qp)/(8*pi);

clear kk zscal Aa B C Ainv

save(’F:\MinimumPower’,’f’,’Pi’,’Pi_monopole’,’d’,’chord’)

A=j*rho*c*A/(4*pi);

%% Define the relationship between field points and sources

r=zeros(sx(1),sx(2),schord(1));

dx=r; dy=r; dz=r;

for n=1:schord(1)

rtemp=sqrt((chord(n,1)-x).^2+(chord(n,2)-y).^2+(chord(n,3)-z).^2);

[xx,yy]=find(rtemp==0);

if min(size(xx))~=0

if xx >= 0 || xx <= 0

rtemp(xx,yy) = 0.000001;

end
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end

r(:,:,n)=rtemp;

dx(:,:,n)=(chord(n,1)-x)./rtemp.^3;

dy(:,:,n)=(chord(n,2)-y)./rtemp.^3;

dz(:,:,n)=(chord(n,3)-z)./rtemp.^3;

end

clear rtemp xx yy

%% Build the sound fields as measured by ED

wLma=zeros(size(k));

for n=1:N

p=zeros(size(x));

ux=p; uy=p; uz=p;

for m=1:schord(1)

p=p+A(m,n).*exp(-j*k(n)*r(:,:,m))./r(:,:,m);

dq=q(m,n).*(j*k(n)*r(:,:,m)+1).*exp(-j*k(n)*r(:,:,m));

ux=ux+dq.*dx(:,:,m);

uy=uy+dq.*dy(:,:,m);

uz=uz+dq.*dz(:,:,m);

if m==1

PED1=p.*conj(p)./(4*rho*c^2);

KED1=(ux.*conj(ux)+uy.*conj(uy)+uz.*conj(uz))*rho/(64*pi^2);

TED1=PED1+KED1;

end

end

wp=p.*conj(p)./(4*rho*c^2);

usq=(ux.*conj(ux)+uy.*conj(uy)+uz.*conj(uz));

wk=rho*usq/(64*pi^2);

wt=wp+wk;

wL=wk-wp;

save([’F:\Fields\Data’ num2str(n)],’wp’,’wk’,’wt’,’wL’,’PED1’,’KED1’,’TED1’)

wLma(n)=min(min(wL));

end

D=max(max(d));

wLm=min(wLma);

save(’F:\info’,’x’,’y’,’f’,’k’,’MinX’,’MinY’,’MaxX’,’MaxY’,’N’,’scl’,’schord’,’chord’,’D’,’de’)

toc

%% surfice plots

clear all
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load F:\info

[a,b]=size(chord);

cax=[-35,20];

MinX=MinX*100;

MaxX=MaxX*100;

x=x*100;

MinY=MinY*100;

MaxY=MaxY*100;

y=y*100;

yntics=[-6,-4,-2,0,2,4,6];

yltics=[’-6’;’-4’;’-2’;’0 ’;’2 ’;’4 ’;’6 ’];

xntics=[-6,-4,-2,0,2,4,6,6.6];

xltics=[’-6’;’-4’;’-2’;’0 ’;’2 ’;’4 ’;’6 ’;’cm’];

chord=chord*100;

d=D/2;

mov=avifile(’ANC4control2008Feb16_2.avi’,’compression’,’Cinepak’,’quality’,100,’fps’,10);

for m=1:N

figure

set(gcf,’Position’,[6 350 1270 500])

load([’F:\Fields\Data’ num2str(m)])

subplot(’Position’,[.03 .17 .3 .75])

% surf(x,y,10*log10(wp./min(min(wp))))

surf(x,y,10*log10(wp./PED1))

hold on

plot3(chord(1,1),chord(1,2),250,’ko’,’markersize’,10,’linewidth’,3)

for n=2:a

plot3(chord(n,1),chord(n,2),250,’kx’,’markersize’,17,’linewidth’,3)

end

view(0,90)

shading interp

xlim([MinX,MaxX])

ylim([MinY,MaxY])

caxis(cax)

set(gca,’fontsize’,13)

set(gca,’XTick’,xntics)

set(gca,’YTick’,yntics)

set(gca,’XTickLabel’,xltics)
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set(gca,’YTickLabel’,yltics)

title(’POTENTIAL ED’,’FontSize’,13)

hold off

subplot(’Position’,[.36 .03 .3 .89])

% surf(x,y,10*log10(wk./min(min(wk(102:201,102:201)))))

surf(x,y,10*log10(wk./KED1))

hold on

plot3(chord(1,1),chord(1,2),250,’ko’,’markersize’,10,’linewidth’,3)

for n=2:a

plot3(chord(n,1),chord(n,2),250,’kx’,’markersize’,17,’linewidth’,3)

end

view(0,90)

shading interp

xlim([MinX,MaxX])

ylim([MinY,MaxY])

caxis(cax)

set(gca,’fontsize’,13)

set(gca,’XTick’,xntics)

set(gca,’YTick’,yntics)

set(gca,’XTickLabel’,xltics)

set(gca,’YTickLabel’,yltics)

colorbar(’horiz’)

set(gca,’fontsize’,13)

title(’KINETIC ED’,’FontSize’,13)

hold off

text(max(max(x))*1.5,-max(max(x))*1.25,0,sprintf(’kd = %2.4g’,k(m)*d),’Rotation’,0,’FontSize’,16)

text(-max(max(x))*2.75,-max(max(x))*1.25,0,sprintf(’k = %2.4g 1/m f = %2.4g Hz’,k(m),f(m)),’Rotation’,0,’FontSize’,16)

text(max(max(x))*2.35,-max(max(x))*1.25,0,sprintf(’d = %2.4g cm’,d*100),’FontSize’,16)

subplot(’Position’,[.69 .17 .3 .75])

% surf(x,y,10*log10(wt./min(min(wt))))

surf(x,y,10*log10(wt./TED1))

hold on

plot3(chord(1,1),chord(1,2),250,’ko’,’markersize’,10,’linewidth’,3)

for n=2:a

plot3(chord(n,1),chord(n,2),250,’kx’,’markersize’,17,’linewidth’,3)

end

view(0,90)

shading interp

caxis(cax)

xlim([MinX,MaxX])
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ylim([MinY,MaxY])

set(gca,’fontsize’,13)

set(gca,’XTick’,xntics)

set(gca,’YTick’,yntics)

set(gca,’XTickLabel’,xltics)

set(gca,’YTickLabel’,yltics)

title(’TOTAL ED’,’FontSize’,13)

hold off

EdField=getframe(gcf);

mov=addframe(mov,EdField);

end

mov=close(mov);

toc
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