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ABSTRACT 
 
 
 

IMPROVING PERFORMANCE OF THE FILTERED-X LEAST MEAN SQUARE 

ALGORITHM FOR ACTIVE CONTROL OF NOISE CONTAINING MULTIPLE 

QUASI-STATIONARY TONES 

 
 

Stephan Paul Lovstedt 

Department of Physics and Astronomy 

Master of Science 
 
 

 
The Filtered-X Least-Mean-Square (FXLMS) algorithm is widely used in active noise 

control due to its robustness, simplicity, and ability to be implemented in real time. In a 

feedforward implementation of the FXLMS algorithm, a reference signal that is highly 

correlated with the noise to be controlled is filtered with an estimate of the transfer 

function of the secondary path. The convergence characteristics of the FXLMS algorithm 

have been well studied. A convergence parameter is used to optimize the convergence of 

the algorithm. However, the optimal value for the convergence parameter is frequency 

dependent. Thus for noise containing multiple tones at different frequencies the 

convergence parameter can only be optimized for one of those tones. Other tones will 

have slower convergence rates and in general less attenuation than they would have if 



they were treated singly and parameters could be optimized for those frequencies 

separately. A method is developed to modify the magnitude response of the  

secondary path estimate while maintaining the original phase response, which equalizes 

the convergence characteristics over multiple frequencies, giving more uniform 

convergence and attenuation for all tones being controlled. Stability of the algorithm is 

not compromised. The modification to the FXLMS algorithm is relatively simple to 

implement and has been shown to increase overall attenuation of a signal containing 

multiple tones by an additional 6-9 dB.
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CHAPTER 1- INTRODUCTION 
 
 
1.1 Active Noise Control Basics 
 
Active Noise Control (ANC) uses the principle of superposition of waves. The net 

displacement of the medium through which two or more waves are traveling is the sum of 

their individual wave displacements. Consider the addition of two identical waves (same 

frequency and amplitude) shown in Figure 1.1. The net amplitude of the resulting wave 

depends on the relative phase of the two waves. When the positive antinodes of one wave 

align with negative antinodes of the other (exactly out of phase) the combined wave 

displacement will be zero. The same principle holds for more complicated waveforms 

and sound fields. 

 
Figure 1.1 This figure demonstrates the principle of superposition. In the left 
column two identical sine waves with some phase difference between them are 

plotted together. The right column shows the result of adding the two waves on the 
left. When the waves are exactly out of phase (bottom plots) the addition of the two 

waves results in no wave motion.   



2 

 
 

ANC then works by electroacoustically creating a wave disturbance in a medium 

that attenuates, through superposition, an unwanted wave disturbance or noise. A 

feedforward ANC system (the type considered in this thesis) requires four basic 

components1: 

(1) Reference Sensor 

(2) Control System 

(3) Control Loudspeaker(s) 

(4) Error Sensor(s) 

Figure 1.2 shows how these basic components can be combined in an ANC system. The 

reference sensor measures the unwanted noise and produces a reference signal that is 

correlated to and characterizes the spectral content of the unwanted noise. This reference 

signal is “fed forward” to the controller so that it can determine the proper control signal 

before the noise has reached the listening location. The control system uses this reference 

signal to create a control signal to drive a loudspeaker which creates a canceling noise 

that will attenuate the unwanted noise when combined at the error sensor. The error 

sensor measures the residual noise after the unwanted noise and control signal have 

combined and sends an error signal back to the controller to adapt the control system in 

an attempt to further reduce the error. The control system adaptively modifies the control 

signal to minimize the residual error. 
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Figure 1.2 Basic setup of a feedforward ANC system 

  
 

1.2  FXLMS Algorithm 
 

One of the most popular feedforward control algorithms for acoustic noise is the 

Filtered-X Least Mean Square (FXLMS) algorithm2 due to its robustness and relative 

ease of implementation. The FXLMS algorithm creates a control signal by filtering the 

reference signal with an adaptive control filter. The control filter is updated via a gradient 

descent search process until an ideal filter that minimizes the residual noise is found. In 

the FXLMS algorithm, the reference signal is filtered by an estimate of the secondary 

path transfer function (usually designated Ĥ ), which is the propagation path from the 

controller to the error sensor giving the filtered-x signal. This gives an estimate of the 

gradient for the search and ensures that the algorithm will be stable. Without this the 

controller would not be able to compensate for changes that happen to the control output 

between the controller and the error signal (specifically the phase change). Rather than 

cancelling the noise the controller may amplify it.  
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The convergence properties of the FXLMS algorithm have been well studied. 

They are dependent on the distribution of the eigenvalues of the filtered-x autocorrelation 

matrix 3. It has been further shown that convergence and stability of the algorithm can be 

evaluated for individual frequency bins and are dependent on the power gain of the 

secondary path, the power spectrum of the reference signal, and the convergence 

parameter, or step size the algorithm takes with each iteration of the search for the 

optimum control filter. Since neither the power gain of the secondary path nor the power 

of the reference signal are, in general, uniform over frequency, convergence will be poor 

(slow) for some frequencies compared to others. The algorithm performance is degraded 

if the power gain of the secondary path is not flat over the entire frequency range targeted 

for control 4. This is a drawback of the FXLMS algorithm for ANC applications where 

multiple tones need to be controlled simultaneously or where a single tone that sweeps 

through a range of frequencies is to be controlled. These two types of noise will be called 

“multiple tone noise” and “swept tone noise” respectively in this thesis. A derivation of 

the FXLMS algorithm and a detailed discussion of its convergence and stability 

properties will be given in Chapter 2. 

 
1.3  Previous Work: Other Algorithms- Improvements for Frequency 

Dependent Convergence of FXLMS 
 
 Various adaptations to the FXLMS algorithm have been developed in an effort to 

overcome the performance loss due to its frequency dependent convergence behavior. 

One way to do this for swept tone noise is to make the convergence coefficient, µ, vary 

with frequency so that the step size is always optimal for the current operating frequency 

of the system. The normalized FXLMS5 adjusts µ according to the power of the filtered-x 
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input signal. This requires real time estimates of the power of the input signal to be 

calculated. This is applicable to swept tone noise applications where a single tone is to be 

controlled since the value for µ can then be optimized as the frequency and hence the 

reference signal power changes.  However it is not applicable for multiple tone noise as  

there will always be varying convergence when more than one tone is present. 

 The Higher Harmonic Least Mean Square (HLMS) algorithm6 uses a separate 

reference signal and controller that is run in parallel for each tone being controlled. This 

essentially reduces the problem of controlling multiple tones with different convergence 

properties to multiple single tone ANC problems. This allows using a separate 

convergence parameter that is optimized for each individual frequency. More uniform 

convergence and increased overall attenuation of all tones is achieved at the expense of 

more computational complexity. Splitting the tonal components of a reference signal into 

individual references used by each controller requires additional signal processing and 

conditioning. The need for multiple controllers increases computational load and cost. 

Lee et al.7 also developed a method to process tonal components of a multiple tone noise 

problem separately while addressing some of the increased computation issues. These 

apply to multiple tone noise.  

 Kuo et al.8 discuss how the eigenvalue spread over frequency for a system is a 

function of the reference signal amplitude multiplied by the secondary path magnitude at 

a given frequency. Where the reference signal is internally generated the amplitude of the 

reference can vary with frequency to compensate for the gain modulation of the 

secondary path to give uniform power of the filtered-x signal at specified frequencies 

resulting in uniform eigenvalues for the system. This gives uniform convergence over 
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frequency with a single value for µ. This was demonstrated in computer simulations by 

optimizing the magnitude of internally generated reference signals as the inverse of the 

secondary path magnitude 9. This approach requires that the user have control over the 

reference tone amplitudes. This type of modification applies to swept tone noise and 

multiple tone noise.    

 Other algorithms such as the FxGAL 10, ALE+FxLMS 11, and Modified FXLMS 

12-14 show improved convergence properties over the FXLMS algorithm. The drawback 

of most of these approaches is that they increase the computational burden of the 

algorithm, increase the algorithm’s complexity, or are not applicable to one of the two 

types of noise considered here. 

 Work by Thomas15 showed that flattening the magnitude response of the 

secondary path estimate used to make the filtered-x signal gives more uniform 

eigenvalues, better tracking, and better overall performance for control of swept tone 

noise. In his work, the finite impulse response (FIR) filter representing the secondary 

path transfer function (implemented as a vector of coefficients modeling the response of a 

system to an impulse) is modified in the frequency domain to give a new estimate with 

flat magnitude response and phase equal to the original phase response of the secondary 

path. This method was termed the “Eigenvalue Equalization FXLMS algorithm” (EE-

FXLMS). This method improved performance of the algorithm in a way that was simple 

to implement and did not increase the computational burden of the ANC system. The 

specific focus of his work was tractor noise and is applicable to any swept tone noise 

application.  
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 The work in this thesis is an extension of Thomas’s work, applying the idea of 

modifying the magnitude response of the secondary path estimate while preserving the 

phase, to a different type of noise problem—multiple tone noise. In Thomas’s work the 

power of the reference signal was assumed to be independent of frequency. Here, no such 

assumption is made for the multitone reference signal. A genetic algorithm is used to find 

optimum magnitude coefficients for a modified FIR model of the secondary path for a 

given multi-tone reference. As before, the eigenvalue disparity is reduced and the 

performance of the algorithm is improved over the FXLMS algorithm in both rate of 

convergence and overall attenuation achieved. Issues arising from finite frequency 

resolution of sampled systems are addressed in the optimization.   

 

1.4  Why Use Active Noise Control? 
 
 Many acoustic noise problems are dominated by low-frequency noise. Passive 

noise control techniques such as noise barriers and absorbers are ineffective at these low 

frequencies. Barriers must be made very heavy and absorbers very large to attenuate low-

frequency noise. Active noise control (ANC) works best for low-frequency noise 

problems where the cost in terms of weight and bulk make passive noise control methods 

inadequate for several important applications16. 

 ANC has been used successfully to attenuate noise in ducts, automobiles, 

earthmoving equipment 17, aircraft18-19, and other applications 20.  

 ANC is of special interest to the aircraft industry.  The high noise levels inside an 

aircraft cabin limit flight time due to noise exposure restrictions 21. Passive control of 
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interior noise for aircraft has reached its limit under weight and cost considerations, but 

there are demands for higher performance (therefore lighter weight) aircraft with reduced 

interior noise levels 22
. ANC provides the potential to reduce noise levels below that 

which can be achieved using only passive means, or achieve reductions comparable to 

passive means with a much lower weight penalty, especially at low frequencies.  

 In helicopters, low frequency noise masks speech and makes communication 

difficult, even with the use of intercom systems. To compensate, pilots increase the 

volume in their headsets in order to hear others talking to them. Increased sound pressure 

levels (SPL) inside of headsets are required for intelligibility at speech frequencies. 

Exposure to these high SPLs can cause hearing loss 23. An ANC system has the potential 

to alleviate these problems by reducing the low frequency noise, allowing flight crews to 

communicate effectively at lower headset SPLs.  

 
1.5  Motivation For and Objectives of This Thesis 
 

While many algorithms and control schemes that improve on certain drawbacks 

of the FXLMS algorithm have been presented in dozens if not hundreds of technical 

papers, there is still room for improvement. Specifically, multiple tone noise continues to 

be a difficult ANC problem. Helicopter noise is one such ANC application and was the 

original motivation for the need to improve the convergence properties of the FXLMS 

algorithm. An algorithm that improves the performance of an ANC system while keeping 

cost and complexity low will open new applications for ANC and improve the benefit of 

ANC in some applications where it is currently being used.  
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The primary goal then of this research effort is to develop a new way of 

implementing the EE-FXLMS algorithm and equalizing the eigenvalues of an ANC 

system for multiple tone noise such as is found in the interior of helicopter cabins. 

Methods of altering the magnitude of the secondary estimate to optimize an ANC system 

for control of multiple stationary sinusoids will be explored and their benefit will be 

demonstrated using computer simulations as well as experimental measurements in a 

mock cabin enclosure.  

 
1.6  Organization of This Thesis 
 

In Chapter 2, the FXLMS algorithm will be derived and its convergence 

properties and drawbacks for swept tone and multiple tone noise discussed in detail. This 

will include discussion of quadratic error surfaces, steepest descent search methods, 

eigenvalues, and time and frequency domain analysis of convergence of the error signal. 

Additionally, the structure of reference signals for multiple tone noise and its implication 

in applying the FXLMS algorithm to that type of noise will be discussed. Chapter 3 will 

introduce the EE-FXLMS algorithm. The method of equalizing the eigenvalues by 

altering the magnitude of the secondary path estimate will be explained as well as the 

genetic algorithm used for the optimization. The effect of the modification of the 

magnitude on the eigenvalue disparity will be presented. Chapter 4 gives experimental 

verification to the theory and results in Chapter 3. It is shown that the eigenvalue 

equalization performed in Chapter 3 gives better performance in ANC tests. In Chapter 5 

conclusions based on the experimental results are made.  
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CHAPTER 2-FILTERED-X LEAST MEAN SQUARES 
(FXLMS) ALGORITHM 
 
 
2.1 FXLMS Algorithm (FXLMS) 

The FXLMS algorithm is shown in block diagram form in Figure 2.1. In the 

figure, and in all equations presented, the variable t is a discrete time index and the 

variable z is a discrete frequency-domain index. The discussion of the FXLMS algorithm 

and its properties given here follows closely the development of Widrow and Stearns24. 

 

Figure 2.1 Block diagram of the filtered-x least mean square algorithm.  
 
As before, the reference signal, x(t), is obtained that characterizes the unwanted 

noise. The noise measured at the location of the reference sensor propagates through the 

primary path, or plant, represented by C(z) and arrives at the listening location as the 

signal, d(t). This is the unwanted noise to be cancelled. It is sometimes referred to as the 

“desired” signal, meaning the signal that the controller is trying to duplicate (with 

opposite phase) and hence attenuate. Neither the transfer function, C(z), nor d(t) are 

known. All that is known is that d(t) will be correlated with the noise characterized by the 
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reference. The FXLMS algorithm creates a control signal by simply filtering the 

reference signal, x(t), with an adaptive FIR control filter, w(t) given by 

 w(t) = [w0, w1, w2,…wL-1]T (2.1) 

where W(z) is the frequency response of w(t) given by 

 W(z) = w0 + w1 z -1 + w2 z -2 + … + wL-1 z -L+1 (2.2) 

The control signal, u(t), is the convolution of x(t) with w(t). The control signal is 

filtered by the secondary path transfer function, H(z), and arrives at the error sensor as 

the output signal, y(t). The secondary path transfer function includes the effects of 

digital-to-analog and analog-to-digital converters, filters, audio power amplifiers, 

loudspeakers, the acoustical transmission path between the control source and error 

microphone, error sensor response, and other signal conditioning. The output signal 

combines with the unwanted noise to give the residual error signal, e(t), measured by the 

error sensor. An adaptive process searches for the optimal coefficients for the control 

filter, w(t), which will minimize the residual error. This optimal filter is designated w*.  

 The mean-square error (MSE), expressed as 

 })({)(
2

teEt =! , (2.3) 

is a quadratic performance function of the filter coefficients with a unique global 

minimum. The operator E{} is the expectation value. For a control filter with L-

coefficients, the error surface is a hyperparaboloid in L+1 dimensions with the coordinate 

axes corresponding to the filter weights w0, w1, w2,…,wL-1. This is easily visualized for a 

2-coefficient control filter for which the error surface is a paraboloid as shown in Figure 

2.2. Cutting the paraboloid with planes parallel to the w0w1-plane we get ellipses 
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(hyperellipses for higher dimensions) as contours of equal mean-square error, also shown 

in Figure 2.2. 

 

 
Figure 2.2 Three-dimensional quadratic error surface for the mean square error. 
The plot on the left shows the error surface as a paraboloid in 3-dimensions with 
MSE as a function of the two filter weights. The plot on the right shows the same 
surface as equal MSE contours. The path of steepest descent from some starting 

point w0 to the optimum w* is shown on the contour plot.  
 

The FXLMS algorithm uses a gradient descent search method to adapt the control filter 

coefficients. The algorithm starts at some point, w0, on the error surface and follows the 

path of steepest descent (direction of the negative gradient) along the error surface toward 

the optimal filter weights at the bottom of the paraboloid. This is not, in general, the most 

direct path from the starting point to the optimum. This is shown on the contour plot of 

Figure 2.2. The control coefficients at each iteration of the algorithm then are given by  

 W(t+1) = w(t) + µ (-! ξ ) (2.4) 
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The convergence coefficient, µ, is a step size that dictates how far in the direction of the 

negative gradient the algorithm can move with each iteration of the search for the set of 

filter coefficients that minimize ξ(t).  

The FXLMS algorithm uses the square of the error signal as an approximation of 

the mean square error. Minimizing the instantaneous squared error signal can be shown to 

converge in the mean to the solution obtained when minimizing the mean square error. 

The error signal e(t) is the desired signal, d(t), plus the output signal y(t).  The output 

signal is the control signal u(t) filtered by H(z), and u(t) is x(t) filtered by the control 

filter W(z). These relationships are summarized showing both signals and filters (or 

transfer functions) in the frequency domain as: 

 E(z) = D(z) + Y(z) = D(z) + U(z)H(z) = D(z) + X(z)W(z)H(z) (2.5a) 

Because convolution (or multiplication in the frequency domain) is commutative 

 E(z) = D(z) + W(z)X(z)H(z) (2.5b) 

and defining R(z) = X(z)H(z) we arrive at 

 E(z) = D(z) + W(z)R(z) (2.5c) 

In the time domain the instantaneous error signal can then be written as 

 e(t) = d(t) + w(t)Tr(t) (2.6) 

where w(t) is the vector containing the current set of filter coefficients and r(t) is a vector 

of previous time samples of the filtered-x signal the same size as the control filter vector. 

W(z) and R(z) in Eq. 2.5c are the frequency responses of these vectors. The 

instantaneous squared error can then be written as 



15 

               ε(t) =  e2(t) = d2(t) + 2d(t)wTr(t)  +  wTr(t)rT(t)w  (2.7)              

The gradient of the squared error can be expressed as  

 =
!

!

w

)(2 te   2d(t)r(t)  +  2r(t)rT(t)w  

= 2r(t) [d(t) + rT(t)w] 

 = 2e(t)r(t)  (2.8) 

The factor of two in Eq. 2.8 is sometimes omitted from this expression for the gradient 

since it can be included in the convergence parameter, but is left here.  

The FXLMS algorithm derives its name from the filtered-x signal, r(t), which, 

along with the instantaneous error, gives an approximation of the gradient and hence, the 

direction of steepest descent on the error surface. The control filter update equation can 

then be written according to Eq. 2.4 as  

 w(t+1) = w(t) - µ2e(t)r(t), (2.9)              

which is called the least mean square (LMS) update. 

The fact that the instantaneous error can be used in an estimate of the gradient 

makes the FXLMS algorithm simple and easy to implement. It is a noisy estimate, but 

statistically a good one. Because it is a noisy estimate, the FXLMS algorithm does not 

exactly follow the path of steepest descent but is erratic. Figure 2.3 shows this erratic 

path that follows the general trend of the path of steepest descent. 
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Figure 2.3 Search paths on the contour plot of the error surface. The blue line is 
true path of steepest descent, and the red line is the path the FXLMS algorithm 

follows due to the noisy gradient estimate. 
 

2.2 Secondary path transfer function 

The reference signal filtered by an FIR estimate of the secondary path transfer 

function gives the filtered-x signal used in the control filter update. H(z) is estimated 

through a process called system identification (Sys ID). For this research, the Sys ID 

process is performed offline (before ANC is started). This is the preferred method for 

applications where the secondary path does not change significantly during operation of 

the ANC system due to its relative simplicity. Band-limited white noise is played through 

the control speaker(s) and the output is measured at the error sensor. The measured 

impulse response is obtained as a FIR filter, ĥ(t), which represents H(z) in the time 
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domain. The coefficients of ĥ(t) are stored and used to pre-filter the reference signal and 

give the input signal to the LMS update.  

The FXLMS algorithm is robust to errors in the estimation of H(z). As long as the 

poles of the transfer function H(z) are within the unit circle in the complex plane the 

algorithm will converge slowly. The distance from the origin to the poles is given by  

 d = [1 – βcos(Φ)] ½  (2.10) 

where β is assumed to be a small positive number for slow convergence and Φ is the 

phase difference between the actual secondary path transfer function, H(z), and the 

secondary path estimate. The distance from the poles to the origin can only be greater 

than one if cos(Φ) is negative. This puts a stability limit for phase errors of 

 cos(Φ) > 0, (2.11) 

or equivalently 

 -90º < Φ < 90º (2.12) 

This means that the algorithm will converge (slowly) as long as phase errors in 

the secondary path estimate are less than +/-90º 2.  Convergence time of the algorithm 

increases as the inverse of cos(Φ). Computer simulations show that phase errors less than 

45º do not significantly affect performance of the algorithm25.  

The gain applied to the reference signal by filtering it with ĥ(t) does not affect the 

stability of the algorithm and is usually compensated for by modifying the convergence 

parameter, µ. 
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2.3 FXLMS Convergence and Eigenvalues of Filtered-x 
Autocorrelation Matrix 

The shape and orientation of the error surface, and hence the path of steepest 

descent the algorithm will follow toward the optimum filter, are a function of the filtered-

x autocorrelation matrix defined as  

 )}()({ ttE
T
rrR = , (2.13) 

where E{} denotes the expected value of the operand which is the filtered-x signal vector, 

r(t), multiplied by the filtered-x signal vector transposed, rT(t). It is a square matrix with 

each dimension equal to the number of coefficients in the control filter (LxL). Expressing 

R in normal form, in terms of eigenvalues and eigenvectors, is helpful in describing the 

error surface. The eigenvalues of R are associated with the homogeneous equation  

 [ ] 0QIR =!
n

"  (2.14) 

where I is the identity matrix, Qn is a column vector (eigenvector), and λ is the 

eigenvalue which is a scalar variable.  The eigenvalues are the values of λ that render the 

bracketed matrix in Eq. 2.14 singular. These values are typically determined by setting 

the determinant of the bracketed matrix in Eq. 2.14 equal to zero and then solving for the 

eigenvalues, as shown by Eq. 2.15.  

 [ ] 0=! IR "  (2.15) 

 Since the autocorrelation matrix, R, is positive semidefinite, the L eigenvalues are 

all real and non-negative, though some of them may be zero.  The rank of the 

autocorrelation matrix gives the number of nonzero eigenvalues. The number of nonzero 

eigenvalues is twice the number of tones in the reference signal. For each eigenvalue, λn, 

there is a corresponding eigenvector, Qn. 
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 The eigenvectors of R define the principal axes of the error surface. In three 

dimensions, this corresponds to the major and minor axes of the elliptical mean-square 

error contours shown in Figure 2.2. The eigenvalues (multiplied by two) give the second 

derivative (curvature) of the error surface along the principal axes defined by their 

corresponding eigenvectors26. Convergence of the algorithm happens independently 

along each of the principal axes of the error surface and is governed by a unique 

geometric ratio. These ratios are 

  γ0 = 1-µ2λ0 
  γ1 = 1-µ2λ1 
  . (2.16) 
  . 
  . 
  γL-1 = 1-µ2λL-1 
  
 Movement along a principal axis for which the curvature is zero makes no 

difference in the mean-square error and hence eigenvalues that are zero are not 

significant to the convergence of the algorithm toward the optimum. The difference 

between the projections of w and w* onto the principal axes of the error surface 

decreases by these geometric ratios with each iteration of the algorithm (if the true 

gradient is known at each iteration). It is apparent then that for the algorithm to converge 

to the optimal solution and remain stable, |γ| < 1. This puts the following stability limits 

on the convergence parameter: 

 
max

1
0

!
µ <<  (2.17) 

where λmax is the maximum eigenvalue of the autocorrelation matrix. The larger the 

curvature in any dimension the smaller the step size needs to be to avoid overshooting the 

optimum and causing the algorithm to diverge.  
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In practice, it is computationally demanding to obtain a real-time estimate of the 

autocorrelation matrix, so the optimal µ is often selected through experimentation. In this 

work, the structure of the eigenvalues of a given ANC problem is explored using an 

offline estimate of the autocorrelation matrix. This is done in a numerical analysis 

program by taking an actual ĥ(t) model from a mock cabin enclosure, convolving this 

with a reference signal for the given noise application, computing the autocorrelation 

matrix, and getting the eigenvalues by solving Eq. 2.15. The “eig” function in Matlab was 

used to compute these eigenvalues from the autocorrelation matrix, R. 

  
2.4 Limitations of the FXLMS—Eigenvalue Disparity 
 

One of the limitations of the FXLMS algorithm is that it exhibits frequency-

dependent convergence behavior that can lead to a significant degradation in the overall 

performance of the control system. Two types of noise will be discussed as they relate to 

this limitation:  

(1) A single tone with time-varying frequency, such as engine noise, where the 

engine firing frequency changes along with the speed of the engine in revolutions 

per minute (rpm) during operation. It is assumed that the signal power of the tone 

in the reference remains the same, independent of frequency. This type of noise 

will be referred to as “swept tone noise”. 

(2) Noise containing multiple quasi-stationary tones, such as helicopter cabin noise, 

where multiple rotating parts contribute strong tones that do not vary significantly 

in frequency during normal operation.  This type of noise will be referred to as 

“multiple tone noise”. 
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Swept tone noise is treated by Thomas15 and though not a main focus of this thesis, a 

discussion of it here provides a useful background in explaining multiple tone noise.  

For a single tone input there will be two nonzero eigenvalues of the input 

autocorrelation matrix. The eigenvalues will change as the input changes in frequency 

since the gain applied by filtering the input with the secondary path estimate is frequency 

dependent, and/or the amplitude of the reference changes with frequency. If we assume 

that the power of the reference signal is constant, the gain (which varies with frequency) 

applied to the reference signal in filtering it with ĥ(t) makes the power of the filtered-x 

signal vary with frequency. This makes the eigenvalues of the input autocorrelation 

matrix and the optimal step size vary with the frequency of the tone in the noise. 

If a monofrequency reference signal is used, λmax can be computed for that 

frequency.  If the simulation is repeated over a range of frequencies, λmax for a single tone 

at each frequency in that range can be found.  For control of a single tone, λmax is the only 

eigenvalue of interest since it will determine the convergence of the algorithm for that 

frequency. Figure 2.4 shows an offline simulation of the maximum eigenvalues over 

frequency using an actual ĥ(t) from a mock cabin enclosure, and equal amplitude tonal 

inputs from 0-300 Hz along with a plot of the magnitude of the secondary path estimate. 

The maximum eigenvalue at each frequency is plotted in red and the magnitude of the 

secondary path estimate is plotted in blue. Both curves in the figure have been 

normalized to the largest value in the range. The maximum eigenvalues at each frequency 

follow the trend in the magnitude response of H(z). The disparity in λmax over frequency 

shows how the convergence of the algorithm will change as it controls a single tone 

swept through this range.  
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Figure 2.4 Maximum eigenvalues for single tone inputs at each frequency 
(red) and secondary path estimate magnitude (blue).  

 
The largest eigenvalue for a single tone occurs at about 125 Hz. This location 

corresponds to the largest µ that is stable for the entire frequency range from 0-400 Hz as 

given by Equation 2.17 All other frequencies have a smaller maximum eigenvalue and 

could use a larger µ, and still be stable, if just that particular frequency was targeted for 

control. Frequencies at the valleys of Figure 2.4 have the smallest eigenvalues and could 

use the largest µ’s and still be stable, again if they were the only frequencies targeted for 

control. The larger µ’s are especially desirable for non-stationary noise as they lead to 

faster convergence and increased attenuation. When the tone shifts in frequency faster 

than the controller can reduce the error to its steady state level, overall attenuation will be 

increased for larger values of µ. 

Since a single µ is used by the algorithm, the largest of the maximum eigenvalues 

for the range of frequencies must determine the maximum µ that can be used while 

maintaining system stability for the entire range. The convergence parameter is then 

optimized for one frequency (that corresponding to the largest eigenvalue) in the range of 

the sweep, but not for all frequencies in the range. When the algorithm is controlling a 
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tone in a frequency range other than that frequency for which µ was optimized, 

convergence will be slower. Tracking and convergence at some frequencies will be slow 

leading to reduced performance of the control system.  

There is a similar limitation for noise with multiple quasi-stationary tones. For 

multiple tone noise, the eigenvalues are not computed for individual tones as before, but 

for the composite reference signal containing all tones to be controlled. In this case, the 

disparity among all of the nonzero eigenvalues, not just λmax at each frequency, gives 

information about how the algorithm will converge. The number of nonzero eigenvalues is 

the same as the rank of the filtered-x autocorrelation matrix, or twice the number of tones 

in the reference. Figure 2.5 shows the composite eigenvalues for a multiple tone 

reference signal (two per tone) compared to the maximum eigenvalue over frequency 

computed for single tone inputs as in Figure 2.4. The eigenvalues turn out to be slightly 

different when calculated for single tone inputs and for a composite reference with all 

tones combined, though the latter closely follow the trends in the eigenvalues computed 

for single tone inputs. Circles mark the two eigenvalues per tone computed from the 

composite reference signal for each tonal frequency. The two circles are close enough to 

each other on the logarithmic ordinate that they appear as one.  
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Figure 2.5 Maximum eigenvalues calculated for single tone inputs at each 
frequency in the range 20-300 Hz (blue line) and all 12 nonzero eigenvalues (black 

circles) for composite reference with six tones at frequencies marked by black 
circles.  

 
 If there is noise present in the reference signal the autocorrelation matrix may 

become full rank; however the number of significant eigenvalues remains twice the 

number of tones in the reference. All other eigenvalues will be very nearly zero. The 

greater the disparity in the nonzero eigenvalues the more eccentric the contours of the 

error surface become. Again, µ must be chosen based on the largest of the nonzero 

eigenvalues to keep the algorithm from diverging. The convergence parameter can be 

optimized within stability limits set by λmax of the nonzero eigenvalues to give fast 

(optimal) convergence along one of the principal axes (the one with the largest 

eigenvalue), while convergence along others will be slower according to Eq. 2.16, since 

the step size used will be significantly smaller than the optimum dictated by the curvature 

for that axis. Variable convergence along different principal axes means that tonal 

components of the noise will converge at different rates. The algorithm will be able to 
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attenuate portions of the total noise quickly while other tones in the noise will linger and 

take longer to converge making the overall error signal converge more slowly.  

 
2.5 Excess Mean-Square Error (MSE) and Misadjustment 
 

In addition to the convergence rate of tonal components of the error signal, 

“misadjustment” errors that prevent the algorithm from converging to the true optimal 

solution depend on the eigenvalues of the autocorrelation matrix.  

The FXLMS algorithm uses the method of steepest descent to arrive at the 

optimum filter coefficients. As the algorithm converges and w approaches w*  the 

gradient approaches zero. This means that if the true gradient was known at each iteration 

the algorithm would stop when it reached the optimum since according to Eq. 2.4 each 

subsequent set of filter coefficients would be identical to the previous ones and a steady 

state solution would be reached. Since a noisy gradient estimate is used, even at or very 

near the optimum the gradient will not be zero and the algorithm continues to search. 

This causes the algorithm to randomly vary around the optimum, sometimes moving 

away from the optimum and increasing the mean square error of the error signal. Figure 

2.6 shows the random searching process near the optimum. 
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Figure 2.6 Random searching of FXLMS algorithm near the optimum due to 

gradient search noise.  
 
The increase in mean square error due to this random searching near the optimum is 

known as misadjustment error. Increasing µ  increases the misadjustment error because 

the algorithm will randomly step farther from the optimum, “climbing” higher up the 

sides of the hyperparaboloid where the MSE is larger. Decreasing µ  improves 

misadjustment, but slows down convergence of the error signal. Generally µ is chosen to 

compromise between fast convergence and acceptable misadjustment error. 

Misadjustment error also increases as the disparity in the eigenvalues increases27.  

 
2.6 Multiple Tone Noise and Reference Signals 
 
 A feedforward implementation of ANC requires that a reference signal be 

obtained from the noise source(s). The control signal is derived from this reference signal 

through a filtering process which makes adjustments to the magnitude and phase of tonal 

components of the reference signal; there is no signal generation performed by the 

controller or control filter, only filtering. Attenuation can only be achieved for frequency 

content that is present in the reference signal. If only the fundamental frequency of a 
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disturbance is in the reference signal only the fundamental can be controlled and not the 

harmonics. To control harmonics, they must either be generated from the fundamental or 

the reference signal must be obtained in such a way that the harmonics are also present. 

Thus, the more closely the frequency content of the reference signal matches that in the 

noise, the more attenuation is possible.  

In some cases, an acoustic reference signal is obtained by directly sampling the 

acoustic field near the noise source. Because it is directly sampled from the sound field, 

this type of reference will, in general, have all of the frequency content necessary to 

cancel all of the unwanted noise. In practice, however, an acoustic reference can be 

problematic. Open feedback paths from the control signal can lead to corruption of the 

reference signal, poor performance, and algorithm instability 28. 

 These problems can be circumvented for periodic noise by using a non-acoustic 

reference signal. There are various ways to do this. For rotating machinery, an optical 

sensor or a Hall (magnetic) sensor may be used to obtain a reference signal. For noise 

associated with the engine firing frequency, a reference signal can be obtained either 

from a rotating part of the engine (and multiplied by the appropriate ratio to get the firing 

frequency) or directly from a magneto. In any case, the reference signal would likely be 

some sort of periodic non-sinusoidal wave— something resembling a square pulse or 

sawtooth wave or something in between. Rarely would the reference signal be a pure 

sinusoid at the fundamental frequency without first conditioning the signal. This is 

actually advantageous. These types of signals contain not only the fundamental, but also 

higher harmonics which will, in general, be present in the noise as well and can then be 

controlled. The relative weights of the harmonic components depend on the shape of the 
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reference signal; typically the fundamental will be the strongest with the harmonics 

decreasing as frequency increases. There may be some periodicity to the weights of the 

harmonic components.  

The shape of the spectrum for a square pulse depends on the length of the duty 

cycle. For example, a perfect square wave (50% duty cycle) will have only odd 

harmonics that decrease as frequency increases. However, tachometers rarely produce a 

perfectly symmetric square pulse and even harmonics will also be present. A shorter duty 

cycle will in general give a flatter spectrum with significant harmonics higher in 

frequency. Figure 2.7 shows time waveforms and spectra typical of these types of 

tachometer signals. Figure 2.8 shows an actual unprocessed reference signal containing 

tonal components from the engine of a Robinson R44 helicopter. This reference signal 

was taken from the magneto and thus had the engine firing frequency and harmonics.  

 
Figure 2.7 Waveforms (left column) and spectra (right column) for signals 

generated by typical non acoustic reference sensors. All plots in the figure are linear 
amplitude.  



29 

 

 
Figure 2.8 Tachometer signal from engine magneto on a Robinson R44 helicopter, 
giving engine firing frequency fundamental (136 Hz) and harmonics (272 and 408 

Hz). 
 

 
 Several methods have been proposed to generate a reference signal with the 

appropriate frequency content and relative tonal amplitudes from these various types of 

tachometer signals. These are outlined in block diagram form in Figure 2.9. In waveform 

synthesis29-30, the tachometer signal is only used to get an estimate of the fundamental 

frequency through FFT or autocorrelation methods. From this information a pure 

sinusoidal reference can be generated that has the same frequency as the tachometer. 

Harmonics can also be generated and added to the fundamental to get a multi-tonal 

reference signal. The advantage to this method is that the user can control the number of 

harmonics generated and their amplitudes. The difficulty in practice of waveform 
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synthesis is that high sampling frequencies and long time records are required to get high 

enough frequency resolution to get a good estimate of the fundamental frequency. 

 

 
Figure 2.9 Block diagrams of different reference generation schemes. 

 
 Alternatively, the tachometer signal can be used to synchronize a square pulse 

generator. The user specifies the length of the duty cycle and hence has some control over 

how many harmonics are present and their relative amplitudes. Often a low pass filter is 

used in conjunction with the square pulse generator where harmonics higher than those 

desired in the reference are present. This method does not require long sample records 

since no frequency domain analysis is necessary. With significant additional filtering, the 

amplitudes of the tones present in the resulting reference signal can be set to desired 

values.  

 One other method of generating a multitone reference is using nonlinear 

trigonometric transforms. To do this the tachometer signal is first processed to get a 

sinusoid at the fundamental frequency. This can be done as described before with a sine 
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wave generator or using low-pass or band-pass filters to isolate the fundamental from the 

tachometer signal. Harmonics can be generated by performing nonlinear trigonometric 

transforms on this fundamental signal (Table 2.1). The user can define the amplitudes of 

the harmonics (A2, A3, … , AN) in relation to the fundamental with this method.   

Table 2.1 Nonlinear trigonometric transform equations 
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 When several noise sources are present, reference signals from each containing a 

fundamental and harmonics can be obtained and treated individually by separate 

controllers each creating a control signal that cancels the noise contribution from its 

source. The control outputs can be combined and use the same control sources, though 

this does require multiple control filters. Alternatively, the reference signals from each 

noise source can also be combined to produce a single reference signal containing tonal 

contributions from all noise sources and sent to a single control filter. This is simpler in 

that a single control filter can be used; however, combining multiple reference signals 

into a single composite reference signal further complicates the trends in tonal weights 

over frequency. As an example of such a case, a helicopter has three main noise sources: 

the engine, main rotor and tail rotor. Figure 2.10 shows what a combined reference signal 

from all three sources might look like. Figure 2.11 shows a power spectrum of the 

interior cabin noise measured at the pilot’s position for the Robinson R44 helicopter. 

Prominent tones are marked with colors that indicate the source of that tonal component 

in the noise. 
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Figure 2.10 Composite reference signal for three major noise sources (engine, main 
rotor and tail rotor) on a Robinson R44 helicopter. Blue lines are the engine tones, 

red are tail rotor tones, and green are the main rotor tones. 
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Figure 2.11 Interior cabin noise at pilot’s position with noise source of prominent 

peaks identified 
 

 In summary, for feedforward ANC to be effective, a good reference signal that 

properly characterizes the noise to be cancelled is important. Non-acoustic references 

from tachometer signals allow for simpler and more robust implementation of the 

FXLMS algorithm and generally require some conditioning. Unless significant 

conditioning of the signal is done, multi-tone reference signals have non-uniform tonal 

amplitudes over frequency. When these types of reference signals are used, disparity in 

the eigenvalues comes not only from the gain of the secondary path estimate, but also 

from the non-uniform amplitudes of tones in the reference. 
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CHAPTER 3- EIGENVALUE EQUALIZATION FILTERED-
X LEAST MEAN SQUARE (EE-FXLMS) ALGORITHM 
 
 
3.1 Equalization of Eigenvalues 

In Section 2.3, the frequency dependent convergence behavior of the FXLMS 

algorithm was explained by looking at the eigenvalues of the filtered-x autocorrelation 

matrix. The largest eigenvalue dictated the upper stability limit for the convergence 

parameter. The frequency corresponding to the smallest eigenvalue(s) will converge at 

the slowest rate of all the tones for that constrained value of µ. This slowest rate will 

determine the overall convergence rate of the error signal. 

It has been shown that the FXLMS algorithm reaches a limit for maximum 

efficiency when all of the eigenvalues are equal. This corresponds to an error surface 

whose mean-square error contours are circular since the curvature is the same along any 

of the principal axes (see Figure 3.1). On this type of error surface the path of steepest 

descent is a straight line from any point on the surface to the optimum31. This is the 

shortest path to the optimum. Furthermore the geometric ratios governing convergence 

rates along the principal axes will all be equal and convergence at all frequencies will be 

uniform.  
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Figure 3.1 Normalized error surface with circular contours. The path of 

steepest descent (black line) is a straight line from the starting point, w, to the 
optimum, w*. 

 
If the variance in the eigenvalues of the autocorrelation matrix is minimized, a 

single convergence parameter could then be chosen that would be nearly optimal for all 

frequencies targeted for control and the algorithm would converge at nearly the same rate 

at all frequencies or for all modes of convergence. Additional misadjustment error due to 

eigenvalue disparity will also be reduced. The primary goal of this research then is to 

introduce a method to equalize the eigenvalues of the input autocorrelation matrix. The 

resulting algorithm is called the Eigenvalue Equalization FXLMS (EE-FXLMS) 

algorithm. This algorithm was previously introduced for single tone noise and shown to 

improve convergence and tracking for single tone noise15. The current work extends this 

idea by further applying eigenvalue equalization techniques to multiple tone noise.  

The eigenvalue span, defined as λmax divided by λmin, is used as a metric to 

quantify any improvement in the eigenvalue disparity. This ratio is the most important 

property, as any change in the actual magnitude of the eigenvalues is compensated for by 

making a complementary adjustment to the magnitude of the convergence parameter, µ. 
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3.2 Methods of Equalization  

The autocorrelation matrix is directly dependent on the filtered-x signal, which is 

computed by filtering the input reference signal, x(t), with Ĥ(z). Thus, any attempt at 

equalizing the eigenvalues must be done by altering either the reference signal or the 

secondary path model. Adjusting the power of the reference signal has been shown to be 

an effective way of doing this8-9; however, in many applications this amount of control 

over the reference signal is not feasible. We focus on making changes to Ĥ(z) only, using 

the reference taken more or less directly from the tachometer. The reference is minimally 

conditioned so that all desired frequency content is represented, though the amplitude of 

each tone is arbitrary. For this research we assume that the reference contains all 

necessary frequency content to control tones present in the noise, but that the user has no 

control over the amplitudes of the tones in the reference. 

For the EE-FXLMS algorithm, the FIR estimate of the secondary path is replaced 

with a new FIR estimate that has the same phase response as the original estimate with a 

different magnitude or gain response. The magnitude response of the new FIR estimate is 

the inverse of the amplitude of tones in the reference. This is intended to equalize the 

power of tonal components in the filtered-x signal, which in turn would equalize the 

eigenvalues of the filtered-x autocorrelation matrix. These adjustments to the secondary 

path estimate are made in the frequency domain. This change means that the Ĥ(z) used to 

give the filtered-x signal is no longer a good estimate of the true secondary path. The 

errors introduced to the magnitude of the secondary path estimate only affect the 

eigenvalues and hence the rates of convergence of the algorithm, but do not affect 
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stability. This is all done offline as part of the set up of the ANC system and does not 

increase the computational load on the ANC system during operation. 

First, the FFT of the FIR filter obtained in the System Identification (Sys ID) 

process is separated into magnitude and phase. The phase of the original secondary path 

transfer function estimate is preserved while the magnitude coefficients are adjusted to 

have the inverse trend of tones in the reference signal. The new magnitude coefficients 

are combined with the original phase response and transformed back into the time 

domain via an inverse FFT, giving a new FIR filter estimate of the secondary path.  

 

3.2.1 Eigenvalue equalization applied to swept tone noise 

For swept tone noise, the amplitude of the tone in the reference is assumed to be 

independent of frequency and hence the magnitude response of the new FIR filter 

estimate is made to be flat. To accomplish this, the secondary path estimate is made via 

the offline process described in Section 2.2. The coefficients of the FIR filter representing 

H(z) are transformed into the frequency domain using the Fast Fourier Transform. The 

complex coefficients are divided by their magnitude and multiplied by the mean magnitude 

over all frequency. These new coefficients are inverse Fourier transformed back into the 

time domain to get a new FIR filter with flat magnitude response (at data points) and a 

phase response equal to the original (at data points).  

Figure 3.2 shows the original eigenvalues and the modified eigenvalues when the 

magnitude coefficients of Ĥ(z) are flattened. In the figure, the eigenvalues for both the 

original and modified cases have been normalized by the largest of the maximum 

eigenvalues in the range. The span for the original eigenvalues in this range (0-300 Hz on 
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the plot) is 1.385 x 105 and the span for the flattened magnitude Ĥ(z) is 162.3. These 

modifications to Ĥ(z) make a noticeable improvement in the performance of the 

algorithm. The more uniform rate of convergence of all modes of the system is beneficial 

as it speeds up the overall convergence of the error signal. For dynamic signals, this 

increased rate of convergence often equates to greater attenuation, as it also results in 

more rapid tracking. 

 

 
Figure 3.2 Normalized original and modified eigenvalues by frequency for 

single tonal inputs. 
 
The eigenvalues are much more uniform, but still not perfectly uniform. This is 

due to the finite resolution of the digital system and of the sampled secondary path 

estimate. The shape of the magnitude response, Ĥ(z), can only be constrained to a given 

value at its respective frequency bins; there is no guarantee that the response of Ĥ(z) is 

also flat between frequency bins. This variation between bins is not random but cannot be 

predicted. The same is true for the phase response of the filter. As an example, a 128 

coefficient Ĥ(z) model sampled at 2000 Hz will have a frequency resolution of 15.625 

Hz. For swept tone noise, the system may be excited at any frequency in the range of the 

application.  
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An estimate of the “analog” or continuous response of Ĥ(z) between frequency 

bins can be made by zero padding the 128-coefficient model before computing the Fast 

Fourier Transform (FFT). The 128-coefficient frequency response (circles) and the zero 

padded frequency response (solid line) for the original (blue), and flattened (red) 

magnitude coefficients of Ĥ(z) from a mock cabin are shown in Figure 3.3.  

 

 
Figure 3.3 Plot of the 128-coefficient frequency response (circles) and the zero 

padded frequency response (solid line) for the original (blue), and flattened (red) 
magnitude coefficients of Ĥ(z) from a mock cabin. The dashed line shows that 

drawing a line through the 128-coefficient frequency response points gives a flat 
line. 

 
The length of the zero padded filter was 2048 coefficients giving a frequency 

resolution of 0.98 Hz. The discrete magnitude response is indeed flat at the frequency bin 

values, but the zero-padded model shows that the true response deviates from flat in 
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between bins.  This magnitude variation between frequency bins in Ĥ(z) contributes to 

the residual variation seen in the modified eigenvalues for the range.  

Another source of variation may come from frequency leakage when the 

reference signal gets down-sampled before being convolved with ĥ(t). Before being 

convolved with ĥ(t), the reference signal is down-sampled with the same sampling 

frequency as was used to find ĥ(t); for this example, 2000 Hz was used. In addition, only 

n number of samples of the reference signal are kept at a given time, where n is the 

number of coefficients in ĥ(t); for this example, 128 was used. This down-sampling 

process causes amplitude estimation error in the frequency domain due to leakage. Thus 

if the original reference signal is assumed to be equally weighted at each frequency, as 

was done to create the eigenvalue simulations shown in Figures 3.2 and 3.3, the actual 

reference signal used in those simulations is no longer equally weighted over frequency. 

This also contributes to residual variation in the eigenvalues. 

Similarly, Figure 3.3 also shows the original, flattened, and zero padded flattened 

phase response of Ĥ(z) from a mock cabin. The modified phase response matches the 

original phase response at bin values, but deviates from it between bins. Figure 3.4 plots 

the difference between the original and modified phase response. If flattening the 

magnitude response of the secondary path estimate introduces errors in excess of 45º in 

the range, performance will be significantly compromised, and errors exceeding 90º will 

make the algorithm have instability problems at those frequencies2,25. A slightly more 

conservative limit of 40º phase error is marked by a green line and the 90 degree limit for 

stability is marked by red lines on the plot.  
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Figure 3.4 Phase errors introduced by modifying the magnitude response of the 

secondary path estimate. 
 

In some places the error between the zero padded responses of the original and modified 

phase response exceeds 40º and 90º. While the errors in the original model of the 

secondary path are not known, it is assumed that it is a better estimate than the modified 

secondary path model. 

 

 3.2.2 Eigenvalue equalization applied to multiple tone noise 

When multiple noise sources are present, a reference signal may be obtained from 

each and combined into a single reference signal. In some cases, the reference signal will 

contain a fundamental frequency and harmonics from a single noise source. In either 

case, the combined tones in the reference signal will in general have different amplitudes 

unless conditioned as discussed in Section 2.6. This weighting of the reference tones will 

be specific to each application and depends on how the reference signals are conditioned 

and combined. This frequency-dependent weighting of the reference tones, as well as the 

gain applied by the secondary path estimate contribute to the eigenvalue disparity for 

multiple tone noise and simply flattening the magnitude may not necessarily reduce 
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eigenvalue disparity. For multiple tone noise in this research, an arbitrary (but specific, 

for consistency) weighting was applied to the tones in the reference signal. The amplitude 

of the reference signal tones was defined by: 

 1.18f*0.0036-  Amplitude Tonal +=  (3.1) 

This gave a decreasing trend in amplitude for increasing frequency that ranged from 1.0 

at 50 Hz to 0.1 at 300 Hz. All tones included in the multiple tone noise test signals were 

in this range. Reference signals that had tonal amplitudes defined by Eq. 3.1 are termed 

“weighted” reference signals to distinguish them from reference signals that have tones 

with equal amplitudes which are termed “equal” reference signals.  

To equalize the eigenvalues when the tones in the reference are arbitrarily 

weighted, a trend line connecting the peaks of the tones (on a power spectrum plot) in the 

reference is drawn. The inverse of this line gives the desired trend for the magnitude 

coefficients in Ĥ(z), which here corresponds to the inverse of Eq. 3.1. Since the tonal 

amplitudes for the test case were specified, obtaining the inverse trend line was straight 

forward. In actual implementation, an offline “Ref ID” process would also be required. 

This would entail recording the reference signal under normal operating conditions for 

the system at the sampling frequency used by the controller. The desired magnitude trend 

for the modified Sys ID filter could be obtained from the Fast Fourier Transform (FFT) 

or power spectrum plot of the reference. 

This type of modified Ĥ(z) is designated as an “x-inverse” model. Figure 3.5 

shows the trend line for the amplitude of tones in the reference as given by Eq. 3.1, the 

desired magnitude response for Ĥ(z),  and the zero padded response for a 128-coefficient 

x-inverse model. All curves have been normalized in the figure.  
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Figure 3.5 Reference tone amplitude trend line (black line) for multiple tone noise 

signals with desired magnitude response (blue) and 128-coefficient (red circles) and 
zero padded (red line) x-inverse model magnitude responses.    

 
As before, the response of the filter between bins deviates from the trend assigned 

to the coefficients. The length of the FIR filter model of Ĥ(z) was increased from 128 to 

256 to double the resolution in an attempt to constrain the magnitude response between 

bins to follow more closely the desired trend. The result is shown in Figure 3.6. The 

result is that the magnitude response matches the desired curve at more points; however, 

deviation from the desired trend in between these points is not necessarily improved. The 

same is true for the phase response. 
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Figure 3.6 Reference tone amplitude trend line for multiple tone noise signals with 

desired and zero padded x-inverse model magnitude responses.    
 

Thus, an x-inverse model will reduce the eigenvalue variation only for some 

cases. If the tones in the reference are chosen to correspond exactly to frequency bin 

values, the eigenvalues are much more uniform using the x-inverse model than using the 

original model. However if the tones lie off these frequency bin values, the eigenvalue 

span can be worse than for the unmodified Ĥ(z). 

Two reference signals containing six tones were made for comparison; one with 

all six tones on frequency bins (62.5, 93.75, 125, 171.875, 203.125, and 296.875 Hz) and 

the other with these tones shifted slightly to lie between bin values (50, 100, 130, 180, 

200, and 280 Hz). The eigenvalues and eigenvalue span for these weighted reference 

signals with the original and x-inverse Ĥ(z) models of different lengths were calculated 

and are reported in Table 3.1. 
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Table 3.1 Comparison of eigenvalue span for original and x-inverse models for 128-
coefficient and 256-coefficient filters and tones on and off of frequency bin values. 

 On Bins Off Bins 
 original x-inverse original x-inverse 

Sys ID length 128 256 128 256 128 256 128 256 
340.65 373.87 33.73 33.75 268.54 296.75 73.99 156.91 
323.63 353.49 32.91 32.62 268.69 296.70 73.72 157.69 
107.37 78.24 31.16 30.88 82.83 45.25 34.18 39.41 
96.17 76.10 30.26 30.16 81.92 44.50 34.02 39.25 
68.90 42.42 28.21 28.03 39.29 30.91 12.00 36.10 
67.46 42.08 26.13 26.09 38.61 30.22 11.97 37.48 
57.52 34.77 24.14 24.18 18.41 9.73 10.10 21.34 
55.16 32.32 22.62 22.72 18.37 9.70 10.07 21.18 
13.08 14.40 16.52 16.50 1.68 4.66 6.49 12.11 
12.15 13.27 17.39 17.31 1.65 4.58 6.16 12.72 
0.08 0.17 18.80 19.20 1.25 1.25 5.00 0.16 

Eigenvalues 
for 

composite 
signal 

0.08 0.17 18.29 18.43 1.24 1.24 4.63 0.16 

span 4328.5 2162.4 2.0 2.0 216.8 238.5 16.0 990.5 

  
 
When the tones lie on the frequency bins, the x-inverse model gives a significant 

improvement in the eigenvalue span. For off-bin frequencies the x-inverse model is better 

than the original for the 128-coefficient filter, but not as good as when the tones are on 

bins. When the filter length is increased to 256, the span for the x-inverse model was 

worse than the original model for off bin tones. The span for the x-inverse model with 

256 coefficients went from 239 to 991, likely because the magnitude response of the x-

inverse model goes almost to zero at 200 Hz (see Figure 3.6). Increasing the resolution by 

using a longer filter does not (at least in some cases) improve the eigenvalue span. 

Because it is unlikely that the reference signal will contain frequencies that only 

correspond to the frequency bins of Ĥ(z), the x-inverse method is inadequate since it can 

result in an eigenvalue span that is worse than the unmodified Ĥ(z). 

The eigenvalue span for the 128-coeffficient x-inverse model and tones at off-bin 

frequency values was reduced significantly over the original model from 217 to 16. 
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However, Figure 3.7 shows that the phase errors introduced exceed stability limits near 

several tones in the reference. Green and red horizontal lines mark 40 and 90º of phase 

error between the original and modified phase response and vertical dashed lines show 

the positions of off-bin reference tones.  

Phase errors introduced into regions where no tonal components of the noise are 

being controlled will not affect the stability or performance of the system. For helicopters 

the tones in the noise are very stable and do not shift in frequency significantly; however, 

phase errors very near those tonal frequencies are potentially problematic for both 

stability and overall performance of the ANC system.  

 
Figure 3.7 Phase difference between 128-coefficient original and x-inverse models 

with reference tones off frequency bin values. 
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In this case even though the eigenvalue span was improved, the x-inverse model would 

not work well if used in ANC since instability and poor performance would result from 

the phase issues. This is another reason the x-inverse method is inadequate.   

The inability to control the magnitude and phase response of the secondary path 

estimate in between frequency bin values and the unpredictable changes that occur in 

each when the magnitude coefficients of the original model are modified make the x-

inverse method of eigenvalue equalization inadequate. A genetic algorithm approach was 

developed to optimize the magnitude coefficients, and which can overcome these 

difficulties for multiple tone noise.  

 
3.3 Genetic Algorithm Optimization of Secondary Path Estimate 

Magnitude 
 

A genetic algorithm was used to investigate the possibility of getting more 

uniform eigenvalues for specific multiple tone noise cases. Optimizing the magnitude 

coefficients of Ĥ(z) in ways other than those described previously may lead to improved 

eigenvalue span, but are not intuitive. Genetic algorithms (GA’s) have gained 

considerable popularity in recent years for their ability to solve problems with a large 

number of design variables, multiple local minima and maxima, non-differentiable 

functions, or some combinations of these32-33. They can work well for both discrete and 

continuous variables. GA’s mimic the natural selection process in nature. Individuals 

with the best “fitness” survive and have the opportunity to reproduce. Parents are chosen 

from the most fit individuals of a population of randomly generated designs. They 

exchange and pass on their genetic information to offspring which inherit desirable traits 

from the most fit individuals from the previous generation. As in nature, mutations are 
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introduced occasionally to provide for random variation. Parents and children compete to 

be included in the next generation. As the generations progress the probability that the 

most fit design in the generation is the global optimum for the design space increases.  

The genetic algorithm cycle used to optimize the magnitude coefficients of Ĥ(z) 

can be broken down into nine steps. There are multiple ways of implementing each step, 

each with different advantages and disadvantages. All of these options will not be 

discussed. Only the methods used in the GA developed for this work will be discussed 

here. An explanation of all of the various ways of implementing a genetic algorithm, 

including those used here, is found in the course notes for an optimization based design 

course offered by the Mechanical Engineering Dept. at BYU34. A brief description of 

each step is now given. 

1. Determine a coding for the design 

Each design in a GA consists of a number of independent variables chosen by the 

designer. Each independent variable is called a “gene” and is coded in a “chromosome.” 

Thus, one design, or chromosome, is a set of variables, or genes. As the desired result of 

the algorithm was to obtain an optimized impulse response model, ĥ(t), that could be 

used in physical experimentation, a 128, or 256 coefficient ĥ(t) for the mock cabin was 

obtained by the Sys ID process described in Section 2.2. The FFT of ĥ(t) was then taken, 

and the magnitude and phase was calculated. Phase information of Ĥ(z) was preserved in 

a vector. The magnitude information of Ĥ(z) was discarded, as the GA was implemented 

to find the optimal magnitude coefficients by making each unknown magnitude 

coefficient a gene. Each design then contained 64 or 128 genes, representing the 
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unknown 128 or 256 magnitude coefficients of Ĥ(z) (since they are mirrored about the 

Nyquist frequency).  

2. Generate an initial population of size N 

Once the coding scheme for a single design was established, a population of N 

designs was randomly generated. This was done by randomly assigning a value between 

a specified allowable minimum and maximum value for each gene (magnitude 

coefficient) in the design. The process was repeated N times to generate the entire 

population. In general, designs with many genes require large population sizes to 

maintain adequate diversity. The allowed range for gene values in this case was .01 to 10 

and a population size of 500 random designs was used.  

3. Calculate fitness for each design 

After the initial population was randomly generated, each design was evaluated 

and assigned a fitness value. Each randomly generated set of magnitude coefficients was 

recombined with the stored phase information, and the inverse FFT was taken to get a 

new unique model for the impulse response, ĥ(t). This new model was used to compute 

the eigenvalues of the filtered-x autocorrelation matrix in the same manner as explained 

in Section 2.3.  

The fitness value was simply the span (λmax divided by λmin) of all nonzero 

eigenvalues. In addition, a penalty was applied to any design whose phase response was 

in error by more than 40º in a range of +/- 5 Hz around each of the tonal frequencies in 

the multiple tone noise. This was done to decrease the design’s sensitivity to tonal 
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frequencies shifting. Constraining the phase in this way ensures that the algorithm will 

remain stable for small changes in the tonal frequencies. Designs whose performance 

would be hindered by the phase error introduced by altering the magnitude response were 

assigned a poor fitness value. 

4. Selection of parents 

A tournament selection process was used to choose parent designs from the 

population. A specified number of designs were randomly selected to compete in the 

tournament. The design with the best fitness wins the tournament and was made a parent 

design. The smaller the tournament size the more likely a design with poor fitness will be 

chosen to be a parent. A relatively small tournament size of 5 was used. This process was 

repeated until enough parents had been selected to make N children; a set of two parent 

designs producing two children.  

5. Perform crossover 

A process called crossover exchanged traits from each parent design and created 

children designs. In this way, new designs were made that had traits from each parent. 

For this thesis, blend crossover was used. In blend crossover, genes from both parents are 

blended to make two new children genes. This occurs gene by gene. First a random 

number between zero and one is chosen for each gene to determine whether crossover 

will occur. If the random number is larger than the user defined crossover probability no 

crossover occurs. The genes for the children, c1 and c2, are equal to the parent genes, p1 

and p2 respectively, so that if no crossover occurs for any genes in the design the children 
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will be identical to the parents. If the random number is less than the user specified 

crossover probability another random number is chosen. If it is <0.5, the blend parameter, 

a, is calculated by 
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The children genes c1 and c2 are created from the parent genes p1 and p2 by 

 211 )1()( papac !+=  (3.4)  

 212 )()1( papac +!=  

The value of η is chosen by the user. As η → 0, the crossover becomes uniform, 

meaning that c1 = p1 and c2 = p2.  As η → ∞,  a → ½ and the children’s genes are the 

average of the parent’s gene values. 

The crossover probability was chosen to be 50% and η was 0.5.  

6. Perform mutation 

After crossover, some of the genes in the children designs are mutated. Mutation 

provides for diversity and occasionally introduces new beneficial information into a 

design. Higher mutation probability maintains more diversity in the designs as the 

generations progress and can help the algorithm avoid converging on a local optimum in 
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the design space. Mutation can be made dynamic allowing for high diversity initially, 

keeping the algorithm from settling prematurely in a local optimum. In later generations 

mutation is constrained, allowing the algorithm to randomly make fine adjustments to the 

design once it is near what is hoped to be the global optimum. Initially, mutation can 

cause the gene to become any value in the allowable range for that gene. By the last 

generation, when mutation occurs the new value for the gene is only allowed to have a 

new value that is very close to the original. The probability of mutation occurring does 

not change, only how different the mutated gene is allowed to be from its pre-mutation 

value. This is done by introducing a dynamic mutation parameter α, 
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where n is the current generation number and N is the total number of generations. The 

exponent, β, is a user defined parameter that weights the dynamic function of α. If β = 0, 

α will always be one and the amount of mutation allowed will be uniform for all 

generations. If β is greater than zero the amount of mutation allowed decreases as the 

generation number increases.  

A random number is chosen to determine whether mutation will occur for each 

child gene. If the random number is less than the user-specified mutation probability, 

another random number, cmut, is chosen within the allowable range for that gene. If cmut is 

less than the current value for the gene the new gene value is 
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and if cmut is greater than the current value for the gene the new gene value is 
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The mutation probability was chosen to be 50% and β was set to 0.5. The values 

for cmin and cmax were 0.1 and 10 which were the maximum and minimum values allowed 

for any gene when the population was originally generated. 

7. Measure fitness of children 

Once all of the children were created through crossover and mutation, the fitness 

value of each child was computed in the same way as described in Step 3. 

8. Perform elitism 

Once each child design has a fitness value, parents are made to compete with 

children in a process called elitism. All of the parents and children are sorted by their 

fitness value and the N number of designs with the best fitness value become the starting 

generation for the next iteration of the algorithm. Elitism increases the evolutionary 

pressure on the population.  

9. Repeat Steps 4 – 8 for M number of generations 

Steps 4-8 were repeated for M number of generations. The number of generations 

needed to be large enough to allow the algorithm to converge on an optimum design. This 

was determined experimentally. The GA was run for 50 generations. If the fitness of the 

best design in each generation was still decreasing when the algorithm stopped, it was 

continued for another 50 generations using the final generation from the first run as the 
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first generation of the next run. Since the GA was restarted, dynamic mutation was reset 

introducing higher mutation again in the early generations of the second GA run. 

 

3.4   Genetic Algorithm Results 

The genetic algorithm was only run for the reference signal containing six off bin 

tones as this is the more general case, for 128 and 256 filter coefficients. Figures 3.8-3.10 

show the fitness of the best design in each generation of the genetic algorithm. The 128-

coefficient model was only run once. The 256-coefficient model was run twice since after 

the first run it appeared that it might continue to improve the fitness. In Figure 3.10 the 

first data point is the fitness of the original model, not the last generation of the first run.  

 

 
Figure 3.8 Fitness history for genetic optimization of 128-coefficient Sys ID 

model. 
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Figure 3.9 Fitness history for first run of genetic optimization of 256-coefficient 

Sys ID model 
 

 
Figure 3.10 Fitness history for second run of genetic optimization of 256-

coefficient Sys ID model 
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The results of the genetic optimization are shown in Table 3.2. The genetic 

algorithm was able to find a FIR filter with magnitude response that is unlike the x-

inverse model and the original model and reduces the eigenvalue span to 5.8 for 128 

coefficients and 5.3 for 256 coefficients while keeping the phase response close (within 

the 40 degree tolerance) to the original near the tonal frequencies.  As mentioned in 

Section 3.2.1, the original or unmodified Sys ID is assumed to be the best model 

available with a phase response closest to the true phase response of the secondary path. 

These composite eigenvalues and span are shown in Table 3.2. The values from Table 3.1 

for the original and x-inverse models are repeated in Table 3.2 for comparison. Both 

genetic models have eigenvalue span several orders of magnitude better than the original 

models and the x-inverse model for 256-coefficients. The 128-coefficient genetic model 

has better span than the 128-coefficient x-inverse model without the phase error problems 

shown in Figure 3.6. 
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Table 3.2 Comparison of eigenvalue span for original, x-inverse and GA magnitude 
coefficients for off bin tones. 

 Off Bins 
 original x-inverse genetic 

Sys ID 
length 128 256 128 256 128 256 

268.54 296.75 73.99 156.91 350.88 15.85 
268.69 296.70 73.72 157.69 332.05 15.39 
82.83 45.25 34.18 39.41 321.39 12.01 
81.92 44.50 34.02 39.25 314.55 11.66 
39.29 30.91 12.00 36.10 283.49 9.17 
38.61 30.22 11.97 37.48 253.61 8.83 
18.41 9.73 10.10 21.34 191.17 4.60 
18.37 9.70 10.07 21.18 185.19 4.55 
1.68 4.66 6.49 12.11 60.34 2.97 
1.65 4.58 6.16 12.72 61.47 3.15 
1.25 1.25 5.00 0.16 63.24 3.28 

Eigenvalues 
for 

composite 
signal 

1.24 1.24 4.63 0.16 62.59 3.28 

span 216.8 238.5 16.0 990.5 5.8 5.3 

 
 

The 128-coefficient and 256-coefficient designs are shown in Figures 3.11 and 

3.13. The magnitude and phase response of the original Sys ID model (blue curve) and 

the genetic model (red curve) are plotted on the same graph as well as the difference 

between the original and genetic phase responses in Figures 3.12 and 3.14. The shaded 

regions mark +/- 5 Hz around each of the tonal frequencies with a vertical dashed line at 

the tonal frequencies. Here an assumption is made about the amount of frequency shift in 

the tonal frequencies that may be expected. For helicopter noise, under normal operation 

the engine always operates at the same rpm and thus the main and tail rotors have the 

same blade passage frequency. The tonal noise from these sources is very stable and a 10 

Hz window is a reasonable constraint to place on the phase error. In these regions, the 

phase response does not exceed the 40 degree tolerance used by the GA and marked by 

the green lines.  
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Figure 3.11 The magnitude and phase response of the 128-coefficient (circles) and 

128-coefficient zero padded (solid line) original Sys ID model (blue) and the genetic 
model (red). The shaded regions mark +/- 5 Hz around each of the tonal frequencies 

with a vertical dashed line at the tonal frequencies.  
 



60 

 
Figure 3.12 Difference between the 128-coefficient zero padded phase response of 

the original and genetic Sys ID models. The shaded regions mark +/- 5 Hz around 
each of the tonal frequencies with a vertical dashed line at the tonal frequencies. In 

these regions the phase response does not exceed the 40 degree tolerance used by the 
GA and marked by the green lines. 

 

 
Figure 3.13 The magnitude and phase response of the 256-coefficient (circles) and 

256-coefficient zero padded (solid line) original Sys ID model (blue) and the genetic 
model (red). The shaded regions mark +/- 5 Hz around each of the tonal frequencies 

with a vertical dashed line at the tonal frequencies.  
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Figure 3.14 Difference between the 256-coefficient zero padded phase response of 

the original and genetic Sys ID models. The shaded regions mark +/- 5 Hz around 
each of the tonal frequencies with a vertical dashed line at the tonal frequencies. In 

these regions the phase response does not exceed the 40 degree tolerance used by the 
GA and marked by the green lines. 

 
The genetic algorithm was also run without the constraint that the phase be within 

40º of the original phase response. This further reduced the eigenvalue span to 2.3 and 

2.4 for the 128-coeffficient and 256-coefficient models respectively. These genetic 

designs had a phase response that was not in error by more than 40º at the tonal 

frequencies, but in some cases exceeded 40º error within the +/- 5 Hz regions adjacent to 

the tonal frequencies.  

3.4.1 Sensitivity of genetic design to changes in reference tones 

The optimized magnitude coefficients found by the genetic algorithm are specific 

to the noise problem given to the genetic algorithm. If the tones shift in frequency or 

change in amplitude, the result is no longer guaranteed to be an optimum result. To see 

how sensitive the genetic algorithm model is to shifts in the tonal frequencies, the 
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eigenvalue span for reference signals with all tones shifted by +/- 2 Hz up to +/- 10 Hz 

was calculated. This is compared to the original model in Table 3.3.  

Table 3.3 Eigenvalue span for original and genetic Sys ID models and off bin tone 
reference signals with frequencies of all tones shifted by various amounts. 

 f shift -10 -6 -4 -2 0 2 4 6 10 

128 
span 193.5 209.3 217.5 220.7 216.8 213 201.1 202.2 392.7 

Original 
Model 256 

span 64.4 265.5 444.0 361.7 238.5 169.6 174.8 500.0 1240.1 

128 
span 9.0 5.1 4.3 5.0 5.8 7.6 9.9 12.8 24.4 

Genetic 
Model 256 

span 23.9 11.3 28.2 13.0 5.3 12.9 51.4 132.0 1309.2 

 
In general, the farther the tones get from the frequencies for which the magnitude 

was optimized the worse the span gets. For this case, they were on average better than the 

original Sys ID model; however, it is difficult to predict how sensitive a genetic model 

will be for any given application without first performing the optimization. The 

sensitivity will depend on how much the magnitude response of the genetic model varies 

near the frequencies for which it was optimized. Because the genetic algorithm was 

constrained to have phase errors less than 40º in this range the phase optimization is not 

affected by shifting the frequencies of the tones in the reference as shown in Figures 3.12 

and 3.14. If the tonal frequencies in the reference shift from the values for which they 

were optimized, degraded performance may result as a consequence of possible increases 

in the eigenvalue span; however, the phase constraints on the genetic model ensure that 

the algorithm will remain stable for small shifts in frequency.   
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CHAPTER 4- EXPERIMENTAL SET-UP 
 
 

It was shown in Section 3.4 that the genetic Sys ID models had a better 

eigenvalue span and a phase response close to the original phase response. As explained 

in Sections 2.4 and 3.1, these improvements should give better performance when the 

genetic model is used in an ANC system. The benefit of these improvements in an actual 

ANC test was verified experimentally. The experimental set up used for the ANC tests is 

described here. 

 

4.1 Mock Cabin Enclosure 

 ANC tests were conducted to compare the performance of the FXLMS and EE-

FXLMS algorithms for various multiple tone noise test signals in a mock cabin enclosure. 

The mock cabin is made of a metal angle iron frame with ½” plywood panels on five 

sides and 1/8” acrylic for the front panel. It has nominal dimensions of 45”x40”x60”. A 

chair was placed in the back center of the cabin. A Mackie HR824 studio monitor placed 

on the floor underneath the chair in the back of the cab was used as a primary noise 

source.  

The cab was placed in a variable acoustics chamber for these tests. The variable 

acoustics chamber has removable absorptive panels on the walls and the ceiling. All of 

these panels were installed during these tests. It was not however a hemi anechoic 

environment. This is partly due to the fact that other equipment was permanently housed 

in the chamber and also because the panels were not absorptive at the low frequencies 
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used in the test signals. The main purpose for using this chamber was that it was very 

quiet. The enclosure is shown in Figure 4.1. 

 
Figure 4.1 Mock cabin enclosure with control system 

 
4.2 Control System 

Control sources consisted of a 4” satellite loudspeaker placed in the top back 

corner of the enclosure behind where an operator’s head would be positioned and a 10” 

subwoofer placed at the front center of the cab on the floor. These were in off-the-shelf 

car audio speaker enclosures. The control sources were powered by a Clarion APA450 

400W stereo amplifier. Even though there were two control sources, it remained a single 

input, single output system. A crossover circuit with a crossover frequency at 90 Hz split 
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the single control signal and routed it to either the subwoofer or satellite speaker 

accordingly.  

A small microphone array was placed on the ceiling of the cab above where a 

person sitting in the chair’s head would be. The controller was configured to use one of 

these microphones as a single squared pressure error sensor. 

A single input, single output (SISO) control scheme was used for simplicity in 

evaluating the performance differences of the FXLMS and EE-FXLMS algorithms. The 

locations of the control sources and error sensor were driven by convenience and placed 

where they would be most unobtrusive to someone sitting in the chair. No attempt was 

made to optimize their placement beyond that.  

The control algorithms were implemented on a Texas Instruments TMS320C6713 

digital signal processor with a Traquair Data Systems, Inc. I/O interface card, memory, 

and power supply all housed in the small enclosure shown in Figure 4.2. A separate 

module containing variable filters and gains was used to condition the inputs and outputs 

independently for the control system (see Figure 4.3). This second module had an overall 

cutoff frequency of 300 Hz (low pass), consequently only tonal components below 300 

Hz were targeted for control. 
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Figure 4.2 DSP board and I/O interface card in enclosure used for ANC tests 

 

 
Figure 4.3 “Silver Box”- module containing variable filters and gains used to 

condition the inputs and outputs independently for the control system 
 

Benjamin Faber at BYU developed a PC based ANC application called “ANC 

Remote” as an interface to control the parameters of the ANC system on the DSP board 

and monitor the inputs and outputs of the control system. With this application, the user 
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can set sampling frequency, convergence parameter size, control channel configurations, 

Sys ID parameters, control filter length etc.  

 

4.3 Test Signals 

 The test signals used in the ANC tests were the same as described in Section 3.2.2 

and used in the eigenvalue calculations in Sections 3.2.2 and 3.4. Test signals were 

generated in MATLAB®. The primary noise signal contained tonal components at user 

specified frequencies with a broadband noise floor. Six tones were combined into a 

composite signal. For some test cases, the frequencies were chosen to exactly coincide 

with frequency bin values for the sampling frequency and length of the Sys ID filter. The 

amplitudes of the individual tonal components were chosen such that when the noise was 

played through the primary speaker in the cab the tonal components had similar 

amplitudes at the error sensor.  

The reference signal was a summation of these same tones without the added 

noise floor. As discussed previously, this research assumes that conditioning of the 

reference signal is undesirable or infeasible so the tonal components in a multi-tone 

reference have an arbitrary weighting assigned to them. The amplitude of the reference 

tones decreased with increasing frequency, as defined by Eq. 3.1. This made reference 

tones that varied in amplitude by up to a factor of ten over the frequency range of interest. 

Reference signals with the same tones with equal amplitudes in the reference were also 

used in some ANC tests. 

The primary noise and reference signals were written to left and right channels of 

a stereo wav file with a 25 kHz sampling frequency. These were played back to the 
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primary source and to the reference input of the DSP using the soundcard on the laptop 

used to run ANC remote.  

 

4.4 Algorithm Parameters 

 The ANC system operated at a sampling frequency of 2000 Hz. This is 

somewhere in the recommended range of 4-10 times the highest frequency to be 

controlled, which was 300 Hz. The Sys ID filter length was either 128 or 256 

coefficients. The convergence parameter value was 1/10th the maximum stable value 

found experimentally for each reference signal and Sys ID model used (original, flat, x-

inverse, or genetic). The length of the control filter was 100 for all test cases.  
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CHAPTER 5- EXPERIMENTAL RESULTS 

 

5.1 ANC Measurements in Mock Cabin Enclosure 

To evaluate the performance of the ANC system with various algorithms and Sys 

ID models, time records of the error signal were taken using a B&K PULSE Data 

Acquisition System. Ten second time captures sampled at 2048 Hz were taken for three 

different cases:  

(1) Stationary error signal with control off 

(2) Converging error signal from the time control was enabled 

(3) Stationary error signal after the algorithm had converged to its eventual steady 

state level.  

 It should be noted that the wave files used to play noise in the mock cabin were 

60 seconds long and played on a loop in the cab. Every time the wav file repeated there 

was a momentary discontinuity in the signal. This caused the error signal to increase in 

level slightly and the algorithm to re-converge to its final level again. The third time 

capture was taken during the last 20 seconds of the wav file to allow for this to happen. 

For some test cases where convergence of certain tones in the noise was very slow the 

error signal never reached its steady state level and was always converging.   

These data were post processed in MATLAB. The three time captures were 

plotted on the same graph for each Sys ID model (original, x-inverse, flat, and genetic) to 

show the convergence of the total error signal. To observe the convergence behavior of 

the various tonal components, a spectrogram of the converging error signal was made. 
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Slices from this spectrogram were also plotted for individual frequencies giving the 

learning curves for those tones overlaid for comparison of each control case.  

It should be noted on the spectrogram plot that the tones in the noise do not all 

start at the same level. So even though some tones may drop below 50dB on the 

spectrogram which corresponds to black regions on the plot, those tones did not 

necessarily converge at the same rate since one may have started at a lower level. For this 

reason comparing convergence of individual tones is best done by looking at the learning 

curves (Figures 5.2 and 5.4 for example), whereas the spectrogram plots (Figures 5.1 and 

5.3 for example) are best for comparing one ANC measurement to another.  

The magnitude axes for the plots of the three time captures go from 60 dB to 95 

dB while the magnitude on the spectrogram and plots of the learning curves go from 45-

75 dB and 20-80 dB respectively. This is intentional and consistent with all similar plots 

shown here. The combined error signal has greater overall magnitude than the magnitude 

of the individual tones which are added in the combined error signal. The color axis on 

the spectrogram is further limited at the lower end to make convergence of the tones 

easier to compare as they drop into darker regions more quickly. 

Along with these plots, tables showing the eigenvalue pairs corresponding to each 

tone in the noise as well as the eigenvalue span for all of the eigenvalues are included for 

each case. Color coded phase errors are also reported in the tables. Green corresponds to 

a phase error at the tonal frequency of less than 40º, yellow to a phase error between 40º 

and 90º, and red to phase errors 90º and greater.  

 Two other metrics are used to quantify the ANC performance. Overall eventual 

attenuation achieved was calculated by comparing the average level of the error signal 
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with control off and that of the error signal with control on for a long time (first and third 

time captures). Convergence time was taken to be a measure of how long it took the error 

signal, from the time that control was enabled, to reach 1/e of its initial value (about 9 dB 

attenuation), where e is the base of the natural logarithm. The reason for choosing this 

was that the convergence time essentially becomes a measure of the rate of attenuation, 

which was felt to be useful when comparing cases where the overall level of attenuation 

may be significantly different. When a signal did not converge to 1/e of its initial value 

during the second time capture it is reported as 10+ seconds. The actual convergence time 

for these measurements was not calculated.  

In the remainder of this chapter, first results from each test case will be presented 

individually in Sections 5.2-5.3. Next some test cases are plotted together for direct 

comparison in Section 5.4. Eventual reduction and convergence time for all test cases are 

reported together in Table 5.11 of Section 5.4 also. 

 

5.2 FXLMS ANC Results- Original Sys ID with Weighted Reference 

Figures 5.1-5.2 and 5.3-5.4 show ANC results for the FXLMS algorithm with a 

weighted reference signal (reference tone amplitudes defined by Eq. 3.1) and an 

unmodified (original) secondary path estimate (128 and 256-coefficients respectively). 

These measurements serve as a baseline to which other arrangements are compared. The 

overall reduction of the error signal and convergence time (time to drop to 1/e of initial 

level) was 19.5 dB and 3.9 seconds for the 128-coefficient model and 16.9 dB and 6.3 

seconds for the 256-coefficient model. The spectrograms (Figures 5.1 and 5.3) and the 

individual learning curves (Figures 5.2 and 5.4) show the non-uniform convergence of 
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the various tones in the noise resulting from eigenvalue disparity. Table 5.1 shows the 

eigenvalue pairs corresponding to each tone in the noise as well as the eigenvalue span 

for all of the eigenvalues. Color coded phase errors are also reported in the table as 

colors.  

 

Figure 5.1 The three time captures (ANC off in black, ANC on in green, and steady 
state ANC in blue) for ANC test with FXLMS algorithm using original 128-

coefficient Sys ID model and weighted reference are plotted together on the left. The 
spectrogram of converging error signal (green curve on the left) from the time ANC 

was enabled is plotted on the right.  
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Figure 5.2 Individual learning curves for tones in noise signal for ANC with FXLMS 
algorithm using original 128-coefficient Sys ID model and weighted reference. 

 
 

Table 5.1 Eigenvalue pairs for each tone and eigenvalue span for all tones for 128-
coefficient original Sys ID model and weighted reference. Color coded phase error 

at each tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Eigenvalue 

Span 
82.83 18.41 268.54 1.68 39.29 1.25 Eigenvalues 
81.92 18.37 268.69 1.65 38.61 1.24 

216.8 

Phase Error              
 

The 130 Hz tone converges fastest and corresponds to the largest eigenvalue pair 

shown in Table 5.1. Slopes of the learning curves for other tones follow the trends in the 

eigenvalue pairs in Table 5.1. There are no known phase errors in this Sys ID model. The 

same observations describe the result for the 256-coefficient model shown in Figures 5.3-

5.4 and Table 5.2. 
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Figure 5.3 The three time captures (ANC off in black, ANC on in green, and steady 
state ANC in blue) for ANC test with FXLMS algorithm using original 256-

coefficient Sys ID model and weighted reference are plotted together on the left. The 
spectrogram of converging error signal (green curve on the left) from the time ANC 

was enabled is plotted on the right. 
 

 
Figure 5.4 Individual learning curves for tones in noise signal for ANC with FXLMS 

algorithm using original 256-coefficient Sys ID model and weighted reference. 
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Table 5.2 Eigenvalue pairs for each tone and eigenvalue span for all tones for 256-
coefficient original Sys ID model and weighted reference. Color coded phase error 

at each tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Eigenvalue 

Span 
45.3 9.7 296.8 4.7 30.9 1.3 

Eigenvalues 
44.5 9.7 296.7 4.6 30.2 1.2 

238.5 

Phase Error              
 

 

5.3 EE-FXLMS ANC Results 

 This section shows ANC results for various arrangements of the EE-FXLMS 

algorithm as described in Chapter 3. Secondary path estimate models of various types 

(flat, x-inverse and genetic) for 128 and 256 coefficients are paired with either a weighted 

reference signal or a reference with all tones having equal amplitude.  

5.3.1  Flat Magnitude Sys ID Model 

Previously, the EE_FXLMS algorithm was implemented by flattening the 

magnitude coefficients of the secondary path estimate15. This section shows ANC tests 

using a flattened magnitude secondary path model and both weighted reference and equal 

amplitude reference.  The flat H/weighted x combination is shown in Figures 5.5-5.6 and 

Figures 5.8-5.9. While flattening the magnitude may improve eigenvalue span and 

performance some, it is not matched to the amplitude of the tones in the reference which 

are not flat.  The overall reduction and convergence times were 26.0 dB and 1.3 seconds 

for the 128-coefficient model and 16.9 dB and 9.0 seconds for the 256-coefficient model. 

The 128-coefficient flat Sys ID model paired with a weighted reference performed better 

than the FXLMS case in both measures of performance. Phase errors for the 128-

coeffficient model are shown in Figure 5.7. Phase errors in the 128-coefficient flat model 
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exceeded 40º at the tonal frequency of 180 Hz. Table 5.3 shows the eigenvalue pairs 

corresponding to each tone in the noise, the eigenvalue span for all of the eigenvalues, 

and the phase errors as before. Based on the eigenvalues for the 180 Hz tone it is 

expected that this tone would converge at least as fast as the 200 Hz tone, but in fact 

converges slower. The phase error at 180 Hz slowed convergence but was not so great as 

to cause instability. 

 

Figure 5.5 Plot of three time captures (left) and spectrogram of converging error 
signal from the time ANC was enabled (right) for ANC test with EE-FXLMS 

algorithm using 128-coefficient flat Sys ID model and weighted reference. 
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Figure 5.6 Individual learning curves for tones in noise signal for ANC with EE-
FXLMS algorithm using 128-coefficient flat Sys ID model and weighted reference. 

 
 

Table 5.3 Eigenvalue pairs for each tone and eigenvalue span for all tones for 128-
coefficient flat Sys ID model and weighted reference. Color coded phase error at 

each tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Span 

11.6 6.0 3.5 1.1 0.8 0.2 
Eigenvalues 

11.3 5.7 3.4 1.1 0.8 0.2 
53.7 

Phase Error              
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Figure 5.7 Phase Errors (difference from original) for the 128-coefficient flat Sys ID 
model. Dashed vertical lines mark tonal frequencies and solid vertical lines mark +/-

5 Hz around those tonal frequencies. Note that the phase error exceeds 40º (green 
horizontal lines) at the 180 Hz tone.  

 
The 256-coefficient flat Sys ID model paired with a weighted reference 

performed worse with the same overall reduction as the FXLMS case but slower 

convergence. Phase errors for the 256-coeffficient model are shown in Figure 5.10 and 

did not exceed 40º at any of the tonal frequencies. Slopes of the learning curves for all of 

the tones follow the trends in the eigenvalue pairs in Table 5.4. 
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Figure 5.8 Plot of three time captures (left) and spectrogram of converging error 
signal from the time ANC was enabled (right) for ANC test with EE-FXLMS 

algorithm using 256-coefficient flat Sys ID model and weighted reference. 
 

 

Figure 5.9 Individual learning curves for tones in noise signal for ANC with EE-
FXLMS algorithm using 256-coefficient flat Sys ID model and weighted reference. 
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Table 5.4 Eigenvalue pairs for each tone and eigenvalue span for all tones for 256-
coefficient flat Sys ID model and weighted reference. Color coded phase error at 

each tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Span 

2.1 6.5 19.6 1.9 0.1 0.4 Eigenvalues 
2.1 6.2 19.8 1.8 0.1 0.4 

134.2 

Phase Error              
 

 

Figure 5.10 Phase errors (difference from original) for the 256-coefficient flat Sys ID 
model. Dashed vertical lines mark tonal frequencies and solid vertical lines mark +/-

5 Hz around those tonal frequencies.  
 

The flat H/equal X combination shown in Figures 5.11-5.14 would be a good 

match giving minimum eigenvalue span as long as the variation between bins in the 

magnitude is not large and significant phase errors are not introduced. This does however 

require that the tones in the reference signal have equal amplitudes. The overall reduction 

and convergence times were 25.8 dB and 1.0 seconds for the 128-coefficient model and 

13.4 dB and 5.8 seconds for the 256-coefficient model. Pairing the equal amplitude 

reference to the flat 128-coefficient model further reduces the eigenvalue span and gives 

slightly better convergence time with approximately the same overall attenuation. 

Comparison of Figures 5.5 and 5.11 shows that the equal reference gave fast convergence 
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all the way down to the steady state level. The weighted reference had fast initial 

convergence which slowed later in the learning curve for the combined signal. This is due 

to less uniform convergence of the individual tones when the weighted reference is used.  

Based on the eigenvalue pairs in Table 5.5 the 180 Hz tone should converge about as fast 

as the 200 Hz tone, but is slower probably due to the phase error at that frequency.  

 

Figure 5.11 Plot of three time captures (left) and spectrogram of converging error 
signal from the time ANC was enabled (right) for ANC test with EE-FXLMS 

algorithm using 128-coefficient flat Sys ID model and equal reference. 
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Figure 5.12 Individual learning curves for tones in noise signal for ANC with EE-
FXLMS algorithm using 128-coefficient flat Sys ID model and equal reference. 

 

Table 5.5 Eigenvalue pairs for each tone and eigenvalue span for all tones for 128-
coefficient flat Sys ID model and equal reference. Color coded phase error at each 

tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Span 

12.1 9.7 7.3 3.6 3.9 6.3 Eigenvalues 
11.5 9.2 7.2 3.7 3.9 6.1 

3.4 

Phase Error              
 

The 256-coeficient model paired with an equal amplitude reference performed 

worse than when paired to the weighted reference and worse than the FXLMS algorithm. 

From the eigenvalue pairs in Table 5.6 it is expected that the 200 Hz tone would 

converge the slowest while Figure 5.14 shows that the 50 Hz tone is the slowest. This is 

an unexplained result.  
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Figure 5.13 Plot of three time captures (left) and spectrogram of converging error 
signal from the time ANC was enabled (right) for ANC test with EE-FXLMS 

algorithm using 256-coefficient flat Sys ID model and equal reference. 
 

 

Figure 5.14 Individual learning curves for tones in noise signal for ANC with EE-
FXLMS algorithm using 256-coefficient flat Sys ID model and equal reference. 
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Table 5.6 Eigenvalue pairs for each tone and eigenvalue span for all tones for 256-
coefficient flat Sys ID model and equal reference. Color coded phase error at each 

tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Span 

2.0 9.7 38.7 6.7 0.7 12.0 
Eigenvalues 

2.1 9.4 38.8 6.6 0.7 11.9 
55.7 

Phase Error              
 

 

5.3.2 X-Inverse Magnitude Sys ID Model 

Figures 5.15-5.16 show ANC results for the 128-coefficient x-inverse Sys ID 

model paired with a weighted reference, and Figures 5.18-5.19 show the results for the 

256-coeffficeient model. The overall reduction and convergence times were 4.6 dB and 

10+ seconds for the 128-coefficient model and 2.6 dB and 10+ seconds for the 256-

coefficient model. 

The drawbacks of using an x-inverse Sys ID model were discussed in section 

3.2.2. In Figures 5.17 and 5.20 the phase errors in the two x-inverse Sys ID models are 

shown. The phase error exceeds the 90 degree stability limit at 180 Hz for the 128-

coefficient model and at 200 Hz for the 256-coefficient model. These two tones were 

shown to diverge and increase in level in the error signal in Figures 5.16 and 5.19. Phase 

error was in excess of 40º at other frequencies for both cases. Those phase errors, 

specifically those exceeding 90º, made ANC for these test cases perform poorly because 

of instability problems, even though the eigenvalue span was reduced from 217 for the 

original model to 16 for the 128-coefficient x-inverse case. Both x-inverse cases shown in 

Figures 5.15-5.20 performed worse than the FXLMS algorithm shown in Figures 5.1-5.4. 

It is difficult to make comparisons between the eigenvalue pairs from Tables 5.7 and 5.8 
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to the convergence of individual tones in Figures 5.16 and 5.19. The control output had to 

be limited to maintain some level of overall convergence due to the divergent tones.  

 

Figure 5.15 Plot of three time captures (left) and spectrogram of converging error 
signal from the time ANC was enabled (right) for ANC test with EE-FXLMS 

algorithm using 128-coefficient x-inverse Sys ID model and weighted reference. 
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Figure 5.16 Individual learning curves for tones in noise signal for ANC with EE-
FXLMS algorithm using 128-coefficient x-inverse Sys ID model and weighted 

reference. 
 

Table 5.7 Eigenvalue pairs for each tone and eigenvalue span for all tones for 128-
coefficient x-inverse Sys ID model and weighted reference. Color coded phase error 

at each tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Span 

5.0 6.5 74.0 10.1 12.0 34.2 Eigenvalues 
4.6 6.2 73.7 10.1 12.0 34.0 

16 

Phase Error              
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Figure 5.17 Phase Errors (difference from original) for the 128-coefficient x-inverse 
Sys ID model. Dashed vertical lines mark tonal frequencies and solid vertical lines 

mark +/-5 Hz around those tonal frequencies. Note that the phase error exceeds 40º 
(green horizontal lines) at 100 Hz and approaches the 90 degree stability limit (red 

line) at 180 Hz.  
 

For the 256-coefficient model the eigenvalue span was calculated to be 991, 

which is an increase from the original eigenvalue span of 239. This is because of the 

deviation from the desired optimized trend of the magnitude between frequency bins. 

This increase may have also contributed to the poor ANC performance for that test, 

although the instability from phase error is the biggest limiting factor. 
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Figure 5.18 Plot of three time captures (left) and spectrogram of converging error 
signal from the time ANC was enabled (right) for ANC test with EE-FXLMS 

algorithm using 256-coefficient x-inverse Sys ID model and weighted reference. 
 

 

Figure 5.19 Individual learning curves for tones in noise signal for ANC with EE-
FXLMS algorithm using 256-coefficient x-inverse Sys ID model and weighted 

reference. 



89 

 

Table 5.8 Eigenvalue pairs for each tone and eigenvalue span for all tones for 256-
coefficient x-inverse Sys ID model and weighted reference. Color coded phase error 

at each tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Span 

12.1 36.1 156.9 21.3 0.2 39.4 Eigenvalues 
12.7 37.5 157.7 21.2 0.2 39.2 

990.7 

Phase Error              
 

 

Figure 5.20 Phase Errors (difference from original) for the 256-coefficient x-inverse 
Sys ID model. Dashed vertical lines mark tonal frequencies and solid vertical lines 

mark +/-5 Hz around those tonal frequencies. Note that the phase error exceeds 40º 
(green horizontal lines) at the 50 and 100 Hz and approaches the 90 degree stability 

limit (red line) at 200 Hz.  
 

5.3.3 Genetically Optimized Sys ID Model 

The genetic algorithm optimized the magnitude response of the Sys ID model to 

minimize the eigenvalue span while assuring that the phase was not significantly in error 

at frequencies near the tones in the noise. This resulted in good ANC performance in the 

tests as shown in Figures 5.21-5.24. The eigenvalues shown in Table 5.9 predict that the 

100 Hz or 200 Hz tones ought to converge the fastest for the 128-coefficeint genetic 

model since they have the largest eigenvalues of the set and the convergence parameter 



90 

used would be closest to the optimum for these frequencies. The 130 Hz tone converges 

fastest initially for this case. The phase error at 100 Hz is less than 40° but greater than 

the phase errors at 130 Hz or 200 Hz which were <10°. This may explain why the 100 Hz 

tone converged slower than the tone at 130 Hz.  It is unclear why the 200 Hz tone did not 

converge faster than the 130 Hz tone. Convergence of all tones is more uniform than for 

any other case with the exception of the Flat Sys ID model paired with the equally 

weighted reference which had faster convergence for the 280 Hz tone.  

 

Figure 5.21 Plot of three time captures (left) and spectrogram of converging error 
signal from the time ANC was enabled (right) for ANC test with EE-FXLMS 
algorithm using 128-coefficient genetic Sys ID model and weighted reference. 
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Figure 5.22 Individual learning curves for tones in noise signal for ANC with EE-
FXLMS algorithm using 128-coefficient genetic Sys ID model and weighted 

reference. 
 
 

Table 5.9 Eigenvalue pairs for each tone and eigenvalue span for all tones for 128-
coefficient genetic Sys ID model and weighted reference. Color coded phase error at 

each tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Span 

81.0 135.3 100.5 75.0 144.4 63.8 Eigenvalues 
73.2 133.1 92.8 74.1 143.5 65.9 

2.3 

Phase Error              
 

The eigenvalue pairs for the 256-coefficent model shown in Table 5.10 do not 

perfectly explain the convergence trends in the learning curves for the individual tones in 

Figure 5.24. The overall reduction and convergence times were 25.9 dB and 1.0 seconds 

for the 128-coefficient model and 26.1 dB and 2.2 seconds for the 256-coefficient model. 

These results are the best case of those considered thus far. 
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Figure 5.23 Plot of three time captures (left) and spectrogram of converging error 
signal from the time ANC was enabled (right) for ANC test with EE-FXLMS 
algorithm using 256-coefficient genetic Sys ID model and weighted reference. 

 

 

Figure 5.24 Individual learning curves for tones in noise signal for ANC with EE-
FXLMS algorithm using 256-coefficient genetic Sys ID model and weighted 

reference. 
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Table 5.10 Eigenvalue pairs for each tone and eigenvalue span for all tones for 256-
coefficient genetic Sys ID model and weighted reference. Color coded phase error at 

each tone given by: Green Φ<40º, Yellow 40º ≤ Φ < 90º, Red Φ ≥ 90º. 
Tone (Hz) 50 100 130 180 200 280 Span 

146.3 78.0 151.1 107.0 68.7 64.1 Eigenvalues 
150.7 78.3 137.8 100.7 67.9 65.5 

2.4 

Phase Error              

 

5.4 Comparison of ANC Tests 

 The results from several ANC test cases from the previous sections are plotted 

together here for a more direct comparison. In Figures 5.25-5.28 the following test cases 

are plotted together to compare the various methods of modifying the magnitude 

coefficients in the EE-FXLMS algorithm: 

(1) Flattened Sys ID with weighted reference. This combination may give lower 

eigenvalue span when used with weighted reference, but will not be optimal. 

There is no assurance that there is no significant phase error between 

frequency bins.  

(2) X-inverse Sys ID with weighted reference. This combination may give lower 

eigenvalue span when used with weighted reference, but will not be optimal 

unless tones fall exactly on frequency bin values. There is no assurance that 

there is no significant phase error between frequency bins.  

(3) Genetic Sys ID with a weighted reference signal. This is the closest to an 

ideal case that has been considered here. This minimizes eigenvalue span with 

an assurance that significant phase errors will not be introduced, keeping the 

new Sys ID model stable.  
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Figure 5.25  Spectrogram and plots of three time captures (paired vertically) for the 
128-coefficient Sys ID model ANC tests for EE-FXLMS algorithm with flat, x-

inverse and genetic Sys ID models and weighted reference. 
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Figure 5.26 Learning curves for individual tones for EE-FXLMS algorithm with 
128-coefficient flat, x-inverse and genetic Sys ID models and weighted reference. 
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Figure 5.27  Spectrogram and plots of three time captures (paired vertically) for the 

256-coefficient Sys ID model ANC tests for EE-FXLMS algorithm with flat, x-
inverse and genetic Sys ID models and weighted reference. 
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Figure 5.28 Learning curves for individual tones for EE-FXLMS algorithm with 
256-coefficient flat, x-inverse and genetic Sys ID models and weighted reference. 

 

It is evident that for both 128 and 256-coefficient Sys ID models, the genetically 

optimized magnitude coefficients give the best ANC performance in terms of rate of 

convergence for the combined error signal and convergence of individual tones, as well 

as lowest overall attenuation in the steady state solution.  

 In Figures 5.29-5.32 the following test cases are plotted together: 

(1) FXLMS algorithm using original Sys ID with weighted reference. This is the 

baseline measurement showing the performance one would expect from an 

ANC system running the original FXLMS algorithm and an unconditioned 

reference.   
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(2) Flat Sys ID with equal amplitude tones in reference. This combination is 

expected to give low eigenvalue span and better ANC performance inasmuch 

as the magnitude does not deviate significantly from flat between bins, but it 

does require that the reference signal be conditioned. There is no assurance 

that there is no significant phase error between frequency bins.  

(3) Genetic Sys ID with a weighted reference signal. This is the closest to an ideal 

case that has been considered here. This minimizes eigenvalue span with an 

assurance that significant phase errors will not be introduced, keeping the new 

Sys ID model stable. No conditioning of the reference is required. 

 

Figure 5.29  Spectrogram and plots of three time captures (paired vertically) for the 
128-coefficient Sys ID model ANC tests for FXLMS algorithm using original Sys ID 
model and weighted reference, EE-FXLMS algorithm with  flat Sys ID model and 
reference with equal amplitude tones, and EE-FXLMS using genetic Sys ID model 

and weighted reference. 
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Figure 5.30 Learning curves for individual tones for EE-FXLMS algorithm with 
128-coefficient Sys ID model ANC tests for FXLMS algorithm using original Sys ID 
model and weighted reference, EE-FXLMS algorithm with  flat Sys ID model and 
reference with equal amplitude tones, and EE-FXLMS using genetic Sys ID model 

and weighted reference. 
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Figure 5.31  Spectrogram and plots of three time captures (paired vertically) for the 
256-coefficient Sys ID model ANC tests for FXLMS algorithm using original Sys ID 
model and weighted reference, EE-FXLMS algorithm with  flat Sys ID model and 
reference with equal amplitude tones, and EE-FXLMS using genetic Sys ID model 

and weighted reference. 
 



101 

 

Figure 5.32 Learning curves for individual tones for EE-FXLMS algorithm with 
256-coefficient Sys ID model ANC tests for FXLMS algorithm using original Sys ID 
model and weighted reference, EE-FXLMS algorithm with  flat Sys ID model and 
reference with equal amplitude tones, and EE-FXLMS using genetic Sys ID model 

and weighted reference. 
 

For the 128- coefficient test cases, the flat Sys ID model paired with a reference 

with equal amplitude tones converged fastest. The genetic test case was the next best in 

terms of convergence and performed about the same as the flat test case in terms of the 

overall steady state attenuation. The FXLMS had the poorest performance.  

For the 256-coefficient tests, the EE-FXLMS algorithm with the genetically 

optimized Sys ID model performed the best in terms of convergence and overall 

attenuation (compare blue, steady state ANC time captures on Figure 5.31) . For this test, 

the flat/equal test performed worse than the FXLMS algorithm.  
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The EE-FXLMS algorithm using a Sys ID model that has been optimized using a 

genetic algorithm provides 6.4 dB additional overall attenuation for the 128-coefficient 

case and 9.2 dB for the 256-coefficient case compared to standard implementation of the 

FXLMS algorithm. The convergence time is reduced from 3.9 seconds to 1.0 seconds and 

from 6.3 seconds to 2.2 seconds for the 128 and 256-coefficient test cases respectively. 

The measures of performance for all results in Sections 5.2-5.4 are summarized in Table 
5.11.  
 

Table 5.11 Summary of ANC test results for all configurations. 

Sys ID 
Model 

Reference 
(off bins) 

H 
taps 

µ value 
(1/10 max 

stable) 
Eigenvalue 

Span 

Convergence 
Time (1/e) 

(sec) 

Overall 
Reduction 

(dB) 
original weighted 128 5.E-11 217.0 3.9 19.5 
original weighted 256 3.E-11 239.0 6.3 16.9 

flat weighted 128 4.E-10 53.7 1.3 26.0 
flat equal 128 6.E-10 3.4 1.0 25.8 
flat weighted 256 2.E-10 134.2 9.0 16.9 
flat equal 256 2.E-10 55.7 5.8 13.4 

x-inverse weighted 128 5.E-11 16.0 10+ 4.6 
x-inverse weighted 256 2.E-11 991.0 10+ 2.6 
genetic weighted 128 9.E-11 2.3 1.0 25.9 
genetic weighted 256 5.E-11 2.4 2.2 26.1 
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CHAPTER 6- CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Summary of Conclusions 

A genetic algorithm has been used to find optimum values for the magnitude 

coefficients of the secondary path estimate as part of the Eigenvalue Equalization 

Filtered-x Least Mean Square algorithm applied to noise with multiple stationary tones. It 

has been shown to reduce the variation in the eigenvalues of the filtered-x autocorrelation 

matrix while preserving the phase of the original secondary path estimate.  It has been 

shown to be superior to other methods of equalization applied to the EE-FXLMS 

algorithm, in that the optimization can overcome difficulties arising from the finite 

precision of the sampled ANC system and account for changes to the magnitude and 

phase that occur in between frequency bin values. Previously the optimization methods 

did not account for changes to the phase in these regions where it cannot be specifically 

defined by the user.  

The added constraint that the zero-padded phase of the modified secondary path 

estimate not exceed 40º error from the original zero padded phase near tonal frequencies 

limits somewhat the ability of the optimization to reduce the eigenvalue disparity. 

Relaxing this constraint gives a lower eigenvalue span, but does not result in a better 

design since when used in ANC the phase errors will limit control performance and/or the 

design may be too sensitive to small shifts in tonal frequencies. Because both the flat and 

the x-inverse method of equalizing the eigenvalues cannot guarantee that the optimized 

design will remain stable and can actually increase the eigenvalue disparity, the genetic 

optimization is always preferred. Additionally, the genetic optimization is able to reduce 
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eigenvalue span and increase ANC performance without the need for extensive 

conditioning of the reference signal to make the tones in the reference for multiple tone 

noise have a user defined amplitude.  

ANC in a mock cab using EE-FXLMS control with the genetic ĥ(t) model 

provided as much as 6-9 dB additional attenuation over FXLMS control with the original 

ĥ(t) model, with faster convergence times of 1.0-2.2 seconds compared to 3.9-6.3 

seconds. Convergence of individual tones is more uniform giving less variable 

convergence in the combined noise signal. Stability of the algorithm is ensured in the 

optimization.  

The faster convergence of the EE-FXLMS is an expected result of the eigenvalue 

equalization. Equalizing the eigenvalues should give faster or more uniform convergence 

for all tones. The additional attenuation reported for the EE-FXLMS algorithm with 

genetic Sys ID model is not an expected result but can be explained in context of the 

experiment. It is expected that the FXLMS using an unmodified Sys ID model would 

eventually reach the same steady state level as the EE-FXLMS with a genetic Sys ID 

model, just later according to the slower convergence rate of some of the tones. As was 

explained in Section 5.1 the FXLMS never reached a steady state solution during the 

ANC tests in the mock cabin since convergence of some tones was too slow to reach a 

steady state level before the wav file repeated. Were this not the case, it is believed that 

the FXLMS would have eventually converged to a steady state solution giving more 

similar mean square error levels in the steady state to the EE-FXLMS. However, in 

practice the EE-FXLMS algorithm may indeed provide more attenuation since no real 

ANC system would be perfectly stable and the discontinuity in the wav file that kept the 
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FXLMS from fully converging to a steady state solution may be typical of other such 

anomalies in a real physical system.  

Use of a genetic algorithm as an optimization method in implementing the EE-

FXLMS algorithm extends its utility and increases the potential benefit of its use over the 

FXLMS algorithm. The complexity of the EE-FXLMS algorithm that runs in real-time is 

identical to the FXLMS algorithm. Some additional offline computation is required to 

characterize the reference signal and perform the optimization of the secondary path used 

in control, as discussed in Section 3.2.2. 

6.2 Recommendations for Future Work 

This work has demonstrated that significant improvements to performance of 

ANC systems can be achieved while maintaining relatively simple implementation for 

noise with multiple quasi-stationary tones. This result is limited to ANC applications 

where the frequencies of tones in the noise do not vary significantly in time. Many 

important applications are of this type. The genetic optimization was done to guarantee 

that the modified genetic Sys ID model would remain stable for shifts in frequency of +/- 

5 Hz from the normal operating frequencies for all tones. Shifts of +/- 5 Hz in the 

fundamental frequency of a set of harmonically related tones in the noise would mean 

much larger shifts in frequency for higher harmonics. Knowledge of the amount of 

frequency shift expected from a particular noise problem could be better incorporated 

into the genetic optimization. It is expected that the larger the frequency range over 

which the genetic algorithm optimization is constrained to keep the phase errors small, 

the more it will be limited in its ability reduce the eigenvalue span.  
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This thesis did not consider multiple tone noise where the tones do vary 

significantly in frequency. There are many applications where this would be the case, 

such as controlling the fundamental and harmonics of an engine that change with the 

engine rpm and do not have equal amplitudes in the reference signal. The EE-FXLMS 

algorithm has not been applied to this kind of noise problem.  

The optimization performed on the secondary path estimate in the EE-FXLMS 

algorithm in this thesis is also limited to applications where the secondary path model, (at 

least the phase response) is relatively stable since the secondary path is only 

characterized and the optimization performed as part of the set up of an ANC system. 

Further work could be done to implement the EE-FXLMS algorithm with genetic 

optimization for a changing secondary path. This may be accomplished in several ways. 

The secondary path transfer function may be characterized for several normal operating 

conditions of a given ANC system. The eigenvalue equalization using the genetic 

algorithm can be performed for each of these expected operating conditions as part of the 

set up. These multiple optimized secondary path estimates can be stored in a “look up 

table”. The system could be made to sense which previously optimized secondary path 

best fits the current operating conditions and use the best fit from the designs stored in the 

look up table.  

Another way to extend the eigenvalue equalization idea for a system with 

changing secondary path would be to incorporate the optimization in an online Sys ID 

routine35. The secondary path can be characterized online periodically and the eigenvalue 

equalization performed in the background while control is running. Every time a newly 

optimized secondary path model becomes available it can be updated and used to run 
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control. The time it would take to get a new optimized model for the secondary path 

estimate would be set by the time it takes for the genetic algorithm to execute.  
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