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ABSTRACT

THE EFFECT OF NONLINEAR PROPAGATION ON

NEAR-FIELD ACOUSTICAL HOLOGRAPHY

Micah R. Shepherd

Department of Physics and Astronomy

Master of Science

Near-field acoustical holography (NAH) has been used extensively for acousti-

cal imaging of infinitesimal-amplitude (or small-amplitude) sources. However,

recent interests are in the application of NAH to image finite-amplitude (or

high-amplitude) sources such as jets and rockets. Since NAH is based on lin-

ear equations and finite-amplitude sources imply nonlinear effects, which cause

shock formation and consequently an altered spectral shape, a feasibility study

is carried out to determine the effect of nonlinear propagation on NAH.

Jet and rocket sources typically have a distinct spectral shape resembling

a ‘haystack’ and center frequencies varying from 30 to 300 Hz. To test the

effect of nonlinear propagation on jet or rocket noise, several waveforms with

varying spectral shapes and center frequencies were created and numerically

propagated in one dimension using a nonlinear propagation algorithm. Bis-

pectral methods were used to determine the amount and effect of nonlinearity,



showing that higher center frequencies lead to more nonlinearities for a given

amplitude. Also, higher-order statistical analysis of the time derivative of the

waveforms was used to determine information about the relative amount of

waveform steepening and shock coalescence occurring.

NAH was then used to reconstruct the original waveform magnitude and

the errors were determined. It was found that the ‘haystack’ spectral shape can

be preserved by the nonlinear effects leading to low amplitude-reconstruction

errors, whereas a narrow-band spectral shape will become altered and recon-

struct very poorly. However, if nonlinear effects become strong due to higher

center frequencies, longer propagation distances or higher amplitudes, even

the ‘haystack’ shape will become altered enough to cause poor reconstruction.

Two-dimensional propagation studies were also performed from two point

sources, showing differences between linear and nonlinear propagation.
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Chapter 1

Introduction

1.1 Introduction

This thesis describes the theory, methods and results of research focused on one part

of the complicated problem of understanding, predicting and possibly reducing the

noise radiated by finite-amplitude sources such as jets and rockets. The term finite-

amplitude is common in relevant literature and refers to any acoustic process with

disturbances large enough that linear (or infinitesimal-amplitude) models break down

and nonlinear effects become significant. This chapter describes the motivation for

the research, some of the background information and previous work that has been

published, and the present research objectives. It is concluded with a description of

the thesis organization.

1.2 Motivation

High-power rockets and jets have become an integral part of the 20th and 21st century.

Due to the large amounts of mechanical power required to propel both jets and

1



2 Chapter 1 Introduction

rockets, extremely high random pressure fluctuations are produced from complex fluid

interactions in the plume region that occur when the flow is supersonic. Because

the sound generation process is due to air interactions, these types of sources are

known as aeroacoustic sources. Their high levels have a significant impact on the

vehicle structure itself as well as the surrounding environment. Acoustically induced

vibrations can cause structural fatigue or failure, leading to expensive launch vehicle

repairs or remodeling. The acoustic energy also takes on the form of noise pollution

as it propagates away from the source. This may increase community annoyance or

have a detrimental impact on delicate ecosystems. Additionally, noise levels should

be known to ensure adequate hearing protection for those working on or near a vehicle

of interest. In fact, studies have shown that as little as a few minutes of exposure to

rocket noise only 150 feet from the rocket can have a permanent effect on hearing [1].

Knowledge of the noise generated by a jet or rocket is necessary to properly plan

for and estimate these effects. Many studies have been and continue to be per-

formed on a variety of related subjects. Each investigation is an incremental step in

understanding, predicting, and ultimately reducing these effects. If the source charac-

teristics were better known, community noise, vibro-acoustic and even computational

fluid dynamic (CFD) models could be improved dramatically. The method studied

in this research for determining source characteristics of finite-amplitude sources is

near-field acoustical holography, abbreviated as NAH.

1.3 Background and Previous Work

Experimental investigations to determine rocket source characteristics and other noise

effects started in the early 1950’s. Cole et al. [2] performed one of the first studies on

rocket noise by measuring noise radiation from 14 different rockets varying in size and
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thrust, finding the radiation in all cases to be directional. Mayes, et al. [3] took near-

field and far-field measurements and determined that the noise sources are located

20 or more nozzle diameters downstream from the nozzle exit region. The authors

also suggested that the source radiation is in the form of Mach waves1 due to the

supersonic flow but that the location and directivity may be frequency dependent.

Potter also published several reports on determining rocket source location [4,5] and

similarly found the major source for sound power generation to be located at least

20 diameters downstream [6]. Several other relevant rocket noise measurements were

performed over the next decade in an attempt to characterize and predict far-field

rocket noise. They are described extensively by McInerny (see References [7, 8]).

Almost simultaneously, theoretical and analytical models were being developed

to understand the aeroacoustic noise-generating mechanisms and to predict radiated

sound fields. Lighthill [9, 10] developed fundamental theory on aerodynamic sound,

showing that the sound-generation process can be modeled as sets of quadrupoles.

Many other researchers have followed in the groundbreaking work of Lighthill. Since

the early 1990’s, a new subfield of computational fluid dynamics known as computa-

tional aeroacoustics (CAA) has developed with its main goal being able to simulta-

neously model both the aerodynamics and acoustic radiation of aeroacoustic sources.

However, due to the complexity of the mathematics involved and the resulting compu-

tational power required to solved the relevent equations, current aeroacoustic models

are somewhat limited. Significant progress has been made in this field, but as of yet,

CAA models have been unable to accurately predict the full broadband noise genera-

tion process for all jet and rocket engine configurations (e.g., see Reference [14]). For a

1The Mach wave radiation concept is analogous to supersonic structural waves with radiation at

some angle. Density visualizations of supersonic flow have also been performed to indicate the Mach

wave nature of the radiation of supersonic flow.
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more complete discussion of noise generated aerodynamically, see References [15,16].

These theories have also been combined with data in the form of semi-empirical

models and have been used for predicting sound fields. Eldred [11] developed an em-

pirical method for predicting acoustic loads generated by rockets based on measured

data in the early 1970’s. This method is still frequently used today to predict rocket

liftoff noise [12]. More recently, Varnier [13] compared experimental data for basic

nozzle configurations and field conditions using the results of a near-field prediction

algorithm, finding that many semi-empirical models need some refinement.

Experimental jet noise studies also began around this same time period. Several

methods were pursued to visualize jet sources starting in the late 1960’s. Lowson

and Ollerhead [17] attempted to use shadowgraphs to visualize cold supersonic jets

and determined that visual intensity does not necessarily give accurate estimates of

sound fields. Fuchs [18] compared three far-field methods, the acoustic “mirror,” the

acoustic “telescope,” and the “polar correlation” technique for determining jet noise

source location. He found that in the region where these methods are valid, the

spatial resolution is poor, due to the large wavelengths of interest. Laufer et al. [19]

developed a directional microphone system and showed two separate source producing

regions in supersonic jets. Other array processing and beamforming techniques have

also been developed with varying success (see e.g. References [20, 21]).

Acoustical measurements of both jet and rocket sources have shown similar trends

in their spectral shape. Lower frequency magnitudes increase according to frequency

squared, or f 2, up to some center frequency, after which a decay follows according

to f−2 (see published data in References [11, 33]). The shape resembles a ‘haystack’

when plotted on a logarithmic scale as shown in Figure 1.1. The spectral center

frequency for rocket noise, which depends on size and thrust, ranges from as low

as 15 Hz up to around 100 Hz. For jet noise, the peak frequency is usually higher,
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Figure 1.1 Data published in Reference [11] showing the typical ‘haystack’
spectrum for a number of rockets. As noted in the x-axis label, the Strouhal
number is a normalized frequency. The other variables are discussed further
in Reference [11].
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ranging from 100 to 300 Hz. Although the spectral shape of such aeroacoustic sources

has been experimentally well established, the exact mechanisms that cause it are not

completely understood.

The imaging technique studied in this research is near-field acoustical holography

(NAH). NAH was first developed in the early 1980’s and is a form of acoustical

holography in that it can predict a three-dimensional sound field based on a two-

dimensional pressure measurement [24]. The significance of NAH is in solving the

inverse problem or determining the radiation of a source based on a measurement

array a short distance from the source (see Figure 1.2). NAH utilizes the basic physics

Figure 1.2 A graphical representation of near-field acoustical holography.
After measuring the pressure in one plane, the entire pressure field can be
determined.

of the wave propagation and radiation with cost-effective methods for accurately

performing the signal processing, the specific details of which will be discussed in

greater detail in Chapter 3. Several NAH methods have been developed (e.g. see

References [26–29]) each with its own strengths and limitations. As a source-imaging

method, NAH has been shown to be quite versatile and can reconstruct acoustical
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quantities for varying source configurations and types. It has, therefore, become fairly

standard for source characterization in many industrial and research applications.

While NAH methods have been successfully applied to many structural sources

and even some basic aeroacoustic sources, such as fans and subsonic jets, it cannot

be automatically assumed that it would correctly image a supersonic jet or rocket

source. The reason for this lies in the high amplitudes of such sources. Both Morfey,

et al. [32] and Gee, et al. [33] showed that some errors in linear propagation algorithms

of aircraft noise are due to nonlinear effects. The published overall sound pressure

levels (OASPL) from these authors are between 140-150 dB at about 20 meters from

the jet. McInerny [35, 36] also found strong evidence of nonlinear propagation in

measured rocket noise data, publishing similar OAPSL values for the Titan IV rocket,

but at the much greater distance of 820 meters. Since geometrical spreading and air

absorption inevitably lowered the amplitude during the propagation, the levels at 20

meters could have easily been on the order of 170 dB. Additionally, peak pressure

values were shown to be as much as 15 dB higher than the rms values used for

OASPL calculations [35]. Because of the finite-amplitude nature of these sources, a

linear technique such as NAH may not accurately image the acoustic source.

1.4 Present Research Objectives

Near-field acoustical holography may become less accurate when applied to a finite-

amplitude sound source due to the breakdown of linear assumptions. However, if

these errors were studied and characterized, NAH could still be useful in cases where

nonlinear effects were known to be negligible. The present research consists of non-

linearly propagating several random noise waveforms with varying spectral shapes

and center frequencies using a numerical propagation algorithm, applying NAH and
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determining the reconstruction errors at multiple propagation distances for low and

high amplitudes. The nonlinearities will then be studied and characterized to corre-

late the nonlinear effects with the reconstruction errors. The main research objective

is to show the feasibility of imaging rocket noise using NAH. However, since jets are

similar to rockets in their source generating mechanisms and are also finite-amplitude

sources, this study is automatically extended to imaging jet noise also.

1.5 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 deals with the theory of linear and nonlinear wave propagation.

• Chapter 3 explains the research methods including the propagation algorithm,

the implementation of NAH, as well as the nonlinearity indicators.

• Chapter 4 displays and discusses the nonlinear propagation results.

• Chapter 5 includes the holography results and the reconstruction errors.

• Chapter 6 summarizes the results and concludes this thesis.

• Following the main body of this thesis is a bibliography with a list of references

and an appendix with supplemental information.



Chapter 2

Theory: Wave Propagation

Waves are important in describing many physical systems and the manner in which

they travel is known as wave propagation. In linear acoustics, the spatial and temporal

behavior of a wave can be determined by solving a partial differential equation that

is derived from basic conservation laws. The basic solutions for simple coordinate

systems can provide much insight into a particular problem, such as the one addressed

in this thesis. For this reason, linear wave motion is described in this chapter for plane

and spherical waves. For nonlinear acoustics, the same conservation laws are valid,

but are more complicated because certain linear assumptions no longer hold. These

nonlinear terms that are neglected with linear assumptions cause the behavior to

deviate from the linear case. Therefore, the basics of nonlinear acoustic propagation

will also be discussed. Additionally, the effects of loss mechanisms are described for

both linear and nonlinear propagation.

9
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2.1 Fundamentals of Linear Propagation

For low-amplitude acoustic perturbations, nonlinear or terms higher than first-order

are not significant and subsequently neglected. When these terms are not accounted

for in expanded versions of the basic conservation equations and losses are neglected,

the linear, lossless, homogeneous wave equation can be derived,

∇2p =
1

c20

∂2p

∂t2
, (2.1)

where c0 is the small-amplitude sound speed and p is the complex acoustic pressure.

Neglecting nonlinear terms inherently assumes that the amplitude of the occurrence

is relatively small, and that the temperature fluctuations due to the sound waves are

negligible. Ignoring temperature changes would result in a constant sound speed. For

many applications, the temperature changes are indeed so small that this assump-

tion is valid. In the next sections, geometrical spreading will be addressed with the

assumption of constant sound speed c0 as well as a homogeneous, isotropic medium.

2.1.1 Plane Waves

The complex solution to the wave equation in Cartesian coordinates takes on the

form of

p = Aej(ωt−~k·~r), (2.2)

where A is a constant and ~k is the propagation vector, which has components in each

of the Cartesian coordinates. The magnitude of ~k is the acoustic wavenumber and is

equal to the angular frequency divided by the speed of sound, k = ω/c0.

Waves that have this mathematical form are called plane waves and are the sim-

plest form of propagating waves. Plane waves propagate with constant amplitude

and phase through a medium in some direction, dictated by the direction of ~k [38].
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If the solution is assumed to be time harmonic, the ejωt time dependence can be

factored out of the wave equation to yield the Helmholtz equation,

∇2p + k2p = 0. (2.3)

This is also equivalent to taking the spectral Fourier transform of the wave equation.

The spatial pressure distribution can then be determined for a given time-harmonic

excitation by solving the Helmholtz equation.

In the context of acoustic radiation and propagation, it becomes convenient to

know a spatial distribution of the field in terms of its wave numbers. For this, the

continuous spatial Fourier transform can be used, which is defined as

P(k) =
1√
2π

∫ ∞

−∞
p(x)e−jkxdx, (2.4)

where x is a spatial coordinate and P(k) is known as the angular spectrum or plane

wave spectrum. The inverse transform is then defined as

p(x) =
1√
2π

∫ ∞

−∞
P(k)ejkxdk. (2.5)

For most applications of the Fourier transform, the data are discretely sampled

and the discrete-time Fourier transform (DFT) must be used. It is defined using a

summation instead of an integral according to

P[l] =
1

N

N−1∑
n=0

p[n]ej2πln/N , (2.6)

where [ ] denotes a discrete sequence, l is the k-space sample number corresponding

to the continuous variable k, n is the spatial sample number corresponding to the

continuous variable x and N is the number of samples in the sequence. A fast imple-

mentation of the DFT is known as the fast Fourier transform and requires that N be

a multiple of two for maximum computational efficiency [39].
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2.1.2 Spherical Waves

When an acoustic source exhibits spherical symmetry, it becomes convenient to ex-

press the wave equation in the spherical coordinates r, θ and φ. Using separation of

variables, the Helmholtz equation becomes

∇2R(r)Θ(θ)Φ(φ) = k2R(r)Θ(θ)Φ(φ). (2.7)

The Laplacian operator can be expanded in spherical coordinates to obtain

sin2 θ
1

R

d

dr
r2dR

dr
+

1

Θ
sin θ

d

dθ
(sin θ)

dΘ

dθ
+

1

Φ

d2Φ

dφ2
+ k2r2 sin2 θ = 0. (2.8)

so that the φ variables are grouped together. Because the sum of the set must equal

zero, the φ-dependent portion must equal a negative constant as

1

Φ

d2Φ

dφ2
= −n2, (2.9)

and the rest of the equation must equal that positive constant +n2, with the require-

ment that the constant n2 ensures a 2π periodic solution in φ. Solving Equation 2.9

again leads to complex exponentials, now of the form e±jnφ. The rest of the equation

can now be separated again to achieve

1

R

d

dr
r2dR

dr
+ k2r2 +

1

Θ

1

sin θ

d

dθ
(sin θ)

dΘ

dθ
− n2

sin θ2
= 0, (2.10)

where the first portion is dependent only on r while the second portion is dependent

only on θ. Again, they must equal a constant, C. Using the substitution η = cos θ, the

θ-dependent portion can be written as the familiar associated Legendre differential

equation,

(1− η2)
d2Θ

dη2
− 2η

dΘ

dη
+ (m(m+ 1)− n2

1− η2
)Θ = 0, (2.11)

where C = m(m+ 1). The solutions are the associated Legendre functions [41]

Θ(θ) = P n
m(cos θ). (2.12)
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The remaining portion of Equation 2.10 must be manipulated further in order to find

a solution. By multiplying by R and making the substitution r = ζ/k, the equation

can be written as

d2R

dζ2
+

2

ζ

dR

dζ
[ζ2 −m(m+ 1)]

R

ζ2
. (2.13)

The solutions to this equation are spherical Hankel functions, which can be written

in terms of spherical Bessel functions of the first and second kind as

h(1)
m (ζ) = jm(ζ) + jnm(ζ), (2.14)

which represents incoming waves and

h(2)
m (ζ) = jm(ζ)− jnm(ζ), (2.15)

which represents outgoing waves [40]. The total solution for an outgoing complex

pressure wave can then be written as

p(r, θ, φ) = h(2)
m (kr)P n

m(cos θ) cosnθ. (2.16)

This can be simplified by defining a set of orthonormal functions called spherical

harmonics [41], as

Y 1
mn(θ) = P n

m(cos θ) cosnθe−jmθ (2.17)

to obtain a more compact solution written as

p(r, θ, φ) = h(2)
m (kr)Y 1

mn(θ). (2.18)

For the complete solution, a summation over the indices m and n is necessary [42].

For a spherical wave with symmetry in the axial (polar) and azimuthal (circum-

ferential) angles, the solution is only dependent on the radial distance r. This forces

the integer coefficients n and m to be zero, therefore reducing p for the outgoing case

to

p =
A

r
ej(ωt−kr). (2.19)
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This result shows the general dependence of 1/r for spherical waves.

This 1/r-dependence can also be obtained by determining the average power ra-

diated by a source. The average acoustic power is defined as the surface integral of

the acoustic intensity, I, dotted with the outward normal vector, n, or

Pave =
∫

S
I · ndS. (2.20)

By letting S be a spherical surface of radius r, the integral reduces to 4πr2, or the

area of the sphere, and makes the intensity, which is related to the squared pressure,

inversely proportional to r2 [48]. This 1/r decay for spherical waves is often called

spherical spreading because it physically represents a radial spreading of energy as

the wave propagates. Many waves travel as spherical waves if the source appears to

be sufficiently compact (i.e. is small compared to wavelength).

An analogy to the plane wave spectrum can be defined for spherical waves and

therefore is called the spherical wave spectrum, P̄mn [57]. It is defined in terms of

spherical harmonics according to

P̄mn =
∫
p(r0, θ, φ)Y n

mdΩ, (2.21)

where dΩ is sinθdθdφ. This essentially decomposes the pressure at r0 into its spherical

wave components. The inverse transform can be found using orthogonality of the basis

functions Y n
m, to get

p(r, θ, φ) =
∞∑

n=0

n∑
m=−n

P̄mnY
n
m, (2.22)

which is actually a double Fourier series.

Strictly speaking, Equations 2.21 and 2.22 are not Fourier transforms at all.

Rather, the “forward transform” is equivalent to determining spherical harmonics

coefficients and the “inverse transform” is a spherical harmonic series expansion.

For this reason, the “forward transform” must actually be derived from the “inverse
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transform” using orthogonality of the spherical harmonic basis functions and not vice

versa [41]. However, the variables m/r0 and n/r0 are somewhat analogous to kx and

ky in that they are both eigenvalues that decompose the field [57]. For this reason and

to be consistent with the literature, the terms transform and spherical wave spectrum

will still be used.

2.1.3 Losses

For the previous derivations, it has been assumed that the acoustic propagation has

been lossless. When losses are included, the Helmholtz equation can be altered merely

by making the wave number complex according to

k = k − jα, (2.23)

where α is the appropriate absorption coefficient. The complex wavenumber then

causes both dispersion and attenuation.

For many acoustic propagation problems, losses play an important role in the

decay process of the wave. Thermal conduction and viscosity effects as well as molec-

ular relaxation are the major loss mechanisms which are significant for propagation

in air. Thermoviscous absorption, also known as classical absorption or modified clas-

sical absorption1, is the superposition of the absorption due to thermal conductivity

and that due to viscosity. The modified classical absorption coefficient, which is also

known as the diffusivity of sound δ, is defined as

αc = (
ω2η

2ρ0c3
)(

4

3
+
µB

µ
+
γ − 1

Pr
), (2.24)

where η is the coefficient of shear viscosity, γ is the ratio of specific heats, µ is the

1Classical absorption actually assumes that the bulk viscosity is zero whereas modified classical

absorption includes the bulk viscosity [48].
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shear viscosity, µB is the bulk viscosity and Pr is the Prandtl number [38]. A semi-

empirical form of Equation 2.24 is

αc = 1.84−11f 2, (2.25)

which is valid at T=293 K and atmospheric pressure [43]. This equates to a frequency-

dependent decay rate, causing higher frequencies to decay much faster than lower

frequencies (see Figure 2.1).

Molecular relaxation effects are due to the molecules in the fluid being excited by

an acoustic perturbation. Energy is transferred from translational motion to rota-

tional and vibrational motion. If there is enough time for the molecule to return to

its equilibrium state before the next perturbation, the absorption increases logarith-

mically with frequency. This concept is known as the relaxation time and its inverse

is the relaxation frequency. If there is not enough time to return to equilibrium, the

molecule is considered “frozen”. The absorption is then constant above the relaxation

frequency. When the interactions between the processes are small, the cumulative ef-

fects of each loss mechanism can be added to obtain an overall absorption coefficient2

αtot [42] and is shown in Figure 2.1. The major contributors to absorption of audible

frequencies in the lower atmosphere are the molecular relaxation due to nitrogen and

oxygen.

2.2 Fundamentals of Nonlinear Propagation

As previously mentioned, nonlinear effects become important when temperature fluc-

tuations are not negligible. Since sound traveling through a fluid medium is an adia-

batic process, the sound speed, c, is temperature-dependent, and continuous tempera-

2α is typically in units of nepers per meter and can be converted to decibels per meter by

multiplying by 8.686.
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Figure 2.1 Classical and molecular relaxation absorption in dB per meter.

ture changes cause the instantaneous speed of sound to also change continuously [44].

Since the velocity of the wave is a more convenient quantity to consider when deter-

mining the change in sound speed, a normalized version is often used. This quantity is

known as the acoustic Mach number, ε, and is defined as the acoustic velocity divided

by the small-amplitude sound speed, u/c0. For a reference value, a Mach number of

0.1 equates to 177 dB re 20 µPa for plane waves. Additionally, properties of the fluid

contribute to the amount of nonlinear effects that occur. These are accounted for in

a factor known as the coefficient of nonlinearity β, which for an ideal gas is (1+γ)/2.

Since γ = 1.402 for air, this equates to β = 1.201 for air [44].

The nonlinear wave equation is very complicated and in general does not have

an analytical solution. However, several of the important effects can be shown for

simple cases. Also, a series of approximations can be made which allow for solutions

in specific cases that still effectively demonstrate many of the fundamental nonlinear
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acoustics phenomena.

2.2.1 Time-domain Effects

Waveform Steepening

The instantaneous sound speed for acoustic plane waves in an ideal gas is dependent

on the particle velocity u and β according to

c = c0 + βu (2.26)

for second-order or quadratic nonlinearities. When the velocity magnitude is high,

the sound speed deviates from c0. However, due to the oscillatory nature of waves,

the speed of sound will either increase or decrease according to the relative phase of

the wave. In other words, the regions of condensation or fluid compression will travel

faster than c0, while the regions of rarefaction or fluid expansion will travel slower

than c0. Figure 2.2 shows the changing sound speed for a single period of a sine wave.

As the waveform propagates in space, it becomes more and more distorted. This

effect is known as waveform steepening.

Shock Formation

As the waveform continues to steepen, some portion will eventually become triple-

valued, a physically impossible phenomenon since acoustic waves are compressional.

Instead of the waveform becoming triple-valued, a discontinuity known as a shock

is formed. For an initially monofrequency wave, the necessary propagation distance

to form a shock is known as the shock formation distance, where a shock is defined

as when the rise from a trough to a crest takes less than one-tenth of the period of

the wave. The shock formation distance is calculated for plane and spherical waves
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Figure 2.2 The positive portions of a waveform will travel faster than the
negative portions. This shift in sound speed is important when amplitudes
are large and causes waveform steepening.

respectively according to

x̄ =
1

βεk
(2.27)

and

r̄ = r0e
1

βεkr0 , (2.28)

where r0 is some distance where the monofrequency amplitude is known. From these

equations, it is apparent that shocks form quicker for greater Mach numbers (i.e.

higher amplitudes), higher frequencies and higher coefficients of nonlinearity. Table

2.1 lists the shock formation distance for several frequencies and Mach numbers in

air.

For convenience, distance is often normalized by the shock formation distance to

create a dimensionless distance σ defined as x/x̄ for plane waves. A value of σ less than

one would represent any distance before the shock has formed, known as the preshock

region, while σ > 1 would represent distances larger than a shock formation distance.

Once formed, the shock rise time will continue to decrease until it simultaneously

overtakes the trough ahead of it and is overtaken by the crest behind it. This occurs
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Table 2.1 Shock formation distance for several frequencies and Mach num-
bers in air.

Frequency [Hz] Mach Number x̄ r̄ (r0 = 1)

100 0.05 9.1 m 8873 m

1000 0.05 0.91 m 2.5 m

100 0.1 4.5 m 94 m

1000 0.1 0.45 m 1.57 m

at σ > π/2 after which the shock amplitude will begin to decrease [45]. After a sine

wave has traveled the equivalent of three shock formation distances (i.e. x = 3σ), the

waveform will have become a sawtooth wave (see Figure 2.3) The sawtooth wave will

continue to decay at a rate different than linear waves.

Figure 2.3 A sine wave will steepen up and form a shock due to the
amplitude-dependent sound speed. Eventually, the sine wave will become
a sawtooth wave.

It must be noted that a waveform will steepen in opposite directions depending
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on whether the representation is in space or time, where a moving time frame is

generally used (see Subsection 2.2.3 for more details). Figure 2.3 is a representation

of steepening in time whereas figure 2.2 is a representation of steepening in space.

For broadband, random noise waveforms, the waveform steepening and shock

formation will also occur based on the principles just mentioned. However, since

the pressure amplitudes are random, areas of local maxima will experience more

steepening than other portions of the waveform. The actual location and amplitude

of these maxima cannot be predicted and therefore the term shock formation distance

is no longer straightforward. Additionally, since measured shocks are not exactly

discontinuous, McInerny defines a shock as occurring when the time for a pressure

rise from a minimum to a maximum is less than one tenth of the average period of

the overall sound pressure waveform [36]. This is known as the shock rise time and

the distance required to accomplish this rise is known as the shock thickness [46].

After a shock forms, its speed becomes dependent on the pressure on both sides

of the shock according to

Ush = c0 + β
pa + pb

2ρ0c0
, (2.29)

where pa and pb are the pressure right behind and right in front of the shock respec-

tively [45]. Therefore, the points behind the shock will ‘catch up’ with the shock,

while points ahead of it will be ‘overtaken.’ Because of this, all shocks do not travel

at the same speed and slower shocks may eventually be ‘overtaken’ by other shocks

traveling at a faster speed. This concept is known as shock coalescence. As seen in

Equation 2.29, changes in the pressure amplitude due to geometrical spreading or

losses will play an important part on the amount of shock coalescence that occurs.
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2.2.2 Frequency-domain Effects

Harmonic Generation

A steepened waveform will also have perceivable changes in the spectral information

of the wave. If the wave begins as a sinusoid, steepens and forms a shock, the Fourier

series components will change from one term to possibly an infinite number of terms.

The energy can be thought to have ‘leaked’ from the fundamental frequency to its

harmonics as shown in Figure 2.4. This is a consequence of Fourier’s theorem, as

Figure 2.4 The Fourier components of the time waveforms shown in Figure
2.3. The higher-order harmonics become non-zero as the waveform steepens
and forms a shock.

more and more harmonics are needed to represent a sine wave experiencing distortion

[44]. Furthermore, the amplitudes begin to approximately follow a 1/f curve once

significant waveform steepening has occurred. This can be observed in the Fourier

series solution of a sawtooth wave which has the form

fsawtooth(x) =
1

2
− 1

π

∞∑
n=1

1

n
sin(

nπx

2T
), (2.30)
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where n is the harmonic number and T is the period [47].

For a broadband waveform, the harmonic generation will also occur and Fourier’s

theorem will still apply. However, since all frequencies are already present as opposed

to a just single tone, the harmonic generation causes a constant f−2 decay at all

high frequencies as with the monofrequency case only not at just discrete harmonics

[69]. This equates to a high frequency roll-off that is uncharacteristic of geometrical

spreading or atmospheric absorption. Therefore, a high frequency decay proportional

to f−2 in a random noise spectrum may indicate waveform steepening and therefore

nonlinear propagation [32].

Additionally, the spectral content can be affected by shock coalescence. When a

faster shock overtake a slower shock, the waveform may lose a zero-crossing, as shown

in Figure 2.5. This loss effectively lowers the characteristic time scale which is related

to the center frequency of the spectrum [54]. This is made manifest in the spectrum

Figure 2.5 A shock traveling at a faster speed can cause a loss in zero-
crossings as it begins to overtake another slower shock. The loss in zero-
crossings causes a downward shift in the center frequency and a f 2 rise at
low frequencies.
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by an increase in lower frequency energy according to f 2 [49] and a downward shift

in the center frequency [50]. These two factors, a low-frequency dependence on f 2

and a downward shift in center frequency, can be an indication of shock coalescence

and therefore nonlinear propagation3.

In general, nonlinear propagation will act as a frequency filter and will shape

the spectrum of a broadband random noise signal. The spectral shape, however, is

generally dependent on amplitude and distance.

2.2.3 Analytical Solutions

Burgers Equation

The generalized Burgers equation is the simplest model equation that accounts for

nonlinearities, losses and geometrical spreading in one dimension4. The generalized

form of the Burgers equation is expressed as

(
∂p

∂r
+
m

r
p∓ δ

2c30

∂2p

∂τ 2
) = ± βp

ρ0c30

∂p

∂τ
, (2.31)

where m is 0, 1/2 or 1 for plane, cylindrical and spherical waves respectively, τ is

known as the retarded time and δ is the diffusivity of sound [45]. The retarded time

is a moving reference time frame defined as t− dx/c, where dx is some spatial step.

This reduces to

(
∂p

∂r
∓ δ

2c30

∂2p

∂τ 2
) = ± βp

ρ0c30

∂p

∂τ
(2.32)

for plane waves. Many finite-amplitude propagation algorithms are based on the

Burgers equation (e.g. see References [50,51]).

3A downward shift in center frequency can also be caused by near-field effects in jet noise and

care must be taken to separate these two effects (see Reference [66]).
4The Burgers equation was originally developed to model turbulence but is also a model of other

nonlinear phenomena.
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Burgers Equation Solutions

For the lossless plane wave case with a monofrequency source, the solution to the

Burgers equation takes on the form

p = p0

∞∑
n=1

2

nσ
Jn(nσ) sinnωτ, (2.33)

where n is the harmonic number [45]. This solution was developed by Fubini and

carries his name. The Fubini solution is valid in the preshock region for values of

σ ≤ 1. The pressure solution is clearly in terms of Fourier components Bn, with each

component’s amplitude defined in terms of Bessel functions according to

Bn =
2

nσ
Jn(nσ). (2.34)

As σ approaches 1, more nth-order Bessel functions are non-negligible, and therefore

more Fourier components are included in the solution, as shown in Figure 2.6.

Since the Fubini solution is only valid up to the formation of the shock, it carries

no information about the behavior of the actual shock itself. Fay developed a solution

that is valid in the region where σ � 3 and includes losses5. The pressure is defined

as

p = p0

∞∑
n=1

2/Γ

sinh[n(1 + σ)/Γ]
sinnωτ, (2.35)

where Γ is the Gol’dberg number that will be discussed in the following subsection [45].

Again the solution is an infinite sum of harmonics with the amplitude now defined as

Bn =
2/Γ

sinh[n(1 + σ)/Γ]
. (2.36)

The harmonic amplitudes normalized by the initial amplitude of the fundamental are

shown Figure 2.7.

5These two solutions were thought to contradict each other until Blackstock showed that each is

valid in a different region [52].
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Figure 2.6 The normalized amplitudes of the Fourier series components
as defined by the Fubini solution (Equation 2.33) for the preshock region.
As σ approaches one, more components are non-zero and contribute to the
solution.

2.2.4 Losses

Because nonlinear effects tend to increase energy at high frequencies and absorption

tends to decrease energy at high frequencies, it is possible that given enough absorp-

tion and a low enough amplitude, waveform steepening will not be able to significantly

occur. The parameter Γ, known as the Gol’dberg number, can give an indication of

the relative strength of waveform steepening compared to absorption. It is defined as

Γ =
la
x̄
, (2.37)

where la is the absorption length defined as 1/αc. If Γ � 1, the absorption acts to

negate the nonlinear effects, whereas if Γ is greater than unity, the waveform can

significantly steepen and form a shock before absorption effects become significant

[45]. The Fay solution is therefore not valid where the initial Γ is less than one.
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Figure 2.7 The normalized amplitudes of the Fourier series components
from σ = 3 to σ = 4 as defined by the Fay solution (Equation 2.35). The
harmonic amplitudes are normalized according to the initial amplitude of the
fundamental.

Additionally, losses can be important for shocks. Attenuation caused by absorp-

tion can slow down shock formation and affect shock speed, thereby changing the

propagation behavior (see Equation 2.29). The expression for shock thickness, shown

here as

h =
2δ ln(9)

βub

, (2.38)

where ub is the acoustic velocity behind the shock, demonstrates the battle between

dissipation and nonlinearity. Nonlinearity tends to steepen the compression wave

which decreasing the shock thickness, whereas dissipation tends to spread it out and

therefore increase h [46].





Chapter 3

Research Methods

The methods used in this research are described in the following order. First, the

methods for creating and propagating four broadband waveforms are explained. Next,

the reconstruction implementation using NAH is derived. Finally, the theory behind

the nonlinearity indicators used is extensively described.

3.1 Numerical Methods

In order to accurately propagate the signals of interest, a numerical propagation algo-

rithm that accounts for nonlinearities and losses was used. Four broadband random

noise waveforms were created and input into the algorithm.

3.1.1 Propagation Algorithm

The numerical algorithm used for propagation was recently developed by Wochner [54]

and builds off the work by Sparrow and Raspet [55]. Wochner’s algorithm solves an

extended Navier-Stokes equation set, comprised of conservation equations. They are

29
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defined here in two dimensional form: the equation of continuity,

Dρ

Dt
+ ρ∇ · v = 0, (3.1)

the Navier-Stokes equation or conservation of momentum,

ρ
Dv

Dt
= −∇p+∇(µB∇ · v) + µ

∑
ij

ei
∂φij

∂xj

, (3.2)

the entropy balance equation, which is necessary for shock formation and propagation,

ρ
Dsfr

Dt
+

∑
ν

ρ

Tν

cvν
DTν

Dt
−∇ · ( κ

T
∇T ) = σs, (3.3)

and the relaxation equation,

DTν

Dt
=

1

τν
(T − Tν). (3.4)

In the above equations, D/Dt is the total derivative, ρ is the fluid density, v is the

velocity vector, µ and µB are the shear and bulk viscosities, ei is the unit vector in

the ith direction, φij is the rate of shear tensor, sfr is the frozen entropy, T is the

absolute temperature, κ is the coefficient of thermal conduction, cvν is the specific

heat constant of the ν-type molecule, σs is the entropy source term, and Tν and τν

are the apparent vibration temperature and relaxation time of the ν-type molecule.

The temporal and spatial variables are grouped together to form a matrix of this

form

∂w

∂t
+
∂F

∂x
+
∂G

∂y
= H, (3.5)

where w is a matrix of the time-dependent variables, F is a matrix of the x-dependent

variables, G is a matrix of the y-dependent variables, and H is a matrix of the
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remaining source-like terms. More specifically, w, F and G are

w =



ρ

ρu

ρv

ρsfr

ρT02

ρTN2



, F =



ρu

ρu2

ρuv

ρusfr

ρuT02

ρuTN2



, G =



ρv

ρuv

ρv2

ρvsfr

ρvT02

ρvTN2



, (3.6)

where TN2 and TO2 are the vibration temperatures of nitrogen and oxygen respectively,

and H is defined in Reference [54]. Acoustic pressure is then found using the van der

Walls form of the equation of state,

<{p} = c2[(ρ− ρ0) +
γ − 1

2ρ0

(ρ− ρ0)
2 +

ρβT

cp
(sfr − sfr0)], (3.7)

which relates the pressure, density and entropy of a perturbation. This set of equa-

tions can also be simplified to one dimension by removing the y-component of the

velocity and generalized for arbitrary geometrical spreading. More specific details

regarding the derivation of the equation set can be found in Reference [56].

Equation 3.5 is then solved for using finite-difference approximations for a given

set of initial and boundary conditions. Appendix A describes the basic theory behind

solving partial differential equations using finite-difference approximations including

definitions of the terms stencil and CFL number.

A weighted essentially non-oscillatory (WENO) scheme was used to solve for the

spatial derivatives (see Reference [54] for WENO references). The specific WENO

method used is a three stencil scheme with each stencil containing three points equat-

ing to fifth-order accuracy in space. Each stencil is then weighted with the center

stencil receiving the highest weighting, while smoothness factors are calculated to de-

termine how continuous the points are. For portions with discontinuities, the smooth-

ness factors approach zero for that stencil and force the weighting functions to zero,
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thus allowing the estimate of the derivative to maintain finite by using the remaining

stencils with non-zero smoothness factors. This type of scheme requires the CFL

number to be less than one half. The WENO scheme is able to stably propagate

discontinuities and therefore will not go unstable when shocks with close to infinite

slopes form. However, this ability comes at a large computational cost and also inher-

ently includes an initial smoothing effect which limits the useable frequency content of

broadband waveforms. Figure 3.1 shows the effect of the smoothing on a broadband

time waveform while Figure 3.2 shows the smoothing effect on the waveform’s third-

octave band spectrum. Frequencies above 2 kHz experience significant smoothing

Figure 3.1 A broadband noise time waveform before (top) and after (bot-
tom) being smoothed by the WENO scheme. Some high frequency content
is lost (see Figure 3.2).

by the WENO scheme and therefore are not accurate. It must also be noted that

the WENO method does not have trouble creating higher frequencies that occur with

nonlinear distortion. Rather, the initial smoothing is the WENO scheme’s attempt

to ensure adequate smoothness of the broadband input.
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Figure 3.2 A random noise waveform spectrum before and after the WENO
smoothing. The smoothing causes an artificial decay in frequencies above
about 2 kHz.

The temporal portion of Equation 3.5 is solved using a third-order Runge-Kutta

scheme. This is accomplished by using a series of three approximations of the time

solution, each dependent on the last iteration with the final approximation being the

actual estimate. Each iteration uses the spatial derivative information and therefore

triples the number of computations required per iteration. For more advanced details

about the algorithm theory, development and numerical verification, see Reference

[54].

An absorbing boundary condition was implemented using a Gaussian decay. Math-

ematically, the decay is described as

Q(ψ) = e
ln(2)(ψ−ψ0)2

α2 , (3.8)

where ψ is the spatial variable, α is the Gaussian half-width, ψ0 is the location of

the center of the distribution and Q is the variable to which the boundary condition

is applied. This absorbing boundary condition was applied to all of the variables
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starting 100 points away from the actual boundary with α set to the value 600dψ,

where dψ is the discretization step size in ψ. This allows for virtually no numerical

reflection, but did increase the number of points required in the domain.

A point source was implemented with the following Gaussian distribution for the

one-dimensional case

Ae
ln(2)(x−x0)2

α2 , (3.9)

where A is the amplitude, and x is equivalent to ψ in equation 3.8, with an addi-

tional (y − y0)
2 term included for two-dimensional propagation. This is a common

approximation of a point source in numerical simulations and is used to overcome

the infinite slope requirement of an actual point source. This approximation also has

its limitations, especially when used to propagate broadband noise. If the Gaussian

half width is too small and α is less than about half a wavelength, the source will

not be able to generate low frequencies. On the other hand, if α is large compared

to the spatial discretization step dx, then that wavelength will also not be able to be

resolved. For this reason the Gaussian half width value of 10dx was used as a middle

point for the broadband propagation.

Several of the weaknesses of this algorithm are as follows. First, the algorithm is

computationally expensive, especially with the addition of the y-dimension. Without

the use of parallel processing, only very small domains can be used with high accu-

racy. Since a large number of time iterations is required for high resolution in the

frequency domain, this again equate to extremely long run times. This required the

use of a supercomputing cluster which, due to its size and utilization, crashed more

frequently than one would desire. Second, the amplitude of the waveform cannot be

specified explicitly beforehand. This means that a trial run must be performed to

ensure that the amplitude is correct. The amplitude also changed depending on the

input parameters. Third, the algorithm smooths out broadband waveforms losing
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the initial high frequency content as previously discussed. Finally, the exact stability

requirements are not well known due to the complexity of the finite-difference scheme

and the set of equations that is being solved. The algorithm can also go unstable if

the absorbing boundary condition parameters are not sufficient to force the amplitude

to zero at the boundary, causing numerical reflections to occur. These factors can all

work together to cause the algorithm to go unstable with only minor adjustments of

the numerical parameters.

3.1.2 Source Terms

Several random noise time waveforms were then created, two with a characteristic

‘haystack’ spectral shape and two with a more narrow spectrum similar to narrow-

band noise. This was done to test the effect of the spectral shape on propagation and

reconstruction. Furthermore, two peak frequencies of 100 and 500 Hz were addition-

ally chosen for each of the spectra to study the effect of the center frequency. These

were chosen not to exactly match the center frequencies for jets and rockets spectra

but as estimates that allow for reasonable computations1.

A block diagram of the waveform generation procedure is shown in Figure 3.3

and is described as follows: An N = 216 = 65, 536 array of random numbers was

generated with an rms value, or standard deviation of 1. It was sampled at 500

kHz and transformed to the frequency domain. The respective spectral shapes were

attained by multiplying the spectrum with a filter function, W , with the spectral

shape defined as

W =


fm , f < fc

f−m , f > fc

(3.10)

1Extremely long run times would have been required in order to get good frequency resolution

below 100 Hz.
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Figure 3.3 Block diagram for creating the input waveforms. The filter W
is shown in Equation 3.10.

where m = 1 for the ‘haystack’-shaped filter and m = 2 for the narrowband-noise-like

filter. This equates to f 2 and f 4 dependence for the respective power spectra. The

spectrum was then transformed back to the time domain and divided by the standard

deviation to maintain the rms value of unity. The waveform was then padded with

zeros to ensure that only zeros and not the actual waveform exited the domain during

the run. This equates to a moving reference frame that allows for analysis of the entire

216 point waveform at each virtual microphone. The waveforms were then input into

the domain by defining the amplitude, A, from Equation 3.9, at each time iteration,

i, in terms of the input waveform amplitude according to

Ai = Bxi, (3.11)

where xi is the ith point of the input waveform. B acted then as a scaling factor to

allow for varying the actual amplitude of the run.

To avoid confusion of which waveform was used, a simpler naming convention will

be used and is shown in Table 3.1. Narrow-band and third-octave-band spectra for

the four waveforms are shown in Figures 3.4, 3.5 , 3.6 and 3.7. The third-octave-band

filter changes the apparent slopes of the narrowband spectra because the energy is

being spread out over larger bins, effectively increasing the rise and decreasing the

decay and causing the symmetry of the spectra to disappear.

As mentioned in Chapter 1, the peak pressures for rockets have been measured 10
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Table 3.1 List of Input Waveforms

Spectral Shape Center Frequency [Hz] Simplified Name

f 2 100 waveform 1

f 2 500 waveform 2

f 4 100 waveform 3

f 4 500 waveform 4

Figure 3.4 Waveform 1 in narrow- and third-octave bands. The f 2 rise
now appears to be proportional to f 3 while the f−2 decay appears to be
proportional to f−1.
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Figure 3.5 Waveform 2 in narrow- and third-octave bands. The f 2 rise
now appears to be proportional to f 3 while the f−2 decay appears to be
proportional to f−1.

Figure 3.6 Waveform 3 in narrow- and third-octave bands. The f 4 rise
now appears to be proportional to f 5 while the f−4 decay appears to be
proportional to f−3.
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Figure 3.7 Waveform 4 in narrow- and third-octave bands. The f 4 rise
now appears to be proportional to f 5 while the f−4 decay appears to be
proportional to f−3.

to 15 dB higher than the OASPL. The crest factor, C, is used to determine this and

is defined in decibels as

C = 20log10(
pmax

pe

), (3.12)

where pmax is the maximum pressure and pe is the effective or rms pressure. Table 3.2

shows the crest factors for waveforms 1-4. This shows crest factors slightly lower than

Table 3.2 Crest factor for the generated waveforms

Waveform Crest Factor [dB]

1 9.8

2 11.0

3 7.4

4 10.3

rocket noise crest factors published in Reference [35]. This means that real rocket

noise would have slightly higher peak amplitudes and therefore more nonlinear effects

than the waveforms used for this research.
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3.1.3 Implementation

The algorithm was modified only slightly for the one-dimensional studies. Both spher-

ical spreading and full atmospheric absorption were included with the source arbitrar-

ily placed 0.02 meters into the domain. Because of the spherical spreading constraint,

the domain itself was set 0.3 meters from the origin in order to keep the backward

propagating portion from becoming too large due to the backward spreading. This

equated to the source being located 0.32 meters from the origin with absorbing bound-

ary conditions at each end of the domain. Virtual microphones were equally spaced

throughout the domain and recorded the pressure at each time step. The pressure

data at each virtual microphone were then output as an ASCII file at the completion

of the run. Small-domain jobs were run on a desktop PC2 while large-domain jobs

were run on a single node of the Marylou4 supercomputing cluster housed in the

Brigham Young University Fulton Supercomputing Laboratory3.

In order to have high accuracy with numerical schemes, small temporal and spatial

sizes must be used. The spatial step would correspond to a finite number of points

per wavelength and the temporal step is defined by the CFL number, sound speed

and spatial step size (see Appendix A). However, due to computational constraints,

realistic discretization steps must be chosen that correspond to achievable domain size

for a given processor and a practical run time. In order to ensure that the numerical

parameters chosen, shown in Table 3.3, produced an accurate estimate of the solution,

two test cases were performed and compared against the Fubini and Fay solutions.

The Fubini solution is valid for lossless propagation from a monofrequency source

in the pre-shock region (see Chapter 2). The spatial discretization size was set to

2Intel R©Pentium R©D processor at 3.2 GHz with 3.5 GB RAM
3Dell 1955 Blade Cluster with 1260 Dual Core Intel EM64T processors at 2.6 GHz (2520 cores)

and 618 compute nodes with a total of 5,040 GB total memory (8 GB/node)
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Table 3.3 Numerical parameters chosen for the propagation algorithm

Frequency [kHz] Point per Wavelength CFL Number

20 200 .49

8.57e-5 meters, which, as shown in Table 3.3, corresponds to 200 points per wavelength

at 20 kHz, while the temporal step size was set to 1.225e-7 seconds. With 100,000

spatial steps and 150,000 temporal steps, this equated to a useable domain size of 2.5

meters and a run time of 41 hours on the supercomputer. The normalized decibel

amplitude of the first five harmonics for the exact and numerical solutions in the pre-

shock region are plotted in Figure 3.8. The errors are small except at short distances

Figure 3.8 The Fubini solution is compared to the solution from the nu-
merical scheme for the first 5 harmonics in the preshock region. Errors at
low frequencies are insignificant because they are over 60 dB down from the
fundamental.

for the higher harmonics. These errors however are insignificant because they are

over 60 dB less than the fundamental. The good agreement for all the harmonics up
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to σ = 1 signify that the parameters chosen are adequate.

For propagation distances corresponding to σ > 3 , the exact solution is that of a

sawtooth with the harmonic amplitudes defined by Fay (see Chapter 2). For the same

conditions but including thermoviscous losses, the harmonic amplitudes are shown in

Figure 3.9. The errors are slightly higher, but still no greater than 1 dB. If the

Figure 3.9 The Fay solution is compared to the solution from the numerical
scheme for the first 5 harmonics in the sawtooth region. Errors for the higher
harmonics are increasing, but are still within 1 dB.

discretization sizes were made smaller, the error would decrease (see Appendix A),

but would increase necessary computational power and run time. However, it must

be noted that even with smaller step sizes, the results will still have some estimation

error for the higher harmonics due to the finite number of points per wavelength4

resulting in possible error in the rise-time of the shocks. However, the discretization

step sizes chosen allow for a good compromise between realizable run time and domain

4The errors in harmonic amplitude as a function of points per wavelength was thoroughly studied

in [54]
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size with reasonably low numerical estimation error.

3.2 Near-field Acoustical Holography

Near-field acoustical holography (NAH) was developed in the early 1980’s by May-

nard and Williams [24] as a source-imaging method based on wave number decompo-

sition and the discrete Fourier transform (DFT). The power of NAH typically comes

from placing microphones close enough to the source so as to capture evanescent

mode information. In this manner, the resolution issues faced in traditional acoustic

holography are eliminated [25]. Several methods for implementing NAH have been

developed to broaden its use and refine its accuracy (see e.g. References [26–29]).

All NAH methods, however, are based on solutions to the linear Helmholtz equa-

tion. This section explains basic original theory as well as the theory for the NAH

implementation used in this research.

3.2.1 Planar NAH

NAH is based on the linear theory. The Helmholtz equation, described in Chapter 2

and restated here for convenience

∇2p + k2p = 0, (3.13)

is obtained from the linear, lossless wave equation when a time harmonic signal is

assumed. Since the Helmholtz equation has no time dependence, it only describes the

spatial behavior of a linear, time harmonic pressure wave. The Helmholtz equation

can be solved to find a unique solution given a set of boundary conditions. For plane

waves in a free field, the function that describes the propagation of the wave in the

z-direction is e−jkzz, where z is the propagation distance. The difference between the
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pressure field at two different planes is then merely the phase difference e−jkz(z−zh).

For NAH applications, this function is known as a propagator. Therefore, if the

pressure field is measured in a plane, it can be used to determine the pressure field at

any other plane in the field by multiplying the k-space spectrum by the propagator

and then inverse transforming back into the spatial domain. This method has great

utility due to the efficiency of the fast Fourier transform. Other acoustical quantities

such as particle velocity and intensity can also be computed by merely changing the

propagator.

The utility of NAH, however, lies in techniques for implementing the above pro-

cedure. To allow for greater spatial resolution, the initial pressure field must be

measured close to the source so as to capture any evanescent modes which decay out

quickly. This plane is referred to as the hologram plane. The plane where the pressure

is reconstructed is then called the reconstruction plane. In most NAH application,

k-space filtering or matrix regularization is required to prevent any signal noise from

being amplified by the application of the propagator and to guarantee the uniqueness

of the solution [30,57,58].

3.2.2 Spherical NAH

For imaging a spherical source, spherical region enclosing a source or spherical array

of transducers, the natural convention is to use NAH in spherical coordinates. In

spherical k-space5, the pressure in one spherical plane at rh can be equated to another

spherical plane at r using a ratio of spherical Hankel functions, remembering that the

spherical Hankel function contains the radial (r-dependent) information. This equates

5Again, the convention spherical k-space is used because of its analogy to k-space. (See Chapter

2)



3.2 Near-field Acoustical Holography 45

to

P̄mn(r) =
h2

n(kr)

h2
n(krh)

P̄mn(rh). (3.14)

The complete solution in spherical coordinates comes from taking the inverse spherical

wave transform and rearranging to get

p(r) =
∞∑

n=0

h2
n(kr)

h2
n(krh)

n∑
m=−n

Y m
n (θ, φ)

∫
p(rh)Y

m
n (θ′, φ′)ejmφ′dΩ′. (3.15)

When axial symmetry is assumed, only the n = 0 axial mode is required and forces

azimuthal symmetry (m = 0). This leads to h2
0(x) = e−jx/x, P 0

0 = 1 and Y 0
0 =

√
1/4π

[61]. Using these simplifications

∫ π

0

∫ 2π

0
pY 0

0 sinθdφdθ = 2
√
πp, (3.16)

and the pressure at the reconstruction plane then becomes

p(r) = p(rh)
rh

r
ejk(rh−r). (3.17)

This again shows the general 1/r spreading as seen in Chapter 2. Therefore

the pressure magnitude at some distance r from an axisymmetric source is just the

pressure magnitude at some distance rh multiplied by a ratio of the distances. This

shows that NAH for spherical geometries simplifies down to the spherical spreading

problem for an axisymmetric source and can be performed entirely in the time domain.

This also causes the near-field requirement to be relaxed and the k-space filtering to

be unnecessary.

Furthermore, since the Fourier transform of a constant times some function is the

constant times the Fourier transform of the function, this NAH reconstruction can

actually be applied in the frequency domain as well. Therefore, in order to determine

the effect of the propagation on the spectrum, this reconstruction was applied in the

frequency domain for the 1-D simulations.
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3.2.3 Application to Aeroacoustic Sources

Traditionally, NAH has been used solely to determine source characteristics of vibrat-

ing structures, which are highly correlated spatially. The fact that the rockets and

jets are aeroacoustic sources raises the additional question of whether NAH can image

aeroacoustic sources, which can be highly uncorrelated. This problem was answered

in the affirmative when Lee, et al. successfully imaged an axial cooling fan [59].

More interesting is the attempted application of NAH to subsonic jets [30,31], which

are infinitesimal in amplitude. More recently, the application of NAH to nonlinear,

aeroacoustic problems has become a topic of increased interest in an effort to improve

current jet and rocket noise models (see Reference [37]).

3.3 Nonlinearity Indicators

Nonlinearity indicators are functions that are able to detect whether certain nonlinear

relationships are present in a set of data. The indicators used for this research can be

separated into frequency and time domain indicators, each with its own utility and

assumptions.

3.3.1 Time Domain - Statistics

When nonlinear effects exist, distortion occurs and time domain analysis can yield

insight into the effects of the distortion. Furthermore, since most acoustic noise

processes are Gaussian or near-Gaussian random data, any changes or variation in the

distribution will be manifested using statistical analysis and could indicate nonlinear

effects such as quadratic phase coupling. Higher-order statistical properties can be

especially useful to determine changes in Gaussian or near-Gaussian behavior.

The probability density function (PDF) therefore becomes a useful tool when
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performing statistical analysis. A probability density function, p̃(x), is defined as the

probability which is assigned to the set of points satisfying a desired inequality [60].

Therefore, the integral of the PDF over all possible values must equal unity. An

estimate of the PDF is defined as

p̃(x) =
N

Lwbin

, (3.18)

where L is the length of the sequence, wbin is the width of the histogram bin, and

N is the number of values in that bin. This was the method used for estimating the

PDF in this research.

First, the shape or relative shape of the PDF can help indicate nonlinear effects. A

random noise waveform with some distribution will generally maintain its shape if its

propagation is linear and losses are small. If waveform steepening and shock formation

are occurring, the PDF will change from Gaussian to non-Gaussian because the phase

coupling causes the probability of the existence of energy in some frequency bin to be

related to its “mother” frequency and not be completely random. Outliers, or points

with high or low values, are emphasized by the nonlinear distortion and steepen

up more quickly than the other portions of the waveform. The steepened portions

of the waveform alter the PDF because the transition from negative to positive is

more dramatic, while the transition to the next trough region becomes more linear.

Once shocks have formed, the PDF changes again. The attenuation of the shocks

suppress outliers and the distribution tends toward a uniform probability [69]. The

changing of the PDF of random noise that is initially Gaussian or near-Gaussian to a

more uniform distribution would therefore be an indication of the presence of shock

formation.

Next, the use of central moments can help indicate nonlinear propagation. The

first two central moments are the mean, µ =E[x], where E[ ] notates the expected
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value, and the variance σ2 =E[(x− µ)2]. The variance is a measure of the variability

and is related to the acoustic power of the signal. Its square root, the standard devi-

ation, is the root-mean square (rms) value. These quantities are useful descriptions

of a PDF.

Higher-order statistical properties though can be especially useful for determining

if the PDF has changed shape. The third central moment is known as the skewness

coefficient and is a measure of the asymmetry of a distribution. The definition6 for

the sample skewness coefficient used in this research is

S =
1

n− 1

n∑
i=1

(xi − µ)3

σ3
, (3.19)

but other forms have also been used [35]. A symmetric distribution has a skewness

value of zero. If the PDF has a long tail to the right, the skewness coefficient is

positive. It is similarly negative if the tail is to the left [68].

The sample kurtosis coefficient is the fourth central moment and can be defined

as

K =
1

n− 1

n∑
i=1

(xi − µ)4

σ4
. (3.20)

The kurtosis coefficient is a measure of the relative peakedness of the distribution

and K = 3 for a Gaussian distribution. Other definitions of kurtosis normalize the

Gaussian value to zero, but are not common for this type of application. A kurtosis

value above three would represent a more ‘pointy’ PDF while a value less than three

would indicate a broader distribution with narrow tails [68].

A histogram of an array of random numbers is shown in figure 3.10 with the

skewness and kurtosis values numerically confirming its Gaussian shape. The mean

and standard deviation are also listed for convenience. Figure 3.11 on the other hand

shows a skewed waveform. Both the skewness and kurtosis values have shifted away

6McInerny does not include the 1/(n− 1) in her definition. However, the inverse dependence on
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Figure 3.10 A histogram plot for an array of random numbers plotted
against a Gaussian curve. The first four standard moments are shown for the
array of random numbers, with the skewness and kurtosis values confirming
numerically its Gaussian nature.

Figure 3.11 A histogram plot for an array of numbers with a skewed dis-
tribution plotted with a Gaussian curve. The skewness and kurtosis values
indicate that the distribution is not symmetric and bell-shaped, and therefore
non-Gaussian.
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from zero and three. These higher-order moments can then be used to show if a PDF

is non-Gaussian.

McInerny [35], however, showed that higher-order statistical analysis is more sen-

sitive to nonlinear effects (i.e.shocks) if applied to the time derivative of the data, not

the data themselves. Since a random noise waveform will have a random phase dis-

tribution that is Gaussian, the time derivative of that random noise waveform, which

basically reveals the phase, will also be Gaussian and any variation from Gaussian

behavior will be magnified through taking the derivative. This is more obvious in

that a shock is a discontinuity with a theoretical slope that approaches infinity [36].

A slightly skewed or peaked distribution in time would become an extremely skewed

and peaked distribution when analyzing the time derivative of the data. As the wave-

form becomes dominated by shocks, the slopes in the regions between the shock will

all approach the same negative value. The slope in the shock regions, which are rela-

tively few compared to the total number of points in the waveform, will remain large,

theoretically approaching infinity. This will lead to a distribution dominated by a

close-range set of negative numbers and a small number of extreme positive outliers.

A time derivative can be easily estimated using a first-order forward or backward

finite-difference approximation7 (see Appendix A for more details on finite-difference

theory). Equation 3.21 shows a first-order forward approximation of the pressure time

derivative at some point xn and time ti with a time step ∆t equal to the sampling

period [70].

∂p(xn, ti)

∂t
=
p(xn, ti+1)− p(xn, ti)

∆t
(3.21)

Since the time slope right at the shock is very large compared to the slope right before

n is necessary to remove the influence of the signal length.
7A center-difference approximation could be used, but would be inaccurate when dealing with

non-smooth or discontinuous waveforms due to the use of a three-point stencil.
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and right after the shock, a large peak in the time-derivative would clearly show the

location and relative strength of the shock.

Equation 3.21 was implemented to find the time derivative for all statistical anal-

ysis performed in this research. Since the equation is only valid for data points

[1. . . N-1], the value at the last data point is omitted for convenience. Also, the ∆t

does not reflect any change in the statistics and is therefore removed for consistency

in all analyses performed. Finally, in terms of notation, a subscript ‘d’ will be used

when analyzing statistics (e.g. Sd) to signify that the analysis is of the data’s time

derivative, not the data themselves.

3.3.2 Frequency Domain - Bispectrum

In nonlinear propagation, frequency components interact to create sum and difference

frequencies, causing quadratic phase coupling to exist (see Chapter 2). The most

accepted technique to detect quadratic nonlinearity is using bispectral analysis, which

has been used to detect nonlinear relationships in various fields such as plasma physics

[63], medicine [64] and ocean noise [65]. More recently, the bispectrum has been used

to analyze nonlinear effects in military jet aircraft noise by Gee, et al. [62].

The bispectral density (BSD) or bispectrum is defined as

Sxxx(f1, f2) = lim
T→∞

1

T
E[X(f1)X(f2)X

∗(f1 + f2)], (3.22)

where X(f) is the Fourier transform of the signal x(t) and ∗ denotes the complex

conjugate. For finite-length signals, the limit can be removed while still obtaining

a good approximation of the BSD, as is commonly done for power spectral density

calculations [67]. Thus, the BSD is similar to the power spectral density (PSD) except

that it decomposes the third-order moment of the signal (related to the skewness, see

Subsection 3.3.1) at a given bifrequency (f1+f2), instead of the mean-square power or
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variance (a second-order moment) at a given frequency f1. The BSD for a Gaussian

signal is by definition zero. Therefore, if the BSD of an acoustic signal is non-zero,

that could indicate nonlinear propagation.

However, a more physical interpretation of the BSD can be obtained by a normal-

ization called the bicoherence. The bicoherence is defined as

b(f1, f2) =
|Sxxx(f1, f2)|√

Z(f1, f2)Sxx(f1 + f2)
, (3.23)

where

Z(f1, f2) = lim
T→∞

1

T
E[|X(f1)X

∗(f2)|2]. (3.24)

by Gee, et al. [62], even though the original definition by Kim and Powers [63] is

equivalent to squaring both sides of Equation 3.23. This leads to a value between

0 and 1, showing its analogous nature to the coherence function. For a periodic

signal, b(f1, f2) = 0 would indicate no fraction of the energy at f1, f2 is due to

quadratic nonlinearities, whereas b(f1, f2) = 1 indicates that all the energy at that

sum frequency is due to quadratic phase coupling. The quantitative interpretation

for random noise signals is less straight-forward due to the possibility of multiple

bifrequecies interacting at a single sum frequency. However, the qualitative aspects

are still present in that bicoherence values close to zero indicates low quadratic phase

coupling [66].

The bicoherence was computed for this research using an ensemble-averaging tech-

nique, with 211 samples per block. A Hamming window was applied to each ensemble,

with a 95% overlap between blocks. This large overlap was used because of a limi-

tation on the number of points in the waveform and allowed for more averages, even

though other block sizes have been recommended (see Reference [62]).
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3.4 Summary

In summary, a WENO-based propagation algorithm was used for the nonlinear prop-

agation with four random noise inputs. The input waveforms were created to test

the effect of center frequency and spectral shape on the propagation and reconstruc-

tion. For the reconstruction, spherical NAH simplifies down to removing the spherical

spreading for the one-dimensional case. For analysis, bispectral and higher-order sta-

tistical methods will be used to determine nonlinear behavior in the propagation.
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Results: Nonlinear Propagation

Propagation results are discussed for one- and two-dimensional propagation. Time

waveform, statistical and bispectral analysis were used to determine the relative

amount of nonlinear effects on the results in one dimension. The results in two di-

mensions are analyzed using spatial derivatives and by comparing against the linear

case.

4.1 One-dimensional Propagation

Using the numerical parameters specified in Table 3.3, the broadband waveforms dis-

cussed in Chapter 3 were then used as input to the 1-D propagation algorithm. The

algorithm ran for 180,000 time iterations, equating to a total run time of approx-

imately two days. Ninety nine virtual microphones were placed every 0.08 meters

starting at the source.

Each waveform was propagated for a low-amplitude 50 dB benchmark case and

three high-amplitude cases. The OASPLs recorded at the source for the high-amplitude

cases were 143, 158, and 166 dB. The 143 dB amplitude would be more typical of a jet,

55
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whereas the 166 dB amplitude would be more typical of a rocket. These amplitudes

do not by any means encompass the amplitudes for all jets and rockets. Likewise, the

finite propagation distance and small bandwidth, limited by computational restraints,

does not come close to representing the actual distances that the noise propagates

for real jet/rocket spectra1. However, the general trends that occur with increasing

amplitude, propagation distance, and center frequency will be discussed, which could

then be applied to actual imaging studies. Also, since spherical spreading is incorpo-

rated by the algorithm, these resulting trends are only valid for applications where

this assumption is good, such as for measurements taken in the far-field.

The propagated waveforms are shown first, followed by the statistical and bis-

pectral analysis. The table of simplified waveform names is repeated here for easy

reference.

Table 4.1 List of Input Waveforms

Spectral Shape Center Frequency [Hz] Simplified Name

f 2 100 waveform 1

f 2 500 waveform 2

f 4 100 waveform 3

f 4 500 waveform 4

4.1.1 Shock Formation and Coalescence

At high amplitudes, it is expected that nonlinear effects will occur during propagation.

Figure 4.2 shows a portion of waveform 1 at several distances as it propagated out

1Because of the small useable bandwidth and short propagation distances, losses did not play a

significant role in propagation. In real life applications, large bandwidths and longer propagation

distances will cause losses and other atmospheric effects to play a more important role in propagation.
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to 2 meters, where the initial OASPL of the waveform at the source was 166 dB. A

Figure 4.1 Snapshots of waveform 1 at 166 dB as it propagates nonlinearly,
with the top right figure as a low-amplitude reference (no nonlinear effects).
Waveform steepening is clearly evident with some shock formation.

reference low-amplitude segment is also included. It is clear that waveform steepening

has occurred as the waveform propagated causing several shocks to form. Some

smaller undulations have also been overtaken by the shock fronts.

Figure 4.2 depicts portions of waveform 2 at the same distances and initial ampli-

tude. It appears that some shocks have already begun to form at 0.15 meters from

the source. By 1 meter, the shocks dominate the waveform and most of the smaller

undulations are gone. There also appears to be some shock coalescence by 2 meters.

Propagation of waveform 3 under the same conditions is shown in Figure 4.3.

Again, there appears to be some waveform steepening and shock formation. However,

since waveform 3 is the closest to a sinusoid, there exist fewer undulations. Therefore,

waveform steepening and shock formation have not extremely altered the waveform.

Finally, waveform 4 is shown in Figure 4.4. As with waveform 2, significant
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Figure 4.2 Snapshots of waveform 2 at 166 dB as it propagates nonlinearly,
with the top right figure as a low-amplitude reference (no nonlinear effects).
Shocks have formed very quickly and seem to dominate the waveform.

Figure 4.3 Snapshots of waveform 3 at 166 dB as it propagates nonlinearly,
with the top right figure as a low-amplitude reference (no nonlinear effects).
Some shock formation is evident.
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Figure 4.4 Snapshots of waveform 4 at 166 dB as it propagates nonlinearly,
with the top right figure as a low-amplitude reference (no nonlinear effects).
Shocks have formed very quickly and seem to dominate the waveform.

waveform steepening and shock formation have occurred after propagating only 0.15

meters. After 2 meters, there also appears to have been coalescence of shocks.

4.1.2 Statistical Analysis

The skewness and kurtosis coefficients were then calculated for both the time wave-

form and time derivative of the waveforms to help determine whether the PDF had

changed after the nonlinear propagation. Distances are referenced from the origin,

which was set 0.32 meters behind the source. Figure 4.5 plots the higher-order mo-

ments of waveform 1 against distance for the four amplitudes. The skewness coefficient

remains close to zero for all amplitudes and distances, while the kurtosis values re-

main close to 2.75 for all amplitudes except 166 dB, which deviates slightly starting

at 0.8 meters. Even though the kurtosis is not exactly three for the low-amplitude

case, the constant behavior over distance indicates that the distribution is close to
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(a) (b)

Figure 4.5 The (a) skewness and (b) kurtosis values for waveform 1 plotted
against distance at four amplitudes. The kurtosis at 166 dB begins to deviate
slightly from three after 0.8 meters.

Gaussian and, more importantly, does not change with distance. The PDFs shown

in Figure 4.6 are for the 50 dB case and the 166 dB case at 2 meters. The high

amplitude case has a similar distribution as the low amplitude case.

Next, Figure 4.7 shows the same statistical quantities, but applied to the time

derivative of the data. The low amplitude case reveals near-perfect Gaussian behavior

for all distances, while the higher amplitude cases deviate from Gaussian behavior

rather quickly. Of particular note is the increasing values of both quantities with

distance and amplitude. The initially 158 and 166 dB waveforms show very non-

Gaussian behavior after very small propagation distances. Figure 4.8 shows the PDF

for the 50 and 166 dB runs at 2 meters. The PDF has transformed from being very

Gaussian to being extremely skewed with a concentration of values slightly below

zero and a small tail of outliers. This gives strong evidence of nonlinear effects that

are not as apparent in the analysis of the time waveform alone. All four waveforms
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(a) (b)

Figure 4.6 The PDFs for waveform 1 for (a) the 50 dB case and (b) the
166 dB case both after propagating 2 meters. The shape is still generally the
same.

(a) (b)

Figure 4.7 The (a) skewness and (b) kurtosis values for the time derivative
of waveform 1 plotted against distance at four amplitudes. The initially 158
and 166 dB waveforms show very non-Gaussian behavior after very small
propagation distances. The value at the shocks cannot be seen on this scale,
but are located between about 50 and 300 Pascals per second.
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(a) (b)

Figure 4.8 The PDFs for the time derivative of waveform 1 for (a) the 50
dB case and (b) the 166 dB case both after propagating 2 meters. The shape
has shifted from Gaussian to extremely skewed.

exhibit this same trend with the PDF shifting from Gaussian or nearly Gaussian to

extremely skewed, with basically no new information. For this reason, the remaining

time derivative PDFs are not shown and only the skewness and kurtosis values are

discussed.

For waveform 2, many of the same trends are apparent in the statistics of the

time data (see Figure 4.9), except that the kurtosis now slightly deviates for both the

initially 158 and 166 dB cases after only 0.5 meters. The PDFs (shown in Figure 4.10)

also change, becoming more uniform after high amplitude propagation, an indication

of shock formation.

Analysis of the time derivative again yields more information. The trend of in-

creasing skewness and kurtosis values with amplitude is again shown, but only for

short propagation distances (see Figure 4.11). The initially 158 and 166 dB cases

reach a maximum in both skewness and kurtosis, then seem to slowly decrease. The
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(a) (b)

Figure 4.9 The skewness a) and kurtosis b) value for waveform 2 plotted
against distance at four amplitudes.

(a) (b)

Figure 4.10 The PDFs for waveform 2 for (a) the 50 dB case and (b) the
166 dB case both after propagating 2 meters. The distribution has become
more uniform for the 166 dB case.
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(a) (b)

Figure 4.11 The (a) skewness (b) kurtosis values for the time derivative of
waveform 2 plotted against distance at four amplitudes. Both the skewness
and kurtosis increase out to some distance, then decrease for the 158 and 166
dB cases.

maximum is reached at 0.7 meters for the lower of the two amplitudes and at 0.4

meters for the higher amplitude.

The skewness and kurtosis values for waveform 3 are shown in Figure 4.12 with

the PDFs shown in Figure 4.13. The trends are very similar to waveform 1, except

that the kurtosis for the 166 dB case deviates slightly differently. Even with this

irregular deviation, the kurtosis values still remain quite close to other values. The

PDFs again have the same general shape for the low-amplitude and high-amplitude

cases.

Analysis of the time derivative reveals slightly different behavior than that of

waveform 1 as is shown in Figure 4.14. The 143 and 158 dB cases increase as expected,

but the 166 dB case increases until 0.8 meters, then decreases similar to waveform 2.
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(a) (b)

Figure 4.12 The (a) skewness and (b) kurtosis values for waveform 3 plotted
against distance at four amplitudes. The skewness and kurtosis do not change
significantly for low amplitudes and only change slightly for high amplitudes.

(a) (b)

Figure 4.13 The PDFs for waveform 3 for (a) the 50 dB case and (b) the
166 dB case both after propagating 2 meters. The shape is still generally the
same.
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(a) (b)

Figure 4.14 The (a) skewness and (b) kurtosis values for the time derivative
of waveform 3 plotted against distance at four amplitudes. The skewness and
kurtosis exhibit the same rise and fall behavior for the 166 dB case as with
waveform 2.

Finally, for waveform 4 many of the same trends are exhibited that were observed

for waveform 2. The PDF becomes more uniform and the same rise and fall is

exhibited in the skewness and kurtosis values at 158 and 166 dB. However, the switch

from increasing quantities to decreasing quantities happens at a shorter distance.

This again indicates nonlinear activity, but seems to occur at lower amplitudes and

distances.

The fact that the skewness and kurtosis for the derivative show a trend of increas-

ing as nonlinear effects kick in for all the cases, but then decrease at higher amplitudes

and larger distances for waveforms 2-4 suggests that there is physical meaning in this

decrease. The losses at the shock fronts would cause the slope of the waveform be-

tween the shocks to decrease. The distribution would then change as the outliers shift

toward then mean. Since the increase in higher-order moments of the derivative is

due to waveform steepening and shock formation, once the waveform becomes mostly
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(a) (b)

Figure 4.15 The (a) skewness and (b) kurtosis values for waveform 4 plotted
against distance at four amplitudes.

(a) (b)

Figure 4.16 The PDFs for waveform 4 for (a) the 50 dB case and (b) the
166 dB case both after propagating 2 meters. The shape is becoming more
uniform.
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(a) (b)

Figure 4.17 The (a) skewness and (b) kurtosis values for the time derivative
of waveform 4 plotted against distance at four amplitudes. The skewness
and kurtosis rise and fall again for the 158 and 166 dB case but at shorter
distances.

dominated by shocks and waveform steepening occurs less significantly, the changes

due to losses at the shocks will have a more dominant effect the PDF. Thus, a decrease

in skewness and kurtosis coefficients would indicate that the waveform is dominated

by shocks and that the effect of waveform steepening is less significant than the effect

of the decreasing of the shock amplitudes.

4.1.3 Bispectral Analysis

The bicoherence was computed next to show the relative amount of quadratic phase

coupling between the four waveforms. The bicoherence is plotted with frequency on

both axes with the color representing the value of the bicoherence at that bifrequency

set. The scale shows that blue represents very little energy created due to nonlinear

interactions at that bifrequency set with yellow, orange or red representing increasing



4.1 One-dimensional Propagation 69

amounts of energy being created from interaction of those two frequencies. The

results shown are in sets of increasing amplitude and distance. Since nonlinear effects

increase with both, the same basic trends are seen for increasing just distance or

amplitude, though possibly less pronounced.

Figure 4.18 shows the four waveforms for the initially 143 dB case after propagat-

ing 0.15 meters. Waveform 3 is the darkest blue showing very little quadratic phase

Figure 4.18 Bicoherence for the four waveforms initially at 143 dB after
propagating 0.15 meters. Waveform 4 is beginning to show some nonlinear
interactions.

coupling, while waveforms 1 and 2 show slightly lighter shades of blue. Both however

have bicoherence values close to zero. Waveform 4 shows the most interactions with
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non-zero bicoherence occurring between frequencies below 500 Hz and between 1000

Hz and 1500 Hz.

The next plot shows the same waveforms initially at 158 dB and propagating 1

meter. Now, all the waveforms show some nonlinear activity. Again, waveform 3

Figure 4.19 Bicoherence for the four waveforms initially at 158 dB after
propagating 1 meter. All the waveforms show some nonlinear interactions,
with waveform 4 exhibiting the highest amount and waveform 3 exhibiting
the lowest amount.

seems to show the least amount of phase coupling, followed by waveforms 1, 2 and

4. Bicoherence values for waveform 4 ranges from 0.2 to 0.4 at all bifrequencies

suggesting that all frequencies are interacting with each other.

Finally, Figure 4.20 shows the waveforms after propagating 2 meters and having
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an initial level of 166 dB. All the waveforms have significant interaction between all

Figure 4.20 Bicoherence for the four waveforms initially at 166 dB after
propagating 2 meters, with the bicoherence values higher than for the 1
meter propagation. Now waveform 3 seems to have the highest amount of
nonlinear interaction.

the frequencies shown. However, waveform 3 now seems to have the highest amount

of phase coupling.

These results show that waveform 3 experienced the least amount of nonlinear

effects for lower amplitudes and propagation distances, but seemed to experience

the largest amount of nonlinear phase coupling at higher amplitude and propaga-

tion distances. Waveform 4 experienced more nonlinear effects at lower amplitudes

and distances and waveforms 1 and 2 experienced about the same amount of phase
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coupling at all distances and amplitudes. Since waveforms 3 and 4 show the most

phase coupling at 166 dB and also have the same spectral shape, it appears that the

narrow-band spectral shape experiences more nonlinear effects at higher amplitudes.

4.1.4 Comparison of Statistical and Bispectral Analyses

The statistical analysis results cannot readily be compared to the bispectral analysis

results because they are viewed in different domains, in the time and frequency do-

mains respectively. However, they both do show that waveform 4 having the most

amount of nonlinearity over the shortest distances. This is apparent in Figures 4.18,

4.19 and 4.20 from bispectral analysis and in Figures 4.17 from statistical analysis.

4.2 Two-dimensional Propagation

The study moves next to two-dimensional propagation. Since jet and rocket sources

are known to be extended and Laufer, et al. [19] found that the use of independent

sources is a realistic description of acoustic behavior supersonic jet flow, a simple

model would be an array of point sources. Two point sources were used in this

research as the most basic model. The domain was set to have dimensions of 0.11

x 0.13 meters with a discretization step of .0001715 meters. In order to study the

nonlinear effects in such a small domain, waveform 4 was used as the input to the

first point source because it induces more nonlinearity than the other waveforms over

shorter distances. An additional random-noise waveform with the same characteristics

as waveform 4 was created and input into the second point source so that each source

was independent from the other.
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4.2.1 High Amplitude Comparison

Both a low-amplitude case, shown in Figure 4.21, and a high amplitude case, shown

in Figure 4.22, were performed so that the differences in the interference patterns due

to nonlinear propagation could be observed. The figures show the acoustic pressure

at a single snapshot in time, with the pressure value indicated at each spatial point by

the color of the plot. The nonlinear case shows sharp transitions between extrema

Figure 4.21 A surface plot of the broadband radiation from two point
sources at a low amplitude (100 dB), where the color represents the acoustic
pressure. This shows the linear interference patterns that develop due to
superposition.

suggesting the formation of shocks. The spatial derivative shows more clearly the

locations of the shock fronts. Figure 4.23 shows the spatial derivative in x while
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Figure 4.22 A surface plot of the broadband radiation from two point
sources at a high amplitude (170 dB), where the color represents the acoustic
pressure. This shows the interference patterns that develop when propaga-
tion is nonlinear. The area of sharp transitions indicate shock fronts.
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Figure 4.24 shows the spatial derivative in y.

Figure 4.23 The spatial derivative in x for the high-amplitude case in 2-D
clearly defines the locations of the shocks in the x-direction.

To investigate more fully the differences between the high-amplitude and low-

amplitude cases, several slices of the domain are shown at increasing distances from

the sources with normalized amplitudes to be able to compare the shapes and are

shown in Figures 4.25 and 4.26.

Figure 4.25 shows the first slice, set through both sources. The nonlinear case

(red) deviates most from the linear case (blue) at the edges where definite steepening

has occurred. It must be noted that since the waves are spherical, the steepening

will be in the direction of propagation, causing the steepening on the edges to be in
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Figure 4.24 The spatial derivative in y for the high-amplitude case in 2-D
clearly defines the locations of the shocks in the y-direction.
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Figure 4.25 A slice of the domain at the sources for the linear (red) and
nonlinear (blue) case with normalized pressure amplitudes. Deviations at the
edges are due to waveform steepening.

opposite directions. The noted deviations at the edges are expected considering the

theory of nonlinear propagation discussed in Chapter 2.

The next slice is set 0.025 meters from and parallel to the sources and is shown

in Figure 4.26. There again appears to be waveform steepening near the edges of the

slice. However, in the center region the deviations seem to be much more complicated

and unpredictable. This is caused by the random interaction of the two broadband

waveforms. Since the portions of highest amplitude will steepen up fastest, and

the two waveforms are independent, the interactions of the two possibly steepened

waveforms will be totally unpredictable.

The last slice is set at 0.043 meters from the sources in Figure 4.27. Again, the

deviation for linear behavior in the center region is totally unpredictable. Since prop-

agation in two dimensions now includes interference effects, the differences between

linear and nonlinear will not just be from waveform steepening and shock coales-
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Figure 4.26 A slice of the domain taken 0.025 meters from the source for the
linear (red) and nonlinear (blue) case with normalized pressure amplitudes.
Complicated interactions are beginning to cause unpredictable deviations
between linear and nonlinear.

cence. The differences are also due to extremely complicated interference pattern

from combinations of completely unsteepened portions, partially steepened portions

and completely shocked portions. If a continuous source distribution were used in-

stead of discrete sources, diffraction effects would also occur.

4.3 Chapter Summary

In summary, the propagation results in one dimension reveal that all the waveforms

experienced significant nonlinear effects at 166 dB after propagating 2 meters, caus-

ing the waveform to deviate significantly from that expected with linear propagation.

The nonlinear effects were smaller with lower amplitudes and smaller propagation

distances. However, the waveform steepening and shock formation occur fastest for
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Figure 4.27 A slice of the domain 0.043 meters from the source for the
linear (red) and nonlinear (blue) case with normalized pressure amplitudes.
Complicated interactions cause unpredictable deviations between linear and
nonlinear.

spectra with higher center frequencies and the narrowest spectral shape. This was

shown using statistical analysis of the time derivative and bispectral analysis. Ad-

ditionally, the skewness and kurtosis of the time derivative seem to decrease when

shocks are dominant in the waveform. Finally, the two-dimensional propagation re-

veals that complicated interactions between steepened and unsteepened waveforms

create complex interference patterns that cannot be predicted.





Chapter 5

Results: Reconstruction

After the waveforms were propagated nonlinearly in one dimension, the waveforms

were reconstructed back to the source using spherical NAH and the errors were deter-

mined. The insight gained from the 1-D results is then applied to the two dimensional

nonlinear propagation problem.

5.1 Reconstruction for One-dimensional Nonlinear

Propagation

As mentioned in Chapter 4, virtual microphones recorded pressure data at equally

spaced points in the domain. Of specific note are the virtual microphones placed

at the source as well as at 0.15, 1 and 2 meters from the source. The microphone

not located at the source are referred to as being located at holography planes1,

whereas the microphone at the source is referred to as being at the reference plane.

Spherical NAH was then applied in the frequency domain to reconstruct the pressure

1These are actually points, but are referred as planes to keep the same convention as is typically

used in NAH.

81



82 Chapter 5 Results: Reconstruction

magnitude at the reference plane using the pressure at the holography planes. The

reconstruction was then compared to the actual pressure spectrum recorded with the

virtual microphone at the source so as to cancel out any initial numerical smoothing

caused artificially by the algorithm. The error in decibels was determined in third-

octave bands. The error magnitudes were then averaged to determine an average

error value.

5.1.1 Reconstructed Power Spectra

The results presented for reconstruction are the initially 166 dB runs only. Since

nonlinear effects increase with both distance and amplitude, the same trends should

exist when varying just distance as when varying just amplitude. Therefore, the runs

with initial amplitudes of 143 and 158 dB would presumably show the same effects

after propagating longer distances as the 166 dB does propagating a shorter distance.

Thus only the results from the 166 dB case are shown along with the errors at each

frequency.

Figure 5.1 shows the reference and reconstructed PSDs from three distances in

third-octave bands for waveform 1. This shows that the reconstructed spectra gen-

erally maintain the same shape. The small decreases in amplitude above the peak

frequency for the higher amplitudes do, however, cause some error because the wave-

form itself is not preserved, only its shape. The error is shown as a function of

distance and frequency in Figure 5.2. The errors are less than 2 dB at all frequencies

and reconstruction distances.

The reconstructed forms of waveform 2 are shown in Figure 5.3 with good recon-

struction at frequencies up to slightly below the center frequency. The reconstructed

waveforms from 1 and 2 meters have significantly lower amplitudes and the center

frequency appears to have shifted slightly downward. The error is shown as a func-
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Figure 5.1 The reference and reconstructed power spectra for waveform 1
at 166 dB. The spectral shape is generally well maintained.

Figure 5.2 A surface plot of the error over frequency and distance for wave-
form 1 at 166 dB. The errors are relatively small for all distances and fre-
quencies.
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Figure 5.3 The reference and reconstructed power spectra for waveform 2
at 166 dB. The farther reconstruction distances greatly underestimate the
middle and high frequencies.

Figure 5.4 A surface plot of the error over frequency and distance for wave-
form 2 at 166 dB. The errors are between -4 and -6 dB for frequencies above
400 Hz and propagation distances greater than 0.6 meters. This illustrates
the underestimation of the reconstructed pressure.
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tion of distance and frequency in Figure 5.4. The errors are between -4 and -6 dB for

frequencies above 400 Hz and propagation distances greater than 0.6 meters. This

illustrates the underestimation of the reconstructed pressure.

The reconstructed PSDs for waveform 3 show an increase in energy at frequen-

Figure 5.5 The reference and reconstructed power spectra for waveform 3 at
166 dB. The farther reconstruction distances greatly overestimate the high
frequencies.

cies above the cut-off frequency and the slope of the decay to increase for only the

reconstruction from 1 and 2 meters. The error is shown as a function of distance

and frequency in Figure 5.6. The errors are between 4 and 8 dB for frequencies

above 250 Hz and propagation distances greater than 0.6 meters. This illustrates the

overestimation of the reconstructed pressure.

The reconstructed PSDs for waveform 4 are shown in Figure 5.7. The PSD shows

a decrease in amplitude at the center frequency as well as a shift in the slope at low

frequencies and high frequencies suggesting not only waveform steepening but also

shock coalescence. The error is shown as a function of distance and frequency in Figure
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Figure 5.6 A surface plot of the error over frequency and distance for wave-
form 3 at 166 dB. The errors are between 4 and 8 dB for frequencies above
250 Hz and propagation distances greater than 0.6 meters. This illustrates
the overestimation of the reconstructed pressure.

Figure 5.7 The reference and reconstructed power spectra for waveform 4 at
166 dB. The farther reconstruction distances change both the low-frequency
rise and high-frequency decay.



5.1 Reconstruction for One-dimensional Nonlinear Propagation 87

Figure 5.8 A surface plot of the error over frequency and distance for wave-
form 4 at 166 dB. The errors are positive below 100 Hz and negative between
300 and 1 kHz. This illustrates the overestimation of the reconstructed pres-
sure at low frequencies and the underestimation of the reconstructed pressure
at middle frequencies.
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5.8. The errors are positive below 100 Hz and negative between 300 Hz and 1 kHz.

This illustrates the overestimation of the reconstructed pressure at low frequencies

and the underestimation of the reconstructed pressure at middle frequencies.

5.1.2 Averaged Errors

The error magnitudes were then averaged over frequency to determine an average

error value and compare the performance of each waveform. Figure 5.9 depicts the

Figure 5.9 Average error plotted against distance for the four waveforms
initially at 143 dB.

errors for the initially 143 dB case. Waveform 4 has the highest error and waveform

1 has the lowest, except at short distances where waveform 2 has the lower error.

However, the error for reconstruction from 2 meters of all the waveforms are closer

are under 1 dB.

Figure 5.10 shows the average error for the 158 dB case. Again, waveform 4 has

the highest error and waveform 1 has the lowest, while waveforms 2 and 3 switch
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Figure 5.10 Average error plotted against distance for the four waveforms
initially at 158 dB.

several times. For this case, only waveform 1 has errors under 1 dB at 2 meters, with

the other three average errors close to or exceeding 2.5 dB.

Figure 5.11 shows the last of the three amplitudes, 166 dB. Waveform 1’s error

remains far below the other three and waveform 3 has the highest, exceeding 5 dB at

2 meters. Waveforms 2 and 4 also have average errors above 4 dB.

Waveform 1 has the lowest errors because of its self-preserving shape. The non-

linear effects filter the waveform to have the same shape. However, waveform 2 also

has the same shape but exhibits much higher error at higher frequencies. As shown

in Figure 5.3, the slope is maintained, but the loss in energy at the fundamental fre-

quency causes the decay to become offset from its original position. Also, the center

frequency appears to have shifted downward, further offsetting the high-frequency

decay. The low-frequency slope, however, remains preserved. This shift is caused by

more nonlinear effects that seem to be caused by the higher center frequency. This

follows the same trend as seen in Equation 2.28 in that higher frequencies steepen
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Figure 5.11 Average error plotted against distance for the four waveforms
initially at 166 dB.

and form shocks more quickly.

Waveform 4 has greater errors than waveform 3 at most distances because of

this same frequency-dependent effect. Both have experienced waveform steepening

evident in the high- frequency increase. However, since waveform 4 has a shift in

the low-frequency rise and waveform 3 does not, it seems that shock coalescence has

not occurred significantly for waveform 3 yet, possibly due to the larger distances

needed to experience distortion. The shift in waveform 4 effectively lowers the errors

where the slopes intersect causing the average error to be lower than waveform 3 even

though more nonlinear effects have occurred.

5.1.3 Summary

These four waveforms exhibit four separate effects that can occur when attempting

reconstruction. The first two are for a waveform with a ‘haystack’ spectral shape.

The first case is when nonlinear propagation effects do not change the already exist-
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ing spectral shape, therefore allowing for good reconstruction. This occurs when only

small amounts of energy are lost at the center frequency due to waveform steepening

and no shock coalescence has occurred. Second, if a waveform does experience signif-

icant waveform steepening or shock coalescence, the reconstruction will only be good

at low frequencies but will become very inaccurate at and above the center frequency.

This is caused by the downward shift in the center frequency and not by a shift in

the slope of the high-frequency decay. This effect can be caused by large amplitudes,

long propagation distances and higher center frequencies.

The last two cases are for waveforms with the narrower spectrum. The third

case occurs when waveform steepening causes a high frequency boost, but no shock

coalescence occurs. This allows for good reconstruction below the center frequency

but alters the spectral shape above the center frequency and causes significant recon-

struction error. The last and final case is when both waveform steepening and shock

coalescence occur, therefore boosting low and high frequencies and decreasing middle

frequencies. This also leads to significant reconstruction error. This then becomes the

limiting case as propagation distances, amplitudes and center frequencies increase.

5.2 Insight into Nonlinear Reconstruction in 2-D

Applying NAH in two-dimensions becomes quite different than the one-dimensional

implementation. First, the spatial nature of the field must analyzed for single frequen-

cies allowing for a spatial reconstruction at the source for that frequency. Second, the

implementation must use cylindrical NAH and assume that the acoustic field exhibits

circumferential symmetry. Finally, the spectral Fourier transform must be utilized to

obtain complex data that is required to account for the phase. This would require

enough data points to obtain a good frequency resolution.
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Considering these factors, the major limitation for applying NAH to nonlinear

sound fields in two dimensions is still obtaining the field itself. The WENO algorithm

used is capable of obtaining these fields but at considerable cost. Parallel processing

techniques may be used, but even then, 128 processors running for 9 days would only

obtain a domain that is about one square meter. The propagation results shown in

Chapter 4 were for a very small domain, still requiring a multi-day run time on a

highly optimized processor, and were not sufficient to obtain accurate reconstruction.

However, the results of the one-dimensional reconstruction shed some insight into

the errors that would arise when attempting to perform NAH reconstruction in two-

dimensions. Reconstruction errors may be small when the spectrum already has

the ‘haystack’ shape. As previously noted, as the amplitude, center frequency and

propagation distance increase, the nonlinear effects become more significant and re-

construction errors will be large regardless of the initial ‘haystack’ shape.

These results do not take in account interference effects which were shown to

be important for two-dimensional propagation in Chapter 4. Therefore, the 1-D

results would not directly apply to the reconstruction of multiple or extended sources

in nonlinear fields. The assumption that small nonlinear effects will cause small

reconstruction errors is likely valid though.



Chapter 6

Conclusions

6.1 Summary

Four random noise waveforms were propagated nonlinearly in one dimension using

the Wochner algorithm to test the effect of center frequency and spectral shape on

the nonlinear propagation. The waveforms that were initially at 166 dB experienced

significant nonlinear distortion after propagating two meters. Higher-order statistical

analysis as well as bispectral analysis showed that the waveforms with higher cen-

ter frequencies experience more distortion in shorter distances. Also, the narrower

spectrally-shaped waveforms experienced more nonlinear effects. This confirms the

need to consider nonlinear effects when studying this problem.

The higher-order statistical analysis confirmed the work of McInerny [35] that

the time derivative is more sensitive to nonlinear effects, particularly the presence of

shocks. However, the fact that skewness and kurtosis coefficients of the time derivative

both decrease once the waveform is dominated by the shocks has not been known.

This strengthens the potential of using higher-order statistics of time derivatives as a

point or multi-point nonlinearity indicator to extract information about the relative
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amount of nonlinearity occurring. Specifically, the skewness and kurtosis of the time

derivative could show whether waveform steepening or shock decay is more significant,

information that is not currently available from point nonlinearity indicators.

These nonlinearly propagated waveforms were then reconstructed using one-dimensional

spherical NAH. Waveform 1 showed the least amount of error due to the self-preserving

nature of its spectral shape. However, the errors for waveform 2, which were also

small for very short propagation distances, were significant after propagating 2 me-

ters despite having the same spectral shape. This is due to the increased amount

of nonlinearity, which then causes the center frequency to shift downward and its

amplitude to decrease. Waveforms 3 and 4 also had significant reconstruction error

as the nonlinear propagation effectively filtered the spectral shape of the waveform

to have f 2 dependence.

This implies that a ‘haystack’ spectrum with a low center frequency, a very small

propagation distance or low amplitude could be reconstructed correctly in regions

where the spherical spreading assumption holds. However, since all three factors play

a significant roll in the propagation, it may be difficult to predict whether this would

actually be the case. However, if the higher-order statistics of the time derivative were

known to be decreasing, this could indicate that the nonlinearity would cause large

reconstruction errors. Reconstruction of a narrow-band spectrum will likely always

have significant error when any nonlinear effects are present due to the filtering effects

of the distortion.

Propagation of narrow-band-noise from two point sources in two dimensions also

showed the effects of nonlinear distortion. However, the interference effects of the

steepened waveforms created more errors than expected. Since the broadband wave-

forms are random, the deviations from linear behavior become more unpredictable

with increasing amplitude. This would imply that a holography scheme must in-
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clude nonlinear interference/diffraction terms for accurate reconstruction of a finite-

amplitude sound field if the holography plane is in the near-field of the source.

6.2 Applications to Rocket and Jet Noise Imaging

The specific application of this research is to determine the accuracy of using NAH

to reconstruct the acoustic source of a rocket. However, jets and rockets are similar

in their source mechanisms and this research is therefore naturally extended to jets.

The major benefit for possible imaging rockets over jets is the low center frequency

associated with its spectra, which require longer distances for nonlinear effects to

occur. However, since amplitudes are so high, nonlinear effects may still occur over

very short distances and it is possible that amplitudes are high enough to fall into

the strongly nonlinear regime where shocks can form right at the source (see Refer-

ence [71]). Jets on the other hand have higher center frequencies which would more

experience nonlinearity over shorter distances but lower amplitudes. Considering only

these factors (center frequency and amplitude), it remains difficult to predict which

source would have more accurate reconstruction.

It must be noted that before any imaging of either jet or rocket sources could

be performed, several other problems that must be overcome. First, a typical rocket

or jet source can be quite large, extending several tens of meters with directional

radiation. This would cause even more complicated diffraction effects and could

require a very large microphone array. Additionally, rockets are typically fired in

the vertical position, with the plume usually being deflected to the side by a large

deflector. This could severely limit the locations where acoustical measurements

are even possible and introduction reflection effects. Jets may also have limited

accessibility and ground reflection problems. Lastly, the temperatures associated with
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rocket launches are very high. The temperature fluctuations would greatly change

the behavior of the acoustic field and create other problems with the measurement

hardware. Although temperatures effects are not as great for jets, they can be large

enough to significantly alter the acoustical behavior. Additionally, other atmospheric

effects, such as temperature gradients, turbulence and wind, would likely significantly

affect the noise propagation. However, these effects may be low over small distances.

To conclude, nonlinear propagation effects can cause significant errors in finite-

amplitude reconstruction techniques. It is possible though that that these errors may

be small due to a low center frequency, ‘haystack’ spectral shape, short propagation

distance or low but still finite in nature amplitude. However, for real-life application

to rockets, many other problems also exist that make it difficult to reach definitive

conclusions.

6.3 Future Work

The results of two-dimensional finite-amplitude propagation were discussed in Chap-

ter 4. This research could be extended by performing NAH reconstruction in 2-D and

determining the reconstruction errors. The NAH implementation must then change

from spherical to cylindrical and assume azimuthal symmetry, or no dependence in

the circumferential (φ) direction. This would be a more realistic application of NAH,

where all spatial points are imaged for a single frequency.

Additional research could also be performed to study and experimentally verify the

evolution of the statistics of the time derivative of random noise using a shock tube.

Perhaps more insight could be gained into the physical meaning of this occurrence,

which may be valuable in the study of intense random-noise.

Future work could also include verifying the reconstruction results experimentally
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by measuring actual rocket data to determine realistic propagation distances, sound

pressure levels, and temperatures. It would actually be recommended that the future

direction of experimental research be using model-scale jets. This could allow for a

more complete study in a controlled environment to be performed that is also less

expensive. The results could then be applied to full-scale jets and finally to rockets.
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Appendix A

The Basics of Finite-difference

Approximations

Finite-difference schemes are frequently used to solve ordinary and partial differential

equations or sets of equations with complicated or unknown analytical solutions, but

can also be used to solve simple equations. Many schemes have been developed,

some which are very efficient for solving certain equations but cannot solve others.

For this reason, it has become common to separate the temporal and spatial aspects

of an equation, estimate the respective derivatives using an efficient finite-difference

scheme, solve the respective portion of the equation explicitly or implicitly and then

to combine the results.

The theory behind finite-difference approximations is that of series expansions. A

Taylor series expansion is shown here for the function f evaluated at x.

f(x) = f(a)+f ′(a)(x−a)+f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+. . .+

f (n)(a)

n!
(x−a)n, (A.1)

where ′ denotes a derivative that is defined at that location. If f(a) = U(xj) and

f(x) = U(xj+1), the expansion can be truncated by removing all terms above some
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order and rewritten as

U(xj+1) = U(xj) + U ′(xj)(xj+1 − xj) + τ, (A.2)

where τ becomes the local truncation error. Since xj+1 − xj can be simplified to ∆x,

the expression can be further rearranged to obtain

U ′(xj) =
U(xj+1)− U(xj)

∆x
− τ

∆x
, (A.3)

which is a first-order forward-difference estimate because the estimate uses informa-

tion at xj+1 to determine the value of the derivative at xj and could be easily modified

to obtain a backward-difference estimate. τ then reveals the highest order of the er-

ror, which in this case is O(∆x), or of order ∆x. A centered-difference estimate

is obtained by subtracting two series expansions centered at j + 1 and j − 1 and

the local truncation error is O(∆x2), becoming a higher-order accurate approxima-

tion. All three schemes become more accurate by keeping more terms in series before

truncating [70].

Since all numerical work is inherently discrete, this makes for easy implementation

of finite-difference approximations. The number of points used in the estimate is

known as the stencil size, where the stencil represents all the group of points used

in the finite-difference estimate. One can use one stencil or multiple stencil schemes

with combinations of backward-, forward-, and centered-difference estimates.

Each scheme requires three criteria to achieve accurate results: consistency, sta-

bility and convergence. Consistency means that as the discretization step decreases

and goes to zero, the estimate becomes the exact solution or τ = 0. Stability refers

to when small changes in initial or boundary conditions do not alter the solution.

Convergence would then mean that the numerical solution approaches the actual so-

lution within some tolerance. For a scheme to be stable a realizable relationship
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must be maintained between the spatial steps and temporal steps. When this oc-

curs, convergence is automatically achieved. For wave problems, the wave speed c

then plays an important part in determining the necessary ratio between the two

for stability. This ratio is known as the Courant-Fredrichs-Levy (CFL) number. For

simple finite-difference schemes, consistency and stability can be proven analytically.

However, both conditions are specific to the equation being solved and are not easily

determined for more complex finite-difference schemes used on complicated equation

sets [70].
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