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ABSTRACT

ON CONNECTIONS BETWEEN UNIVALENT HARMONIC FUNCTIONS,

SYMMETRY GROUPS, AND MINIMAL SURFACES

Stephen Taylor

Department of Mathematics

Master of Science

We survey standard topics in elementary differential geometry and complex

analysis to build up the necessary theory for studying applications of univalent

harmonic function theory to minimal surfaces. We then proceed to consider

convex combination harmonic mappings of the form f = sf1 + (1 − s)f2 and

give conditions on when f lifts to a one-parameter family of minimal surfaces

via the Weierstrauss-Enneper representation formula. Finally, we demand two

minimal surfaces M and M ′ be locally isometric, formulate a system of partial

differential equations modeling this constraint, and calculate their symmetry

group. The group elements generate transformations that when applied to a

prescribed harmonic mapping, lift to locally isometric minimal surfaces with

varying graphs embedded in R3.
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NOTATION

The following are common notations in the text:

C - the complex numbers

C0- the space of continuous functions

Cn - the space of n -times differentiable functions

C∞ - the space of infinitely differentiable functions

iff - if and only if (logical equivalence)

M - n-dimensional C∞ manifold

R - the real numbers

vav
a - indicates implicit Einstein summation convention over a

⊗ - tensor product

Sn - the unit n sphere

Tp(M) - the tangent space at a point p in a manifold M

T ∗P (M) - the cotangent space at a point p in a manifold M



A NOTE ON GRAPHICS

Graphics in this thesis were produced in two ways.

All anti-aliased graphics were produced with the Persistence of Vision Ray-

tracer (POV-Ray). A version of Ingo Janssen’s param.inc file was used for

mesh generation. Mike Williams helped alter this file to produce coordinate

curve grids on surface plots.

All other plots were produced with a combination of the ParametricPlot3D

command in Mathematica 5.0 and the Smooth3D grid refinement package

written by Allan Hayes and Hartmut Wolf.

Some graphics were altered in Adobe PhotoShop CS2 to eliminate subtle

rendering errors near singular points of plots.

Any source code for the graphics in this thesis will be made available upon

request.
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Preface

Geometric analysis techniques have been fruitful in resolving many diverse problems

in geometry, topology, and physics. We mainly study geometric analysis problems

related to minimal surfaces embedded in Euclidean three space. Specifically, we are

concerned with variations of the problem of deforming a prescribed minimal surface

into another minimal surface.

In Chapter 1, we survey standard topics in the differential geometry of surfaces with

an emphasis on minimal surfaces. In Chapter 2, we develop topics in planar univalent

harmonic function theory to address minimal surface questions.

Chapter 3 is a version of a paper called A Minimal Surface Convex Combination

Theorem submitted to Computational Methods and Function Theory. We study the

following question: Consider two minimal surfaces M , M ′ constructed from harmonic

functions f , f ′ via the Weierstrass-Enneper representation formula. When does the

harmonic mapping f = sf+(1−s)f ′ lift to a minimal surface for all s in the closed unit

interval? The theorems in chapter 3 resolve this issue. It would be beneficial to final

general necessary and sufficient conditions on f and f ′ for their convex combination

to be univalent. This would simplify our proofs.

1
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Chapter 4 is a version of a paper called Locally Isometric Families of Minimal Sur-

faces. This paper was motivated by the construction of associated surfaces from two

prescribed minimal surfaces. We fix a minimal surface M , and construct a method

for generating multiple one parameter families of minimal surfaces locally isometric

to M via a Lie point symmetry analysis. We find non-trivial symmetries and work

out an example for the half-catenoid. We would like to generalize our methods to

minimal surfaces embedded in more general manifolds but require a more general

Weierstrass-Enneper representation to do this.



Chapter 1

Differential Geometry

In this chapter we provide a summary of elementary differential geometric tools that

will be pertinent to the subsequent chapters. We define the standard elements of man-

ifold theory and stress that ideas pertaining to the differential geometry of surfaces

immersed in R3 follow as special cases. We proceed to give definitions and examples

that will be relevant to forthcoming material.

1.1 Basic Manifold Theory

The manifold is the fundamental object of differential geometry. Before we can define

geometric quantities (i.e. tangent vectors, curvature, etc.) we must first provide

a precise definition of the manifold we wish to define them upon. Heuristically, a

manifold is a locally Euclidean set. Stated in other words, if we restrict to a sufficiently

small region of an n-dimensional manifold, it would appear locally as Rn.

Definition 1. A n-dimensional, Cr manifold M is a set M with charts (Uα, φα)

where Uα ⊂M and φα : Uα → Rn are injective such that

3
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i) M =
⋃
α Uα

ii) if Uα ∩ Uβ is non-empty, then the map

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is a Cr map of an open subset of Rn to an open subset of Rn for all α, β. If φβ ◦ φ−1
α ∈

Cr for all r ∈ N, then we say M is a C∞ manifold (see figure 1.1).

M

RnRn

(Uα, φα)
(Uβ, φβ)

φα
φβ

φβ ◦ φ−1
α

Vα = φα(Uα) Vβ = φβ(Uβ)

Figure 1.1 Manifold Definition.

The following examples of manifolds will provide intuition for this definition:

Example 1. (Euclidean Space) Rn is a manifold covered by U1 = Rn with coordinate

function φ1 = id.

Most manifolds cannot be covered by one chart, as the following shows:

Example 2. (S2) Define six hemispheres

U±
i = {(x1, x2, x3) ∈ S2| ± xi > 0}
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where i = 1, 2, 3. Note the U±
i cover S2. Define coordinate maps by their projections

onto the unit disc, i.e. φ±1 : U±
1 → D, given by φ±1 (x1, x2, x3) = (x2, x3). The overlap

functions φ±i ◦ (φ±j )−1 are C∞ [7], from which we conclude S2 is a C∞ manifold.

We will always work on C∞ manifolds. We now give several definitions in order to

restrict the class of manifolds we will consider in this work.

Definition 2. A manifold is said to be orientable if there is a collection of charts

{Uα, φα} such that for every non-empty intersection Uα ∩Uβ, the Jacobian |∂xi/∂x′j|

is positive, where the xi and x′i label the local coordinates of Uα and Uβ respectively.

The Möbius strip and Klein bottle are two examples of non-orientable manifolds.

Definition 3. A topological space M is said to be Hausdorff if it satisfies the

following separation axiom: For {p, q} ∈ M where p 6= q, there exist open sets

U ⊂ M and V ⊂ M , such that p ∈ U , q ∈ V and U ∩ V = ∅. Note if one defines

elements of the topology of a manifold to be the Uα, then the manifold is a topological

space.

Definition 4. A collection of charts {Uα, φα} of a manifold M is locally finite if

for every point p ∈ M there is an open neighborhood which intersects only a finite

number of the Uα. M is said to be paracompact if for every collection {Uα, φα}

there exists a locally finite atlas {Vβ, φβ} where each Vβ are contained in some Uα,

where we define an atlas to be the collection of all coordinate patches on a manifold.

All manifolds in this work will be paracompact, connected, C∞, Hausdorff manifolds

unless otherwise stated. Now that we have developed the idea of a manifold, we

proceed to define geometric quantities.

Definition 5. Let M be a manifold. A differentiable function c : (−ε, ε) ⊂ R → M

is called a curve in M . By reparametrization if necessary, set c(0) = p ∈ M and
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let C1(M) be the space of differentiable functions on M . The tangent vector to the

curve c at t = 0 is a function c′(0) : C1(M)|p → R defined by

c′(0)f =
d(f ◦ c)
dt

∣∣∣∣
t=0

f ∈ C1(M)|p.

Definition 6. For a manifold M and p ∈ M , a tangent vector at p is the tangent

vector at t = 0 of some curve c : (−ε, ε) →M with c(0) = p. The union of all tangent

vectors to M at p defines the tangent space TpM . The tangent bundle of M is

defined by

TM =
⋃
p

TpM p ∈M.

Definition 7. A one-form ω is a linear functional on TpM . The set of all one forms

at p constitutes a vector space called the cotangent space which we denote T ∗p .

Definition 8. A tensor T of type (r, s) at p ∈M is a mapping

T :
⊗
r

Tp ⊗
⊗
s

T ∗p → R

which is linear in each argument.

Definition 9. A Riemannian metric is a positive definite symmetric (0, 2) tensor.

Riemannian metrics are the fundamental calculational tool in differential geometry.

1.2 Differential Geometry of Surfaces

This thesis will mainly be concerned with differential geometry on 2-manifolds imbed-

ded in R3 which we call regular surfaces.
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Definition 10. If there is a map x : U ⊂ R2 → R3 whose image is a regular surface

S, we call x a parametrization of S. We will take x ∈ C∞ unless otherwise stated.

Definition 11. Given a parametrization x(u, v) : U ⊂ R2 → R3, we define a map

N : U → S2 by

N(u, v) =
xu ∧ xv
|xu ∧ xv|

which we call the Gauss Map where subscripts indicate partial differentiation and

∧ is the wedge product.

Definition 12. Given a parametrization x(u, v) : U ⊂ R2 → R3 of a surface M ,

let S(p) : TpM → TpM act on v ∈ TpM represented by v = va∂a be given by

S(p)v = −va∂aN . We call S the shape operator or Weingarten map.

Theorem 13. S is a Hermitian operator on TpS. Stated another way 〈Sv, w〉 =

〈v, Sw〉, where 〈·, ·〉 is the inner product on R3 for v, w ∈ TpM .

Proof:

By definition of the Gauss map, 〈N, ∂ax〉 = 0. Differentiating, we have

〈∂aN, ∂bx〉+ 〈N, ∂a∂bx〉 = 0.

Thus by the product rule we have 〈∂bN, ∂ax〉 = 〈Na,xb〉 from which it follows

〈Sv, w〉 = −〈∂bNvb, ∂bxwb〉 = −〈∂bN, ∂ax〉vbwa

= −〈∂bx, ∂aN〉vbwa = −〈∂axva, ∂bNwb〉 = 〈v, Sw〉.

2

The most important tensors in differential geometry are defined in terms of the

shape operator.
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Definition 14. We define three symmetric bilinear two-forms on v, w ∈ TpS by

I(v, w) = 〈v, w〉 II(v, w) = 〈Sv, w〉 III(v, w) = 〈Sv, Sw〉

which are called the first, second, and third fundamental forms.

1.2.1 The Metric

We will refer to the first fundamental form as the metric tensor and note that it is

defined identically as the preceding definition of metric. Moreover, it defines an

inner product on the tangent space of a surface. We will denote its components with

respect to the basis {xu,xv} by gab, and occasionally adopt the convention

g11 = E, g12 = F , and g22 = G. Explicitly, we may calculate metric components via

the following:

Given an m-dimensional submanifold M of an n-dimensional manifold N with

metric gN and φ : M → N , the components of the induced metric gM are given by

gMab
(x) = gNcd

(φ(x))
∂φc

∂xa
∂φd

∂xb
.

Example 3. Consider the metric on S2 in (R3, δab). If (θ, φ) are polar coordinates

on S2, then we may define its embedding by

φ : (θ, φ) → (sin θ cosφ, sin θ sinφ, cos θ)

from which we compute

ds2 ≡ gab dx
adxb = δcd

∂f c

∂xa
∂fd

∂xb
dxadxb = dθ2 + sin2 θdφ2.

We call ds2 the line element for the sphere. Note that this provides a general

method for constructing line elements of manifolds embedded in Euclidean space.
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We have the following corollary from the definition of the induced metric:

Corollary 15. The induced metric tensor for a C∞ manifold embedded into

Euclidean space is given by g = JTJ where J is the Jacobian of the embedding.

We now construct the line element for the sphere using this corollary:

Example 4. S2 is embedded into R3 by

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ)

where 0 < θ ≤ π and −π < φ ≤ π and has Jacobian

J =


cos θ cosφ − sin θ sinφ

cos θ sinφ cosφ sin θ

− sin θ 0

 .

Thus after simplification we have

g =

 1 0

0 sin2 θ


which when written as a line element gives the above result

ds2 = dθ2 + sin2 θdφ2.

1.2.2 Second Fundamental Form

To develop intuition for the second fundamental form, we require a few more

definitions.

Definition 16. Let α be a curve in a surface S passing through p ∈ S, and let k be

its curvature at p. Define an angle θ by cos θ = 〈n,N〉 where n is the unit normal to
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α, N is the unit normal to S, and 〈·, ·〉 is the Euclidean inner product. Then

kn ≡ k cos θ is called the normal curvature of α at p.

Now let α be a parametrization for a curve in S parameterized by arc-length, with

α(0) = p. Let N(s) be the Gauss map restricted to α. Then 〈N(s), α′(s)〉 = 0 and

therefore 〈N,α′′〉 = −〈N ′, α′〉, from which we compute

IIp(α
′(0)) = −〈dNp(α

′(0)), α′(0)〉 = −〈N ′(0), α′(0)〉

= 〈N(0), α′′(0)〉 = 〈N, kn〉(p) = kn(p).

So IIp acting on a unit vector v ∈ TpS gives the normal curvature of a curve passing

through p that is tangent to v.

Definition 17. The maximum normal curvature k1 and the minimum normal

curvature k2 are called the principal curvatures at p.

Let ξ1 and ξ2 be elements of TpM such that k1 = II(ξ1, ξ1) and k2 = II(ξ2, ξ2).

Then by definition of the second fundamental form

Sξ1 = k1ξ1 Sξ2 = k2ξ2.

Thus the principle curvatures may be thought of as the eigenvalues of the shape

operator with corresponding eigenvectors ξ1, ξ2.

Definition 18. The mean curvature H and the Gaussian curvature K are

defined by

H =
1

2
(k1 + k2) K = k1k2.
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Since k1 and k2 are the eigenvalues of S, they are given by the equation

0 = det(S − λI) = (λ− k1)(λ− k2) = λ2 − 2Hλ+K

which by the Cayley-Hamilton theorem gives the equation

S · S − 2H · S +K · I = 0

where I is the identity matrix. We may reexpressed this equation as

K · I − 2H · II + III = 0

which relates the three fundamental forms.

Theorem 19. Let S be a surface and p ∈ S. Then the mean curvature of S at p is

given by

H =
1

π

∫ π

0

kn.

Proof: Let e1 and e2 be the eigenvectors of the shape operator. Then since {e1, e2}

are an orthonormal basis for TpS [7, p. 214-216], for a unit vector v ∈ TpS we write

v = e1 cos θ + e2 sin θ

Thus we have

kn = IIpv = 〈Sv, v〉 = 〈S(e1 cos θ + e2 sin θ), e1 cos θ + e2 sin θ〉

= 〈e1k1 cos θ + e2k2 sin θ, e1 cos θ + e2 sin θ〉 = k1 cos2 θ + k2 sin2 θ.

Integrating we find
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1

π

∫ π

0

kn =
1

π

∫ π

0

(k1 cos2 θ + k2 sin2 θ) =
k1 + k2

2
= H.

2

Note that the above gives a geometrical interpretation of the mean curvature as the

average of all normal curvatures at a point.

1.2.3 Coordinate Formulas

We will often use coordinate formulas in this work. Given a parameterization x, the

coefficients of the three fundamental forms are given by

gab = 〈∂ax, ∂bx〉

bab = −〈∂aN, ∂bx〉

cab = 〈∂aN, ∂bN〉.

We now write the shape operator eigenvalue problem in the form

〈Sv, w〉 = k〈v, w〉

which in component notation becomes

babv
awb = kgabv

awb.

Since w is arbitrary, we find babv
a = kgabv

a, which in tensor notation is

bv = kgv → g−1bv = kv.

Thus the principal curvatures are given by
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0 = det(b− kg) = (det g)k2 − (b11g22 + b22g11 − b12g21 − b21g12)k + det b

= (det g)(k − k1)(k − k2) = (det g)[k2 − (k1 + k2)k + k1k2]

from which we make the identifications

K = k1k2 =
det b

det g
= det(g−1b)

2H = k1 + k2 = tr(g−1b).

These are explicit formulae for the curvature scalars in terms of the first and second

fundamental forms. We now provide an example of calculating the above quantities

for Enneper’s Surface

Example 5. Enneper’s Surface is given by the parametrization

x(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
We compute

g11 = g22 = (1 + u2 + v2)2 g12 = 0

b11 = −b22 = 2 b12 = 0.

Since b12 = 0, we see from the mean curvature formula that the principal curvatures

are given by

k1 =
b11

g11

=
2

(1 + u2 + v2)2
k2 =

b22
g22

= −k1

Thus we find

K = − 4

(1 + u2 + v2)4
H = 0.
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Figure 1.2 Four views of Enneper’s Surface.

1.3 Minimal Surfaces

Definition 20. A minimal surface S is a two-manifold with H = 0 for every

p ∈ S.

Suppose a surface S can be represented by a graph given by φ(x, y) : U ⊂ R2 → R3.

Then the surface area of S is given by the functional
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A[x, y, φ, φx, φy] =

∫
S

=

∫
U

√
1 + φ2

x + φ2
y.

Demanding the first variation of A vanishes is equivalent to requiring the

Lagrangian L =
√

1 + φ2
x + φ2

y to satisfy the Euler-Lagrange equation

0 =
∂L

∂φ
− ∂

∂x

∂L

∂φx
− ∂

∂y

∂L

∂φy

.

Preforming the differentiation and simplifying we find

φxx(1 + φ2
y)− 2φxφyφxy + φyy(1 + φ2

x) = 0

which is called the minimal surface equation. Note that this is a non-linear

partial differential equation that is not easily solvable without restrictive ansatz. It

is straightforward to show that if a surface is given by z = z(x, y), then the metric

and second fundamental form coefficients are given by

g11 = 1 + z2
x g12 = zxzy g22 = 1 + z2

y

e = b11 =
zxx√

1 + z2
x + z2

y

f = b12 =
zxy√

1 + z2
x + z2

y

g = b22 =
zyy√

1 + z2
x + z2

y

.

Applying our coordinate formulae we find

H =
Eg − 2Ff +Ge

2(EG− F 2)
=

(1 + z2
x)zyy − 2zxyzxzy + (1 + z2

y)zxx√
1 + z2

x + z2
y

which reduces to the previous definition of minimal surface.

The above shows minimal surfaces are in a sense a generalization of geodesics. The

geodesic equation is given by demanding the first variation of the arc-length



1.3 Minimal Surfaces 16

functional for a curve vanishes, and the minimal surface equation is given by

requiring the first variation of the area functional for a surface is zero.

We now show a relation between minimal surfaces and harmonic functions, but first

require two lemmas.

Definition 21. A parameterized surface x(u, v) is isothermal if g11 = g22 and

g12 = 0.

Lemma 22. Let x(u, v) be a parameterized isothermal surface. Then

∆x = xuu + xvv = 2λ2HN

.

Proof:

Since x is isothermal, g11 = g22 = 〈xu,xu〉 = 〈xv,xv〉, and g12 = 〈xu,xv〉 = 0.

Differentiating with respect to u, we find

〈xuu,xu〉 = 〈xvu,xv〉 = −〈xu,xvv〉

which gives the equation

〈xuu + xvv,xu〉 = 0.

Similarly, differentiating with respect to v yields

〈xuu + xvv,xv〉 = 0.

From these two equations, we conclude x is parallel to the Gauss map N . Since the

parametrization is isothermal, the formula for mean curvature takes the form
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H =
1

2

b11 + b22
E2

.

Thus we find

〈N,xuu + xvv〉 = b11 + b22 = 2E2H

which may be written

∆x = xuu + xvv = 2E2NH.

2

This next lemma is a corollary to a theorem of Gauss which was simplified by Chern

that states every surface has an isothermal parametrization.

Lemma 23. [18, Vol 4, p. 265-267] Isothermal coordinates can be introduced

around any minimal surface.

Proof:

Assume S is the graph of a function φ : U → R for U ⊂ R2. Thus S is the image of

a map f(x, y) = (x, y, φ(x, y)). Define the quantities

p ≡ φx q ≡ φy r ≡ φxx s ≡ φxy t ≡ φyy.

Then the minimal surface equation becomes

(1 + q2)r − 2pqs+ (1 + p2)t = 0

.

Define W =
√

1 + p2 + q2 and note by the minimal surface equation we have the

identities
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∂

∂x

(
1 + q2

W

)
− ∂

∂y

( pq
W

)
= − p

W 3

[
(1 + q2)r − 2pqs+ (1 + p2)t

]
= 0

∂

∂x

( pq
W

)
− ∂

∂y

(
1 + p2

W

)
= 0.

Thus we can locally define functions α, β by the equations

∂α

∂x
=

1 + p2

W

∂β

∂x
=
pq

W
=
∂α

∂y

∂β

∂y
=

1 + q2

W
.

Consider a transformation given by

T (x, y) = (x+ α(x, y), y + β(x, y))

with Jacobian given by

J(T ) =
1

W

 W + (1 + p2) pq

pq W + (1 + q2)


and determinant

|J(T )| = 2 +
2 + p2 + q2

W
≥ 2.

Thus T is locally invertible, with inverse

J−1(T ) = C

 1 +W + q2 −pq

−pq 1 +W + p2


for some constant C. We thus compute the composition

J(f◦T−1) = C


1 0

0 1

p q


 1 +W + q2 −pq

−pq 1 +W + p2

 = C


1 +W + q2 −pq

−pq 1 +W + p2

p+ pW q + qW


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from which we note the two column vectors are orthogonal with norm

(1 + p2 + q2)(2W + 2 + p2 + q2), from which we conclude that f ◦ T−1 is conformal

(preserves angles), and its inverse is an isothermal coordinate system.

2

Theorem 24. If x is an isothermal parametrization for a surface S, then S is

minimal iff ∆x = 0.

(⇒) If S is a minimal surface, then by Lemma 22 we have

∆x = 2E2NH = 0

(⇐) If 0 = 4x = 2E2NH. Then either E, N or H vanishes. If E or N are zero,

then x does not parameterize a surface. Thus H = 0 and S is minimal.

2

The following example demonstrates the usefulness of this theorem.

Example 6. The Catenoid parameterized by

x = (c cosh(v) cosu, c cosh(v) sinu, cv) u ∈ (0, 2π), v ∈ (−∞,∞)

is a minimal surface.

Proof:

The metric coefficients of the catenoid are

E = G = c2 cosh2 v F = 0

and ∆x = 0. Thus the catenoid is a minimal surface.
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Figure 1.3 Four views of the Catenoid.

2

Definition 25. A surface of revolution is a surface with a parametrization of the

form

x(u, v) = (f(v) cosu, f(v) sinu, v) u ∈ (0, 2π) v ∈ (a, b).

Theorem 26. The catenoid and the plane are the only minimal surfaces of

revolution.
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Proof:

If x is a minimal surface, then it must have an isothermal parametrization.

Computing the metric components of x we find g11 = f 2 and g22 = (f ′)2 + 1.

Demanding these are equal requires f = 1 or f = c1 cosh(v) + c2 sinh(v). The first

solution gives a plane. Computing the mean curvature with the form of the second

solution substituted into x, we find c1 = 1 and c2 = 0 are required for x to be

minimal. The result gives the parametrization for the catenoid.

2

Definition 27. When two differentiable functions f, g : U ⊂ R2 → R satisfy the

equations

fu = gv fv = −gu

then f and g are called harmonic conjugates.

Definition 28. Let x and y be isothermal parameterizations of minimal surfaces

with pairwise harmonic conjugate component functions. Then x and y are called

conjugate minimal surfaces.

We now introduce another canonical minimal surface called the helicoid, given in

isothermal coordinates by

x = (sinhu cos v, sinhu sin v, v) u ∈ (0, 2π), v ∈ R

which is graphed in Figure 1.4.

Theorem 29. The helicoid and catenoid are conjugate surfaces
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Figure 1.4 Four views of the Helicoid.

This proof is trivial by differentiating the isothermal parameterizations of the

helicoid and catenoid. The extension of the following theorem to complex functions

will be the main consideration of Chapter 3.

Theorem 30. Given two conjugate minimal surfaces x and y, the surface

zt = (cos t)x + (sin t)y t ∈ [0, π/2]

is minimal for all t, and x and y have identical induced metrics.

This proof is an exercise in differentiation. We call the surfaces zt the associated
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surfaces of x and y. Figure 4.1 is a plot of some of the associated surfaces of the

catenoid and helicoid.

Figure 1.5 Helicoid to Catenoid Transformation.



Chapter 2

Complex Geometry

We present background material in complex analysis and harmonic function theory

necessary to study complex parameterizations of minimal surfaces.

2.1 Complex Analysis

We define the set of complex numbers C = {a+ ib|a, b ∈ R}. Addition and

multiplication of z, w ∈ C, where z = z1 + iz2 = (z1, z2) and w = (w1, w2) are given

by z + w = (z1 + w1, z2 + w2), and z · w = (z1w1 − z2w2, z1w2 + z2w1) which

immediately yields i2 = −1. We may represent z ∈ C in the form z = reiθ where

0 ≤ r <∞, and 0 ≤ θ < 2π, which we will often use to simplify calculations. For

z ∈ C written as z = a+ ib, we define its real and imaginary parts to be Re{z} = a

and Im{z} = b, respectively.

Definition 31. The modulus function | · | : C → R is defined for z ∈ C by

|z| = |z1 + iz2| =
√
z2
1 + z2

2 .

Note this generalizes the absolute value function.

24
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Definition 32. The function f(x) is said to limit to L as x→ a written:

lim
z→a

f(z) = A

iff for every ε > 0 there exists a δ > 0 such that |f(x)− A| < ε for all x such that

|x− a| < δ and x 6= a.

Definition 33. A function f : C → C is continuous at a ∈ C iff

lim
z→a

f(z) = f(a).

For D ⊂ C, we say f is continuous on D if the above holds for all a ∈ D.

Definition 34. The derivative of f : C → C at z ∈ C is defined to be

f ′(z) = lim
h→0

f(z + h)− f(z)

h

for any h ∈ C.

Definition 35. For D ⊂ C and f : D → C, we say that f is holomorphic in D if

its derivative exists for all a ∈ D. We say f is entire if it is holomorphic in C.

Definition 36. A function f : D → C has a pole of order m at z = a if m is the

smallest positive integer such that f(z)(z − a)m has a removable singularity at z = a

(The limit is defined).

Definition 37. If G is open and f is a function defined and holomorphic in G

except for poles, then f is a meromorphic function on G.

Theorem 38. Any holomorphic function has a Taylor series expansion.
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The limit in the definition of the derivative must remain the same independent of

the path in which h approaches zero on the complex plane. Thus for f = u+ iv and

h→ 0 along the real axis we find

f ′(z) =
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x

and for h→ 0 along the imaginary axis (h = ik) we have

f ′(z) = lim
h→0

f(z + ik)− f(z)

ik
= −i∂f

∂y
= −i∂u

∂y
+
∂v

∂y

from which we see that f must satisfy the partial differential equation

∂f

∂x
= −i∂f

∂y
.

Equating real and imaginary parts we find the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
.

Note any holomorphic function must satisfy the Cauchy-Riemann equations, but the

converse is not generally true.

Theorem 39. f satisfies the Cauchy-Riemann equations and has continuous first

order derivatives iff f is holomorphic.

Definition 40. A real function which satisfies Laplace’s equation

∆u = ∇ · (∇u) = 0 is said to be harmonic.

Definition 41. Let u and v be real valued functions. u and v are harmonic

conjugates if they are harmonic and satisfy the Cauchy-Riemann equations.

Theorem 42. If u : D → R is a real valued harmonic function, then u has a

harmonic conjugate.
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2.2 Harmonic Analysis

It is immediate from the Cauchy-Riemann equations that every holomorphic

function is harmonic. However the converse of this statement is false as can be seen

by the counterexample f(z) = z.

Definition 43. A function f : D → C is univalent (one-to-one), if for any distinct

z1, z2 ∈ D, f(z1) 6= f(z2).

Definition 44. A complex-valued harmonic function is a harmonic mapping of a

domain D ⊂ C if it is univalent (injective) in D.

We will mainly be concerned with univalent harmonic mappings.

Theorem 45. f = u+ iv is a harmonic function, iff there exist holomorphic g, h

such that f = h+ g.

Proof: (⇒) Since u and v are real harmonic by assumption, we know they have

harmonic conjugates uc, vc. Thus we compute

f = u+ iv =
u+ iuc + u+ iuc

2
+ i

vc + iv − vc + iv

2i

=
(u+ vc) + i(uc + v)

2
+

(u− vc) + i(uc − v)

2
≡ h+ g.

(⇐) By hypothesis we have h = h1 + ih2, g = g1 + ig2, and f = h+ g. Thus

Re(f) = h1 + g1 and Im(f) = h2 − g2. Since h and g are holomorphic, then

h1, h2, g1, and g2 are harmonic, which by linearity of the Laplacian operator, implies

h1 + g1 and h1 − g2 are harmonic.

2

We will call such a form, for a harmonic function f , the canonical decomposition of

f .
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Definition 46. Let f : D → C. The Jacobian of f = u+ iv is defined by

Jf =

∣∣∣∣∣ ux vx

uy vy

∣∣∣∣∣ = uxvy − uyvx.

Theorem 47. [15] For a harmonic function f : D → C, Jf 6= 0 iff f is locally

univalent at z.

Definition 48. A locally univalent harmonic mapping is sense-preserving at

z ∈ C if Jf (z) > 0 or sense-reversing if Jf (z) < 0.

If f is sense preserving then its conjugate f is sense-reversing and vice-versa.

2.3 Weierstrass-Enneper Representations

The following theorem found in [11, p. 168] provides the link between harmonic

univalent functions and minimal surfaces:

Theorem 49. (Weierstrass-Enneper Representation). Every regular minimal

surface has locally an isothermal parametric representation of the form

(
Re

{∫ z

p(1 + q2)dw

}
, Im

{∫ z

p(1− q2)dw

}
, 2 Im

{∫ z

pqdw

})
. (2.1)

in some domain D ⊂ C, where p is holomorphic and q is meromorphic in D, with p

vanishing only at the poles (if any) of q and having a zero of precise order 2m

wherever q has a pole of order m. Conversely, each such pair of functions p and q

holomorphic and meromorphic, respectively, in a simply connected domain D

generate through the formulas (2.1) an isothermal parametric representation of a

regular minimal surface.

We will use (2.1) in the following form:
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Corollary 50. For a harmonic function f = h+ g, define the holomorphic

functions h and g by h =
∫ z
pdζ and g = −

∫ z
pq2dζ. Then the minimal surface

representation (2.1) becomes

(
Re{h+ g},Re{h− g}, 2 Im

{∫ z

0

√
h′g′dζ

})
. (2.2)

In general converting between the Weierstrass-Enneper representation of a surface

and its classical coordinate parametrization is a non-trivial task. We demonstrate a

process in the following for the case of the catenoid.

Example 7. (Converting between coordinate and Weierstrass-Enneper

representations of a minimal surface) Consider a coordinate parametrization of the

catenoid

x = c coshu cos v

y = −c coshu sin v

z = cu.

The Weierstrass Enneper representation must be of the form

x = c+ Re

∫ p

1

(1− p2)f(p)dp

y = Re

∫ p

1

i(1 + p2)f(p)dp

z = Re

∫ p

1

2pf(p)dp.

Setting w = u+ iv, make the change of variables ω = e−w and define r = |ω|,

θ = argω (ω = reiθ). Noting logω = log r + iθ = −u− iv, the coordinate

representation becomes
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x =
c

2

(
1

r
+ r

)
cos θ = Re

{
α

2

(
1

ω
+ ω

)}
y =

c

2

(
1

r

)
sin θ = Re

{
ic

2

(
1

ω
− ω

)}
z = −c log r = −Re {c logω} .

Setting f(p) = −c/2ω2 gives the equivalent Weierstrass-Enneper representation.

We will often consider only the Weierstrass-Enneper representation of a minimal

surface.

Example 8. Scherk’s doubly periodic surface is defined by the Weierstrass-Enneper

representation with p = (1− z4)−1 and q = iz. Preforming the integration, we find

it has the parametrization

x = Re

(
i

2
log

(
z + i

z − i

)
,− i

2
log

(
1 + z

1− z

)
,
1

2
log

(
1 + z2

1− z2

))
.

This surface is plotted in Figure (2.1) and can be translated about the plane like a

checkerboard to form a new minimal surface (Figure 2.2).

Example 9. Its conjugate surface called Scherks singly periodic surface is given by

taking p the same and q = z. The resulting surface is given by

x = Re

(
1

2
log

(
z + i

z − i

)
,−1

2
log

(
1 + z

1− z

)
,− i

2
log

(
1 + z2

1− z2

))
.

This surface is plotted in Figure (2.3) and can be stacked upon itself to form the

Scherk tower (Figure 2.4).
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Figure 2.1 Scherk’s Doubly Periodic Surface.
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Figure 2.2 Double Scherk Checker Table.
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Figure 2.3 Scherk’s Singly Periodic Surface.
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Figure 2.4 Singly Periodic Scherk Tower .



Chapter 3

Minimal Linear Combinations

Given two univalent harmonic mappings f1 and f2 on the unit disk D, which lift to

minimal surfaces via the Weierstrass-Enneper representation theorem, we give

conditions for linear combinations of the form f3 = α1(t)f1 + α2(t)f2 to lift to a

minimal surface for t ∈ [0, 1]. We then take α1 = t and α2 = (1− t) in three

examples involving well-known minimal surfaces.

3.1 Harmonic Linear Combinations

The main consideration of this work is the study of harmonic mappings of the form

f3 = tf1 + (1− t)f2, where t ∈ [0, 1] and f1, f2 are both harmonic mappings. We will

provide conditions for f3 to lift to a minimal surface via (2.1), and demonstrate

several examples which further the work of [9] and relate seemingly disconnected

minimal surfaces. Let f1 = h1 + ḡ1 and f2 = h2 + ḡ2 be two univalent harmonic

mappings on D, which lift to minimal surfaces, with dilatations ω2
1 = g′1/h

′
1 and

ω2
2 = g′2/h

′
2 respectively, where q1, q2 are holomorphic. Construct a third harmonic

35
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mapping

f3 =tf1(z) + (1− t)f2

=
[
th1(z) + (1− t)h2(z)

]
+
[
tg1(z) + (1− t)g2(z)

]
=h3 + g3

and define its dilatation to be ω3 = g′3/h
′
3. We require the following for the

subsequent lemma:

Lemma 51. Let h1, h2 be holomorphic mappings on D and t ∈ [0, 1] The following

are sufficient conditions for the real valued function h = |th1 + (1− t)h2| to be

positive:

i) Re{h1} > 0 and Re{h2} > 0.

ii) Let z ∈ D and consider the complex numbers w1 = h1(z), w2 = h2(z) on complex

projective two space P(C, 2). If w1 6= w2 for all z ∈ D, then the condition is satisfied.

iii) h1(z)/|h1(z)| − h2(z)/|h2(z)| 6= 0 for all z ∈ D.

The proof of the lemma is straightforward. We note iii) is also necessary, and now

investigate the univalence of the linear combination.

Lemma 52. Assuming one condition in Lemma 51 holds, if ω1 = ω2, then ω3 is a

perfect square of a holomorphic function and hence f3 is locally univalent.

Proof: Suppose that ω1 = ω2. Then we have

ω3 =
th′1ω1 + (1− t)h′2ω1

th′1 + (1− t)h′2
= ω1,

which shows ω3 is a perfect square of a holomorphic function. Since f1 is univalent

and a condition in Lemma 51 holds we find |ω3| = |ω2
1| > 0 which by Lewy’s

theorem [15] implies f3 is locally univalent.

We now seek to study conditions under which f3 is globally univalent and thus lifts

to a minimal surface. To do this, we need a few definitions and theorems.
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Definition 53. A domain D ⊂ C is said to be convex in the eiβ direction if for all

a ∈ C the set

D ∩ {a+ teiβ : t ∈ R}

is either connected or empty. Specifically, a domain is convex in the direction of the

imaginary axis if all lines parallel to the imaginary axis have a connected

intersection with the domain.

Theorem 54 ( [14], [17]). Given a harmonic function f = h+ g, let φ = h− g. φ is

convex in the eiβ direction if

Re{φ′(1 + zei(α+β))(1 + ze−i(α−β))} > 0

for some α ∈ R and for all z ∈ D

The following theorem will allow us to prove global univalence of a class of harmonic

mappings.

Theorem 55 (Clunie and Sheil-Small, [4]). A harmonic function f = h+ g locally

univalent in U is a univalent mapping of U onto a domain convex in the eiβ

direction if and only if φ = h− ei2βg is a conformal univalent mapping of U onto a

domain convex in the eiβ direction.

The following theorem allows us to determine if a function maps onto a domain

convex in the direction of the imaginary axis:

Theorem 56 (Hengartner and Schober, [13]). Suppose f is holomorphic and

non-constant in D. Then

Re{(1− z2)f ′(z)} ≥ 0, z ∈ D



3.1 Harmonic Linear Combinations 38

if and only if f is univalent in D, f is convex in the imaginary direction, and there

exists points z′n, z
′′
n converging to z = 1, z = −1, respectively, such that

lim
n→∞

Re{f(z′n)} = sup
|z|<1

Re{f(z)}

lim
n→∞

Re{f(z′′n)} = inf
|z|<1

Re{f(z)}. (3.1)

Note that the the normalization in (3.1) can be thought of in some sense as if f(1)

and f(−1) are the right and left extremes in the image domain in the extended

complex plane. Using the above results, we derive the following two theorems.

Theorem 57. Let f1 = h1 + g1, f2 = h2 + g2 be harmonic mappings convex in the

imaginary direction. Suppose ω1 = ω2 and φi = hi − gi is univalent, convex in the

imaginary direction, and satisfies the normalization given in (3.1) for i = 1, 2. Then

f3 = tf1 + (1− t)f2 is convex in the imaginary direction (0 ≤ t ≤ 1).

Proof: We want to show that φ3 = tφ1 + (1− t)φ2 is convex in the imaginary

direction. Then by Theorem 55, f3 is convex in the imaginary direction. By the

hypotheses, Theorem 56 applies to φ1, φ2. That is,

Re{(1− z2)φ′i(z)} ≥ 0,∀i = 1, 2.

Consider

Re{(1− z2)φ′3(z)} =Re{(1− z2)(tφ′1(z) + (1− t)φ′2(z))}

=tRe{(1− z2)φ′1(z)}+ (1− t)Re{(1− z2)φ′2(z)} ≥ 0.

Hence, by applying Theorem 56 again, φ3 is convex in the imaginary direction.

We need not only restrict to surfaces convex in the imaginary direction. The

following gives a condition for a function to be convex in an arbitrary direction:



3.2 Examples 39

Theorem 58. For a harmonic function f = h+ g, define h− g = φ = φR + iφI .

Then φ is convex in the eiβ direction if

[cosα+ cos(β + γ)] [φ′R cos(β + γ)− φ′I sin(β + γ)] > 0 (3.2)

for some α ∈ R and for all z = reiγ ∈ D.

Proof: This theorem follows by applying Theorem 54 to φ to get

Re{(φ′R + iφ′I)(1 + rei(α+β+γ))(1 + rei(γ−α+β))}

= φ′R + 2r cosα(φ′R cos θ − φ′I sin θ) + r2(φ′R cos 2θ − φ′I sin 2θ)

= 2(cosα+ cos(β + γ))(φ′R cos(β + γ)− φ′I sin(β + γ)) > 0,

where θ = β + γ.

3.2 Examples

We now proceed to give interesting examples resulting from Theorems 57 and 58.

Example 10 (Enneper’s to Scherk’s singly-periodic).

Consider the harmonic maps

fE =z +
1

3
z3

fS =

[
1

4
ln

(
1 + z

1− z

)
+
i

4
ln

(
i− z

i+ z

)]
+

[
1

4
ln

(
1 + z

1− z

)
− i

4
ln

(
i− z

i+ z

)]
.

It is straight forward to show that their dilatations are ω = z2 and both harmonic

maps satisfy the hypotheses of Theorem 57. Hence

ft = (1− t)fE + tfS



3.2 Examples 40

is globally univalent on z ∈ D and for every t ∈ [0, 1]. By Corollary (2.1), ft lifts to a

family of minimal surfaces. Note that f0 lifts to Enneper’s surface parametrized by:

X0 =

(
Re

{
z +

1

3
z3

}
, Im

{
z − 1

3
z3

}
, Im

{
z2

})

and f1 lifts to Scherk’s singly-periodic surface parametrized by

X1 =

(
Re

{
1

2
ln

(
1 + z

1− z

)}
, Im

{
i

2
ln

(
i− z

i+ z

)}
, Im

{
1

2
ln

(
1 + z2

1− z2

)})
.

So for t ∈ [0, 1] we get a continuous family of minimal surfaces transforming from

Enneper’s to Scherk’s singly-periodic surface. In Figure 3.1, we have shown six

equal increments in this transformation.

Example 11 (Scherk’s doubly-periodic to catenoid).

Consider the harmonic maps fD = hD + gD, where

hD(z) =
1

4
ln

(
1 + z

1− z

)
− i

4
ln

(
1 + iz

1− iz

)
gD(z) =− 1

4
ln

(
1 + z

1− z

)
− i

4
ln

(
1 + iz

1− iz

)
,

and fC = hC + gC , where

hC(z) =
1

4
ln

(
1 + z

1− z

)
+

1

2

z

1− z2

gC(z) =
1

4
ln

(
1 + z

1− z

)
− 1

2

z

1− z2
.

and define

ft = (1− t)fD + tfC .

While Theorem 57 does imply ft is globally univalent on z ∈ D and ∀t ∈ [0, 1], we

will instead prove this by using Theorem 58.
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Figure 3.1 Enneper’s to Scherk’s singly-periodic transformation for t = i/5
for i = 0, . . . , 5.

Note that the φ′ associated with f is given by

φ′ =
1− (1− 2t)z2

(z2 − 1)2
.

Letting z → eiγ ∈ ∂D, we compute

Re{φ′} =
1

2
(1− t csc2 γ), Im{φ′} =

1

2
cot γ.

Then

S = (cosα+ cos(β + γ)) (φ′R cos(β + γ)− φ′I sin(β + γ))

=
(1− t)

2
csc(γ) (sin(γ)− cosα)
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Choosing β = π/2 and α = π/2 gives S > 0. Thus, we conclude φ is convex in the

imaginary direction, and by Theorem 55 and Corollary (2.1) we conclude that f lifts

to a minimal surface for all t. Note that f0 lifts to Scherk’s doubly-periodic surface

and f1 lifts to a catenoid. So for t ∈ [0, 1] we get a continuous family of minimal

surfaces transforming from Scherk’s doubly-periodic surface to a catenoid. In Figure

3.2, we have shown four equal increments in this transformation.

Figure 3.2 Catenoid to Scherk’s doubly-periodic transformation for t = i/3
for i = 0, . . . , 3.
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3.3 Linear combinations that are not convex in

one direction

In the previous section, we considered functions that are convex in the same

direction and proved two theorems that show necessary conditions for the linear

combinations of these functions to also be convex in that direction. Next, we

consider the case in which the functions are not necessarily convex in some direction

and look at linear combinations of such functions. While we do not prove a general

theorem in this case. Instead we present a technique that can be used to prove that

the linear combination of two specific functions is univalent and hence lifts to

non-intersecting minimal surfaces.

Example 12 (The 4-noid to 4-Enneper). The harmonic function that lifts to the

4-noid surface can be written as f4N = h4N + g4N , where

h4N(z) =
1

4

z

1− z4
+

3

16
ln

(
1 + z

1− z

)
− 3i

16
ln

(
1 + iz

1− iz

)
g4N(z) =− 1

4

z3

1− z4
+

3

16
ln

(
1 + z

1− z

)
+

3i

16
ln

(
1 + iz

1− iz

)
,

and the harmonic function that lifts to the 4-Enneper’s surface can be written as

f4E = h4E + g4E, where

h4E(z) = z

g4E(z) =− 1

7
z7.

Each of these functions is univalent on the ball B(0, 0.95), the disk centered at the

origin of radius 0.95, but not on the full unit disk. Neither of these surfaces is

convex in any direction, and so the theorems from the previous section do not apply.

However, we will show that the linear combination

ft = (1− t)f4N + tf4E (3.3)
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is univalent for all t ∈ [0, 1]. To do so, we first need the following theorem.

Theorem 59 (argument principle, [11]). Let f be a harmonic function in a Jordan

domain D with boundary C. Suppose f is continuous in D and f(z) 6= 0 on C.

Suppose f has no singular zeros in D and let N by the sum of the orders of the

zeros of f in D. Then ∆Cargf(z) = 2πN .

Using the argument principle and an approach presented in [8], we will prove that

the specific linear combination given in (3.3) is univalent.

Lemma 60. Let t be fixed such that 0 ≤ t < 1. Then ft is univalent in

B = B(0, 0.95).

Proof: Let R = 0.95 and define a closed contour Γ to be the union of

Γ1 = {r : 0 ≤ r ≤ R}, Γ2 = {reiπ/4 : 0 < r < R}, and Γ3 = {Reiπθ/4 : 0 ≤ θ ≤ 1. Let

Ω = Int(Γ). We will prove this claim in three steps. First, we will show that f is

univalent in Ω and that 0 ≤ Arg(f(Ω)) ≤ π
4
. Second, we verify that f is univalent in

the sector Ω ∪ Ω′, where Ω′ is the reflection of Ω across the real axis, and

−π
4
≤ Arg(f(Ω ∪ Ω′)) ≤ π

4
. Finally, we will verify that f is univalent in B.

Step One: The argument principle for harmonic functions is valid if f is

continuous on D, f(z) 6= 0 on ∂D, and f has no singular zeros in D, where D is a

Jordan domain. Note z0 is a singular point if f is neither sense-preserving nor

sense-reversing at z0. We will show that for arbitrary M > 0, we may choose r0 < R

so that each value in the region bounded by |w| < M and 0 < Arg(w) < π
4

is

assumed exactly once in the sector bounded by |z| < R and 0 < Arg(z) < π
4
, while

no value in the region bounded by |w| < M and π
4
< Arg(w) < 2π is assumed in

this sector.

Observe that f ′1(Γ1) > 0 Thus, on Γ1, f1 is an increasing function of r with trivial

argument. Also, a direct calculations shows Re{ft(Γ2)} = Im{ft(Γ2)}, from which
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we conclude Arg(f2(Γ2)) = π/4. We also note ft(Γ3) differentiable curve which does

not intersect itself. This can be seen from the fact that Re{ft(Γ3)}, Im{ft(Γ3)}, and

Arg{ft(Γ3)} are monotonic for t ∈ [0, .75], t ∈ [.8, 1], and t ∈ [.75, .8] respectively. To

show the argument bound on elements of Ω, it suffices to bound Arg(ft(Γ3)). A

straight forward computation shows Arg(ft(Γ3))|θ=0 = 0, and Arg(ft(Γ3))|θ=1 = π/4.

To show that are the minimum and maximum values the argument assumes, we

need only consider f0(Γ3) and f1(Γ3) since f0(Γ3) ≤ ft(Γ3) ≤ f1(Γ3) pointwise. For

t = 1, f1(Γ3) = e−7iπθ/4[Re2iπθ − a] where a = 0.0997625. Thus we have

0 < Im{f1(Γ3)} ≤ Re{f1(Γ3)}, which implies the argument bound. The t = 0 case is

analogous but yields a slightly more complicated calculation.

Step Two: Since ft is univalent in Ω, we can use reflection across the real axis to

establish that ft is univalent in the sector Ω′. In particular, suppose z1, z2 ∈ Ω′ with

ft(z1) = ft(z2). Then by symmetry ft(z1) = ft(z1) = ft(z2) = ft(z2). Hence,

ft(z1) = ft(z2), or z1 = z2. Arguing in the same manner as in Step One, we can

show that 0 ≥ Arg(ft(Ω
′)) ≥ −π

4
. Therefore, ft is univalent in Ω ∪ Ω′ and its image

is in the wedge between the angles −π
4

and π
4
.

Step Three: First, it is true that eiπj/2ft(ze
−iπj/2) = ft(z), for all z ∈ D where

j = 0, 1, ..., 4. To see this note that

Now, using this fact that eiπj/2ft(ze
−iπj/2) = ft(z), we see that if z is any point in D,

it can be rotated so that it is in the sector Ω′, in which f is univalent, and then

rotated back by multiplying by the constant eiπj/2 and hence preserving univalency.

In Figure 3.3 we have plotted six images of this transformation.

3.3.1 Further Avenues of Research

In the previous example, we showed that the linear combination of two specific

harmonic mappings is univalent even though neither of the two harmonic mappings
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is convex in any direction. Are there some general conditions that will guarantee

univalence of the linear combination of harmonic mappings that are not convex in

any direction?
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Figure 3.3 4-noid to 4-Enneper



Chapter 4

Isometric Families of Minimal

Surfaces

We consider a surface M immersed in R3 with induced conformal metric g = ψδ2

where δ2 is the two dimensional Euclidean metric. We then construct a system of

partial differential equations that constrain M to lift to a minimal surface via the

Weierstrauss-Enneper representation demanding the metric is of the above form. It

is concluded that the associated surfaces connecting the prescribed minimal surface

and its conjugate surface satisfy the system. Moreover, we find a non-trivial

symmetry of the PDE which generates a one parameter family of surfaces isometric

to a specified minimal surface. We demonstrate an instance of the analysis for the

half catenoid.

4.1 The Isometric Condition

Let x(u, v) be a parametrization for a surface M immersed in R3. Set z = u+ iv

and define φ = ∂x/∂z. Let E, F , and G be the coefficients of the metric induced in

48
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R3 by x(u, v). We then have the relations

φ2 =
1

4
(E −G− 2iF ) (4.1)

φ
2

=
1

4
(E −G+ 2iF ) (4.2)

|φ|2 =
1

4
(E +G) (4.3)

where φ2 is notation for φ · φ. Inverting this system we find

E = φ
2
+ φ2 + 2|φ|2

F = i(φ2 − φ
2
)

G = −φ2 − φ2 + 2|φ|2.

Since the Weierstrauss-Enneper representation theorem requires that M has an

isothermal parametrization, we require E = G and F = 0, which implies

φ2 = 0 φ
2

= 0 E = 2|φ|2.

The first two equations are identically satisfied. Expanding the constraint on E and

using the identity

|φ|2 =
1

4
|p|2

(
(1 + q2)(1 + q2) + (1− q2)(1− q2) + 4qq

)
,

we find E = |h′|2 + |g′|2. Defining Re{h} = 1h, Im{h} = 2h, Re{g} = 1g, and

Im{g} = 2g, we have the Cauchy Riemann and isometric conditions

1hu − 2hv = 0 1hv + 2hu = 0 (4.4)

1gu − 2gv = 0 1gv + 2gu = 0 (4.5)
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1h
2
u + 2h

2
u + 1g

2
u + 2g

2
u − 2ψ = 0. (4.6)

We now proceed to calculate the symmetry group of (4.4)-(4.6). For an introduction

to symmetry methods see [3], [16], and [19].

4.2 Summary of Symmetry Analysis Techniques

Preforming a symmetry analysis on a system of nonlinear equations is widely

regarded as the best way to find exact solutions of the system. We will now

summarize the Lie method in [16] to outline our methods in the subsequent section.

Consider a system of partial differential equations given by

∆ν(x, u
(n)) = 0 ν = 1, . . . , l

with x = (x1, . . . , xp) the set of independent variables and u = (u1, . . . , uq) the set of

dependent variables where 1 . . . q run over the set of all partial derivatives of u up to

order n. For u = f(x), with f : Rp → Rq with components f i, i = 1 . . . q, we define

the n-th prolongation of f to be

pr(n)f : Rp → U (n)

given by u(n) = pr(n)f , uaJ = ∂Jf
a where J is a multi-index running over the space of

all possible derivatives. For example if we consider u = f(x, y), we can compute

pr(2)f = (x, y) = (u;ux, uy;uxx, uxy, uyy).

The space Rp × U (n) is called the n-th order jet space of R× U . The fundamental

idea behind the method of symmetry analysis is to view ∆ν as a map from the n-th

order jet space into Rl, and assuming derivative terms occur as polynomials in the

system, we can identify ∆ν with a subvariety in the jet space given by
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L∆ = {(x, u(n))|∇(x, u(n)) = 0}.

Now let M ⊂ Rp × U be open. A symmetry group of ∆ν is a local group of

transformations G acting on M such that when u = f(x) solves ∆ν , then

u = g · f(x) solves ∆ν for all g ∈ G where defined.

Let X be a vector field on M , and assume X infinitesimally generates the symmetry

ground G of ∆ν . Then by projecting X into M via the exponential map, we may

construct a local one-parameter group exp(εX). We may then define the

prolongation of X as

pr(n)X =
d

dε
pr(n)[exp(εX)](x, u(n))

∣∣∣∣
ε=0

.

We also define the Jacobi matrix of ∆ν to be

J∆ν (x, u
(n)) =

(
∂∆ν

∂xi
,
∂∆ν

∂uaJ

)
and say ∆ν is maximal if the rank of J∆νa = l. The following theorem constrains

the form of coefficients of the n-th prolongation of an infinitesimal generator for the

symmetry group.

Theorem 61. Let

X = ξi(x, u)
∂

∂xi
+ φa

∂

∂ua
.

Then X has prolongation

pr(n)X = X + φJa (x, u
(n))

∂

∂uaJ

where
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φJa (x, u
(n)) = DJ (φa − ξauai ) + ξi∂iu

a
J

and subscripts on u indicate partial derivatives.

The following may be called the fundamental theorem of the Lie method:

Theorem 62. Let ∆ν be a system of differential equations of maximal rank. If G is

a local group of transformations acting on M and

pr(n)X[∆ν(x, u
(n))] = 0

whenever ∆ν = 0, for every infinitesimal generator X of G, then G is a symmetry

group of ∆ν.

We use these two theorems to calculate the coefficients of the infinitesimal generator.

We then exponentiate the infinitesimal generator to obtain the symmetry group of

the system. Finally, we apply these symmetries to known and usually simple

solutions of the system to obtain new and hopefully more interesting solutions.

4.3 Symmetry Analysis

The infinitesimal generator of the above system is given by

v = cu∂u + cv∂v + c1h∂1h + c2h∂2h + c1g∂1g + c2g∂2g + cψ∂ψ.

Since the system is first order, we need only consider the first prolongation

pr(1)v = v + 1h
u∂1hu + 1h

v∂1hv + 2h
u∂2hu + 2h

v∂2hv

+1g
u∂1gu + 1g

v∂1gv + 2g
u∂2gu + 2g

v∂2gv
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where the ci are functions of u, v, ψ, 1h, 2h, 1g, and 2g. Applying the first

prolongation to the PDE system and solving the resulting equations yields the

following symmetry vectors:

v1 = ∂u v2 = ∂v v3 = ∂1h v4 = ∂2h v5 = ∂1g v6 = ∂2g

v7 = −v∂u + u∂v v8 = −2h∂1h + 1h∂2h v9 = −2g∂1g + 1g∂2g

v10 = u∂u + v∂v + 1h∂1h + 2h∂2h + 1g∂1g + 2g∂2g

Exponentiating these infinitesimal vector fields gives the solutions:

h→ h(z − s) g → g(z − s) (4.7)

h→ h(z − is) g → g(z − is) (4.8)

h→ h+ s g → g (4.9)

h→ h+ is g → g (4.10)

h→ h g → g + s (4.11)

h→ h g → g + is (4.12)

h→ h(eisz) g → g(eisz) (4.13)

h→ eish g → g (4.14)

h→ h g → eisg (4.15)

h→ esh(e−sz) g → esg(e−sz) (4.16)

In [2] the minimal symmetry group for the real minimal surface equation

uxx(1 + u2
y) + uyy(1 + u2

x)− 2uxuyuxy = 0
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was calculated. Many of the translational symmetries and an esf(e−sx, e−sy)

symmetry were found. We note that the analogue of v10 in [2] is similar but

different, since is constrains a Weierstrauss-Enneper representation of a surface and

not a graph.

4.4 Symmetry Comments

Consider the transformation h→ eiθh, g → eiθg which preserves the metric

E = |h′|2 + |g′|2. When θ = 0, this is simply a minimal surface specified by defining

ψ. When θ = π/2 we get the conjugate surface. Thus all intermediate surfaces,

called associated surfaces, are isometric. Since all minimal surfaces can be

constructed from parts of a helicoid and catenoid [5], the following examples are of

interest. First we draw attention to the catenoid, given by ψ = cosh(v)2. It’s

conjugate surface is the helicoid and associated surfaces between the two are plotted

over D in Figure 4.1. Since all of the associated surfaces are isometric, geometrically

they are equivalent. However, note topologically the catenoid is S1 ×R where as the

helicoid is R2.

We now turn our attention to the other symmetries found in the analysis for the

half catenoid. We will see that the symmetries generate surfaces that are

topologically distinct from the catenoid, but geometrically identical as in the above

example. Let f be the harmonic mapping f = h+ g where

h =
1

2

(
1

2
log

[
1 + z

1− z

]
+

z

1− z2

)
and

g =
1

2

(
1

2
log

[
1 + z

1− z

]
− z

1− z2

)
which lifts to the catenoid. We make the transformation in equation (4.16) by

letting h→ esh(e−sz) and g → esg(e−sz). Figure 2 gives several plots of this
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Figure 4.1 Helicoid to Catenoid Transformation.

transformation for various s values. The topology of the half catenoid is R2 for all s

up to some value between (0.3, 0.4) where it changes to a punctured cylinder. Note

as s→∞ that the minimal surfaces eventually degenerate to a line, in a manner

peculiarly similar to neckpinch singularities of the Ricci Flow. We note symmetry

(4.8) is a scaled rotation, and can not comment on (4.7) in this example. The rest of

the symmetries are translations.

When (4.16) is applied to the helicoid, we find that the number of rotations of the

helicoid about its axis are scaled. Thus we have:

Theorem 63. Let S be the helicoid over D parameterized isothermally by
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Figure 4.2 Symmetry (4.16) for s = {−1.2,−0.5, 0, 0.3, 0.4, 0.5, 1, 1.5, 3}.

x = (sinhu sin v, sinhu cos v,−v). For helicoids S1 given by u ∈ (0, 2π), v ∈ (v0, v1),

and S2 by u ∈ (0, 2π), v ∈ (v2, v3) where vi ∈ R then S1 and S2 are locally isometric.

It would be interesting to generalize the symmetry methods of this paper to higher

dimensional Riemannian or Lorentzian manifolds. One would need a generalized

Weierstrauss-Enneper which we are not aware exists. Moreover, we believe there are

potential topological theorems coming from symmetry (4.16), which are connected

to how the symmetry scales the domain of the graph under consideration. For

instance, if one calculates the one parameter family of minimal surfaces given by

symmetry (4.16) and a simply connected minimal surface, does the topology always

change from the plane to S1 × R1 or some variant thereof?



Bibliography

[1] R. Berry, M. Dorff, and W. L. Petersen. Lie symetries of minimal surfaces, in

preparation.
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