Brigham Young University

BYU ScholarsArchive

All Theses and Dissertations

2006-12-01

Computationally Modeling the Effects of Surface
Roughness on Soft X-Ray Multilayer Reflectors

Jedediah Edward Jensen Johnson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Astrophysics and Astronomy Commons, and the Physics Commons

BYU ScholarsArchive Citation

Johnson, Jedediah Edward Jensen, "Computationally Modeling the Effects of Surface Roughness on Soft X-Ray Multilayer Reflectors"
(2006). All Theses and Dissertations. 1075.
https://scholarsarchive.byu.edu/etd /1075

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an

authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=scholarsarchive.byu.edu%2Fetd%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarsarchive.byu.edu%2Fetd%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1075?utm_source=scholarsarchive.byu.edu%2Fetd%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

COMPUTATIONALLY MODELING THE EFFECTS OF SURFACE ROUGHNESS

ON SOFT X-RAY MULTILAYER REFLECTORS

by

Jedediah Edward Jensen Johnson

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Physics and Astronomy
Brigham Young University

December 2006

Copyright (©) 2006 Jedediah Edward Jensen Johnson

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Jedediah Edward Jensen Johnson

This thesis has been read by each member of the following graduate committee
and by majority vote has been found to be satisfactory.

Date R. Steven Turley, Chair

Date David D. Allred

Date Ross L. Spencer

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation
of Jedediah Edward Jensen Johnson in its final form and have found that (1)
its format, citations, and bibliographical style are consistent and acceptable
and fulfill university and department style requirements; (2) its illustrative
materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submis-
sion to the university library.

Date R. Steven Turley
Chair, Graduate Committee

Accepted for the Department

Scott Sommerfeldt, Chair
Department of Physics and Astronomy

Accepted for the College

Thomas W. Sederberg, Associate Dean
College of Mathematics and Physical Sciences

ABSTRACT

COMPUTATIONALLY MODELING THE EFFECTS OF SURFACE ROUGHNESS

ON SOFT X-RAY MULTILAYER REFLECTORS

Jedediah Edward Jensen Johnson
Department of Physics and Astronomy

Master of Science

Electromagnetic scattering from a rough two dimensional homogeneous scat-
terer was computationally modeled. The scatterer is intended to simulate re-
flection from a two interface multilayer. The rough scatterer was created from
Gaussian random points centered about an ideal interface. The points were
connected with a third order spline interpolant which accounts for correlation
between neighboring surface atoms. The scalar electric field integral equation
(EFIE) and magnetic field integral equation (MFIE) were solved using the
Nystrom method to obtain the reflected intensity as a function of observa-
tion angle. Verification of the accuracy of the code was obtained by means
of comparison with well-known analytic solutions and approximations. The
predicted Nevot-Croce factor drop in reflectance was found to be in general
agreement with the computed decrease in reflectance due to surface rough-

ness. However, an angle dependent difference was also noticed, indicating the

Nevot-Croce factor might need revision. The code is being modified to run on
a supercomputing cluster where longer, more realistic surfaces can be analyzed

to determine whether an improved roughness correction factor is needed.

ACKNOWLEDGMENTS

This thesis could not have been a success without the help and support of
many individuals. I would like to thank my advisor Dr. Turley for introduc-
ing me to the topic of computational electrodynamics and providing me with
the tools necessary to complete this project. Without the countless hours of
attention he directed towards my research problems and issues, I would have
been lost from the outset. I also appreciate the support and availability of
the other members of my graduate committee, Dr. Allred and Dr. Spencer.
[am grateful to the BYU Department of Physics and Astronomy for the op-
portunity to represent the department and for funding my research. Last but
not least, I thank my wife Marie, who gave me the flexibility to pursue my
academic interests while gracefully serving as a wonderful wife, friend, and

parent.

Contents

Table of Contents ix
List of Figures xiii
1 Introduction 1
1.1 EUV Mirrors 1
1.2 Multilayer Reflection Theory 2
1.2.1 Index of Refraction 2

1.2.2 Polarization and Fresnel Coefficients 3

1.3 Roughness 5)
1.3.1 Types of Roughness 5

1.3.2 Correcting for Roughness 7

1.4 Previous Research 9
1.5 Project Scope and Applications 14

2 Derivations 15
2.1 Helmholtz Equation 15
2.2 Green’s Function 16
2.3 Source Field Relations 19
2.4 Surface Equivalence Principle 22
2.5 Electric Field Integral Equation (EFIE) 24
2.6 Magnetic Field Integral Equation (MFIE) 26

3 Problem Setup and Solution Techniques 29
3.1 Numerical Quadrature, 29
3.1.1 Basics 29

3.1.2 Regular Integrals 30

3.1.3 Singular Integrals 32

3.2 Path Integrals 33
3.3 Nystrom Method 34
3.3.1 General Technique 34

3.3.2 Singular Patches 38

3.3.3 Incident Field 39

X

CONTENTS

e
3.4 Far Field Scattered Intensity
3.4.1 Green’s Function Expansion
3.4.2 Scattered Wave
3.5 Geometry of the Scatterer
3.5.1 General Description
3.5.2 Modeling the Rough Sections
3.6 Program Methods and Structure.
3.6.1 Overview
3.6.2 The Scatterer
3.6.3 Nystrom Matrix Fill
3.6.4 Far Field Calculation
3.6.5 Extras,
4 Numerical Issues
4.1 Convergenceo
42 RunTime
5 Validation
5.1 Physical Optics Flat Plate (TM).
5.1.1 Derivation
5.1.2 Comparison
5.2 Perfectly Conducting Cylinder
5.3 Dielectric Cylinder
5.4 Fresnel Coefficients
6 Results

7 Conclusions
Bibliography

A Matlab Source Code

Al Sample Run
A2 cartJ.m
A3 cartJfunc.m
A4 cartK.m
A5 cartKfunc.m
A6 constants.m
A7 dsurface.m
AR FFTsurf.m
A9 linlogweights.m
A.10 linlogOrder.m
Allllquad.m,
Al121lquadr.m

CONTENTS xi

Al3makesurface.m 92
A.l4nystromconstants.m 93
AdSpold.m L 94
Al6polJfunc.m 94
AdTpolK.mo 94
A8 polKfunc.m 94
Al9storedata.m 95
A.20 surfacesetup.m 95
A2ITE.m 97
A22TEcylcon.m o v i 97
A23 TEfarfield.m 98
A24 TEnystromfill.m 101
A25 TEsolvematrixX.m oo 119
A.26 timeinfo.m 120
A27TTM.m . . . 120
A28 TMeylcon.m . . . o v v v 121
A29 TMfarfield.m 122
A30 TMnystromfill.m 125
A.31 TMphysoptcompare.m 142
A.32 TMphysoptics.m 143
A33 TMsolvematrix.m o v i 143
A34duserinputs.m 144

A3511lquadzw.tXt 144

List of Figures

1.1
1.2

1.3
1.4
1.5
1.6

1.7

1.8

1.9

1.10

1.11

1.12

2.1
2.2

2.3

Reflection and transmission in a multilayer stack.
The geometry of s and p polarization on a multilayer stack. The plane
of incidence coincides with the plane of the paper.
Grazing incidence reflection.
Diffuse scattering from a rough surface.
Low frequency vs. high frequency roughness
Approximating a rough surface as a series of thin homogeneous layers
characterized by a varying density.
Reflectance vs. angle data along with fit of a single thorium layer on
a silicon substrate at 150 A. The fit is particularly bad through the
middle angles § = 10°—30°.
Corrected fit of the reflection of the single thorium layer using the
Debye-Waller factor. The fit was improved only at the low angles. . .
Corrected fit of the reflection of the single thorium layer using the
Nevot-Croce factor. The fit was improved throughout both the low
and high angles. L
Fit of the reflection of the single thorium layer corrected with a 50
A transition layer. This layer was approximated as 5 10 A thick
layers whose indices of refraction varied linearly. The fit was improved
throughout both the low and middle angles.
AFM tip dragged across a rough surface. The finite thickness of the
AFM tip can produce an inaccurate profile of the surface.
A modeled surface (red line) and the surface profile detected by the
AFM with a tip of finite width (blue line). The actual RMS roughness
of t?&e surface is 10.3 A , but the AFM reports an RMS roughness of
23 A0

Incident and scattered wave.o
An illustration of the parameters of the two geometries used to derive
the surface equivalence principle.
An illustration of the orientation of the scattering surfaces relative to
the coordinate axes.o

Xlil

ENEEN S I

10

11

11

12

12

13
20

22

Xiv

LIST OF FIGURES

3.1
3.2

3.3
3.4

3.5

4.1

4.2

4.3

4.4

4.5
4.6

5.1

5.2

5.3

The layout of a typical patch. 31
A typical scattering surface with a length of 20 wavelengths and a
thickness of 3 wavelengths.o 43
A normal distribution with y =0and e =05. 44
An example of uncorrelated roughness. The top and bottom surfaces
are generated independent of one another so that there is no visible
relation between the two.o 45
An example of correlated roughness. The top surface is generated
based on the parameters of the bottom surface. Although they are
not identical, the top surface shows traits and the general shape of the
bottom surface. 46

A comparison of two quadrature point schemes. The closely spaced
blue dots preserve more information about the surface than the red dots. 54
Computed reflectance at § = 20° as a function of patches, where
len = 50, t = 0.5, tpatches = 10, n = 1.05, and £ = 0.05. The is no
roughness present and exponential convergence is observed. 55
Computed reflectance at § = 20° as a function of patches, where len =
50, t = 0.5, tpatches = 10, n = 1.05, k£ = 0.05, rheighttop = 0.1,
and rfreq = 0.5. No convergence is observed due to the significant
amount of roughness. 5%5)
Computed reflectance at # = 20° as a function of patches, where len =
50, t = 0.5, tpatches = 10, n = 1.05, £ = 0.05, rheighttop = 0.05,
and rfreq = 3. A pattern consistent with convergence appears at 175
patches. 56
Run time vs. total patches. 57
A breakdown of run time into individual program sections of a long run. 58

Comparison of computed solution with physical optics approximation
for a flat perfect conductor. len = 20, patches = 50, t = 0.5,
tpatches = 10, n = 10, k = 0, and thetadeg = 90. The polar-
izationis TM. 64
Comparison of computed solution with physical optics approximation
for a flat perfect conductor. len = 50, patches = 100, t = 0.5,
tpatches = 10, n = 10'° k = 0, and thetadeg = 90. The polarization
is TM. . . . 64
Comparison of computed solution with physical optics approximation
for a flat perfect conductor. len = 50, patches = 100, t = 0.5,
tpatches = 10, n = 10, k = 0, and thetadeg = 90. The polarization
is TM. . . . 65

LIST OF FIGURES

XV

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

Comparison of computed solution with analytic solution for a cylindri-
cal perfect conductor. len = 0, patches = 0, t = 1, tpatches = 10,
n = 10'°, k = 0, and thetadeg = 0. The polarization is TM. Note the
logarithmic y-axis scale.,
Comparison of computed solution with analytic solution for a cylindri-
cal perfect conductor. len = 0, patches = 0, t = 8, tpatches = 50,
n = 10'° k = 0, and thetadeg = 0. The polarization is TM. Note the
logarithmic y-axis scale. L.
Comparison of computed solution with analytic solution for a cylindri-
cal perfect conductor. len = 0, patches = 0, t = 1, tpatches = 10,
n = 10", k = 0, and thetadeg = 0. The polarization is TE. Note the
logarithmic y-axis scale.
Comparison of computed solution with analytic solution for a cylindri-
cal perfect conductor. len = 0, patches = 0, t = 8, tpatches = 50,
n = 10! k = 0, and thetadeg = 0. The polarization is TE. Note the
logarithmic y-axis scale.
Comparison of computed and exact TM scattering cross section at ¢ =
180° of a homogeneous circular dielectric cylinder with a circumference
of 05137 A and e, = 10.
Comparison of computed and exact TE scattering cross section at mul-
tiple ¢ angles of a homogeneous circular dielectric cylinder with a cir-
cumference of 2A and ¢, =2.56 +2.56¢.
Comparison of computed and exact TE scattering cross section at mul-
tiple ¢ angles of a homogeneous circular dielectric cylinder with a cir-
cumference of 0.248\ and ¢, =2+505.
Comparison of TM computed reflectance and Fresnel model predicted
reflectance as a function of incident angle from 6 = 10° to 8 = 40°.
len = 50, patches = 250, t = 0.5, tpatches = 10, n = 1.05, and

A continuation of the comparison of TM computed reflectance and
Fresnel model predicted reflectance as a function of incident angle from
0 = 40° to 8 = 90°. len = 50, patches = 250, t = 0.5, tpatches = 10,
n=105andk=0.05.
Comparison of TM computed reflectance and Fresnel model predicted
reflectance as a function of incident angle from 6 = 10° to 6 = 40°.

len = 50, patches = 250, t = 0.5, tpatches = 10, n = 0.8, and k = 0.2. 73

A continuation of the comparison of TM computed reflectance and
Fresnel model predicted reflectance as a function of incident angle from
0 = 40° to § = 90°. 1len = 50, patches = 250, t = 0.5, tpatches = 10,
n=08 andk=02.

xXVvi

LIST OF FIGURES

6.1

6.2

6.3

The rough scattering surface whose reflectance is compared to the
Nevot-Croce prediction. len = 20, patches = 250, t = 0.5, tpatches =

10, n = 1.05, k = 0.05, rfreq = 5, rheighttop = 0.05, rheightbot =

0, and inpstatetop =44. oo 76
Comparison of TM computed angular intensity distribution of a rough

and smooth surface. len = 20, patches = 250, t = 0.5, tpatches =

10, n = 1.05, and k = 0.05 for both surfaces. Additionally, rfreq = 5,
rheighttop = 0.05, rheightbot = 0, and inpstatetop = 44 for the
rough surface. 76
Comparison of TM computed reflectance and Fresnel model predicted
reflectance modified by the Nevot-Croce factor as a function of incident

angle from # = 10° to § = 30°. len = 20, patches = 250, t = 0.5,
tpatches = 10, n = 1.05, k = 0.05, rfreq = 5, rheighttop = 0.05,
rheightbot = 0, and inpstatetop=44. 77

Chapter 1

Introduction

1.1 EUYV Mirrors

The EUV (extreme ultraviolet) is a portion of the electromagnetic spectrum ranging
from about 50-500 A. While the science of designing mirrors has been well defined for
decades in the visible light range, technological limitations and lack of interest have
restricted progress in the EUV. Recently, however, potential applications of EUV
mirrors have stimulated new research.

Computer chips are commonly fabricated through a process known as optical
lithography. Even though improvements in technique have allowed chips to become
smaller, optical lithography is limited by the resolution of large optical wavelengths.
Shorter EUV wavelengths are capable of finer etching, leading to much faster chips.
One of the main problems in harnessing this technology is developing optics with
sufficiently high reflectance [1].

The biological community is also beginning to recognize applications for EUV
radiation. Living material is generally more fragile and sensitive to high energy

photons. The soft x-ray/extreme ultraviolet range seems to be promising in that

2 Chapter 1 Introduction

it balances higher resolution with the delicateness of organic structures. Sample
preparation is another advantage of soft x-ray imaging. Because carbon is opaque
and water is relatively transparent from 24 to 44 A, cells can be imaged in their
native environment without dehydration or staining [2].

Astronomers have found uses for EUV optics. Members of the BYU XUV research
group have participated in designing optics for the EUV instrument on the IMAGE
(Imager for Magnetopause-to-Aurora Global Exploration) satellite [3]. It was de-
signed to provide continuous images of the magnetosphere of the earth by viewing
304 A light from singly ionized He atoms. Other distant astronomical phenomena

could also be more effectively studied with better optics [4].

1.2 Multilayer Reflection Theory

1.2.1 Index of Refraction

Designing reflective surfaces in the EUV requires an understanding of the interaction
between light and the material. When electromagnetic radiation is incident on a
surface, it can either be reflected, transmitted, or absorbed. This is mathematically

expressed as:

R+T+A=1 (1.1)

where R is the reflectance, T' is the transmittance, and A is the absorption by the
sample.
The complex index of refraction, a frequency-dependent property, can be used to

predict how light will behave in a material. It is given by
N =n+ik (1.2)

where n is the real part of the index of refraction and £ is the imaginary part, or

1.2 Multilayer Reflection Theory 3

Figure 1.1 Reflection and transmission in a multilayer stack [5].

absorption coefficient. Both n and k alone are real numbers. The permittivity of the

medium e is related to the complex index of refraction by
€ = egN? (1.3)

where ¢ is the familiar permittivity of free space [6]. Because values of n in the EUV
are so close to unity, it is traditional to express them in terms of a related quantity
as shown

d=1-—n (1.4)

The imaginary part of N is also renamed [7].

8=k (1.5)

1.2.2 Polarization and Fresnel Coefficients

Incident radiation can be decomposed into two polarizations, known to physicists as
s and p. In engineering literature, these are referred to as TM and TE, respectively. p
polarized fields are parallel to the plane of incidence, while s fields are perpendicular.
The plane of incidence is shown schematically in Figure 1.2.

These two polarizations are linearly independent, serving as the basis by which

arbitrary incident fields are constructed by linear superposition. The convenient thing

4 Chapter 1 Introduction

r’ X
[12 m

d m-1

Figure 1.2 The geometry of s and p polarization on a multilayer stack. The

plane of incidence coincides with the plane of the paper [§].
about working with s and p is that they can be treated as physically non-interacting
entities. Although this breaks down at very high intensities as nonlinear effects begin
to dominate, for our purposes this can be neglected. This allows us to solve each
problem separately and then combine the solutions as we see fit.

Because of their different orientations, s polarization behaves differently than p at
an interface. Maxwell’s equations lead to basic EM boundary conditions, which can

be applied to an infinite interface and used to derive the Fresnel coefficients:

f _ Nrifl%n - N%mel
P Nr?q—l%n + N%Qm—l

Qm - mel
fomn = — 1.7
Qm + mel ()

where m is the mth interface in the stack, ¢ is given by

Gm = VN? — cos? O, (1.8)

and 6 is the incident angle referenced from grazing as shown in figure 1.3 [9].
Once the Fresnel coefficients have been determined, the recursive Parratt formula

is applied to calculate the overall reflection coefficient of the stack:

1.3 Roughness 5

Figure 1.3 Grazing incidence reflection.

rym = € Jom T Tom1 (1.9)
1 + fp,m'rp,mfl
oo :C?‘;M (1.10)
7 1 + fs,mrs,m—l
where
1T d P
C,, = exp) (1.11)

d,, is the layer thickness, and), is the wavelength of light in the medium [10]. The

actual reflectance of the stack is then found from

R, = I, (1.12)

R, = || (1.13)

where 7, and 7, are the final coefficients after all the successive applications of the

recursive Parratt formula.

1.3 Roughness

1.3.1 Types of Roughness

The Fresnel coefficients assume an infinitely long surface with a perfectly smooth,

abrupt interface. Outside of textbooks, such surfaces do not exist. Even though

6 Chapter 1 Introduction

they might appear smooth to the naked eye, there are significant imperfections at
the microscopic level. This includes surface roughness, among other non-idealities
such as density/material gradients, vacancies, and grain boundaries [11]. Both the
wavelength of soft x-ray/extreme ultraviolet radiation and the magnitude of thin film
surface roughness are on the order of nanometers. Consequently, roughness can have
a considerable effect on thin film reflectance.

Surface roughness can be classified in a number of general ways. The RMS am-
plitude of a rough surface refers to root mean square average of the height, or ele-
vation, of the surface. Jagged surfaces with a large RMS roughness compared with
the wavelength of incident light will diffusely scatter the beam. This spreads the
narrow specular reflection into a broader range of nonspecular angles, resulting in a
diminished reflected intensity at the specular angle.

Surfaces characterized by RMS roughess on the order of, or smaller than a wave-
length, can still have an appreciable effect on measured reflectance. Understanding
this phenomenon requires looking at the problem in terms of wave mechanics. Per-
fectly specular reflection from an infinite smooth surface occurs because the reflected
wave interferes with itself destructively at all other angles. If the surface deviates
slightly from an otherwise smooth surface, there will be slight changes in the ampli-
tude and phase of the reflected wave along the surface. This leads to some of the
same effects observed from surfaces with a larger RMS roughness [8].

The spatial frequency of surface roughness can also potentially influence reflectance.
Low frequency roughness can be compared to spread out, rolling hills. Intuitively,
it seems like this type of roughness would tend to reflect different sections of the
incident beam in different directions. Conversely, high frequency roughness is akin to
a craggy, jagged ridge. Diffraction will dominate more as the period of the roughness

becomes comparable with the wavelength.

1.3 Roughness 7

Figure 1.4 Diffuse scattering from a rough surface [8].

Low Frequency A High Frequency A

Figure 1.5 Low vs. high frequency roughness.

1.3.2 Correcting for Roughness

The prevailing method used to correct for roughness in thin film reflection modeling is
the implementation of scalar correction factors [8] (primary source [12,13]). The two
most well-known of these are the Debye-Waller and Nevot-Croce factors [8] (primary
source [14,15]).

The Debye-Waller factor is derived by first assuming that the total reflectivity of an
interface can be broken up into a Gaussian distribution centered on the ideal interface.
This distribution’s width is parameterized by o, which is the RMS roughness of the
surface. In the context in which it was first derived, this Gaussian comes from the
superposition of lattice vibrations with varying amplitudes and phases. In this case,
however, it is generalized to the reflectance at a rough interface. When a Fourier

transform is applied to this distribution, we obtain an expression for the amplitude

8 Chapter 1 Introduction

of the reflected field

q202

r(q) = roexp(———) (1.14)

where rq is the reflectance off a smooth surface, and

4
q= %sin& (1.15)

A is the wavelength in vacuum, n is the index of refraction, and 6 is the angle from

grazing. Squaring (1.14) gives us the reflected intensity
R(q) = Ry exp(—¢°0?) (1.16)

where Ry is the smooth surface reflected intensity. The exponential is referred to as
the Debye-Waller factor.

The Nevot-Croce factor is a modification of the Debye-Waller factor. The quantity
q can be defined on either side of the interface by ¢; or ¢;. Because the index of
refraction and propagation angle change as light is refracted, the geometric average

¢1¢o replaces the ¢? term in the Debye-Waller factor as shown.

R(q) = Roexp(—q14207) (1.17)

Another method sometimes employed to adjust for roughness involves modeling
the rough interface as a series of smooth, thin layers. The indices of refraction of
these layers vary linearly between the two extremes given by the actual indices of the
two materials. This is a valid approach because the indices of refraction are expected
to scale as the density of the material [7]. The peaks and valleys of the rough surface
correspond to an overall change in density as a function of depth of an effective layer.
For computational purposes, this transition layer thus be broken up into a stack of

small layers each with a slightly different index of refraction [8].

1.4 Previous Research 9

Surface
el °
z z

Figure 1.6 Approximating a rough surface as a series of thin homogeneous
layers characterized by a varying density [8].

1.4 Previous Research

The BYU XUV optics research group has already made a substantial effort to exper-
imentally determine the optical constants of several materials which show promise in
the EUV. The art of designing precision optical equipment involves fabricating mir-
rors which reflect and transmit light within strict tolerances. To theoretically model
such a mirror requires reliable, accurate optical constant data.

A fitting program was developed by Nicole Brimhall of the BYU group which
takes measured reflectance and/or transmission data as inputs [8]. The program can
then fit for the optical constants of the thin film. It displays the curve of best fit
alongside the original data. Initially, the reflectance at 150 A of a single thorium
layer was fit assuming a perfect interface with no roughness. This fit was clearly
deficient throughout large angular regions as shown in Figure 1.7.

Subsequently, the correction methods described in section 1.3.2 were incorporated
into the fits with varying degrees of success. The Debye-Waller factor improved the
fit at low angles, the Nevot-Croce factor improved the fit at both low and high angles,
while the use of a 50 A transition layer appeared to help at low and middle range

angles. It was tentatively concluded that the best way to account for roughness was

10 Chapter 1 Introduction

Loog
0.95
0.90

0.85 1

0.80
0751
0.20T
0.65T
0.60T
0551
Q.50

Reflectance

0,951

04901

025
0301

0.25T

Q.20
015
010
Q.05+

0.00-1
} } | } 1 ! | /*‘/ } 1
0 5 I - I 40 45 50
Sample Angle

Figure 1.7 Reflectance vs. angle data along with fit of a single thorium
layer on a silicon substrate at 150 A. The fit is particularly bad through the
middle angles 6 = 10° — 30° [8].

a combination of the Nevot-Croce factor and the 50 A transition layer [8].

Another study documented in Brimhall’s thesis calls into question the validity of
roughness measurements taken with the Atomic Force Microscope (AFM). The AFM
works by essentially dragging a small tip over the sample surface, which maps out a
profile of the three dimensional surface contour. Because the AFM tip has a finite
width, it will not be able to accurately trace out narrow sections of the surface. Figure
1.12 compares a hypothetical surface generated by a Gaussian random distribution
with the measured surface detected by a tip of non-zero width. In this example, the
AFM measurement of 2.3 A RMS roughness was less than 25% of the actual 10.3 A
value [8]. The extent to which our AFM tips distort the actual surface is unknown.

D. G. Stearns of Lawrence Livermore National Laboratory has written a number
of papers looking into the effects of roughness on x-ray reflectance [16]. Similar
to the Nevot-Croce and Debye-Waller factors, Stearns derives analytic expressions to

predict the decrease in reflectance due to roughness. The rough or interdiffuse surface

1.4 Previous Research

1207
115+
JRTES
1.054
Loot
OQS'J‘\
0‘9077'\
0854 |
0801 \
075+ |
0701 y
065+
0601 \
0551

0501 A

\
0,45+ \
0,401

035+)
0.301 \
0.251 \
0.20T

015+ %
0.101 h
005+ Ty,
0.00T =

=005
-0.10

' 4 4 I I I I 1 4 4
t 1 1 t t t t t U y
5 10 15 20 25 30 35 40 45 50

Figure 1.8 Corrected fit of the reflection of the single thorium layer using
the Debye-Waller factor. The fit was improved only at the low angles [8].

0,90
oas%
0,80
0.75 T
om-—\
065+ |
0.60T

055+ \
0501 \
045+

040+ \
ozs+

0.30T !

025+ h

0.20 \

0.151 \
0.10+ \\

0.051 N

e TETITRRTR RN TR RN RTRNRTRRRRTRTCTRAIATIT
0.00T —

Figure 1.9 Corrected fit of the reflection of the single thorium layer using
the Nevot-Croce factor. The fit was improved throughout both the low and
high angles [8].

12

Chapter 1 Introduction

o] 90’)'
0.854
0.80+
0.754
0.704
Q.65
0.604
Q.55+
0.507
0.454
0.404
0.357
0.304
0.254
0.204
Q.15+
0.104
0.05
Q.00+

\

-0.05

1 1 t
1o 15 20

t
50

Figure 1.10 Fit of the reflection of the single thorium layer corrected with
a 50 A transition layer. This layer was approximated as 5 10 A thick layers
whose indices of refraction varied linearly. The fit was improved throughout

both the low and middle angles [8].

Figure 1.11 AFM tip dragged across a rough surface. The finite thickness
of the AFM tip can produce an inaccurate profile of the surface [8].

1.4 Previous Research 13

nrm

1] 5 10 15 20 25 30 34 40 45 50

Figure 1.12 A modeled surface (red line) and the surface profile detected
by the AFM with a tip of finite width (blue line). The actual RMS roughness
of the surface is 10.3 A | but the AFM reports an RMS roughness of 2.3 A [8].

is expressed using an average density which is a function of surface depth. This is
reminiscent of the last roughness model mentioned in Section 1.3.2.

There are a number of reasons why we wish to go beyond the research of Stearns.
He relies on the approximations that the surface is only ‘slightly rough,” that the
scattering is ‘weak,” and that no energy is coupled from nonspecular scattering back
into specular scattering. This allows certain terms to be expanded and truncated to
first order. A notable consequence of these assumptions is that the amount of power
scattered into nonspecular angles is directly proportional to the power spectrum of
the surface. These approximations do not always hold, however, in the experiments
that the BYU group performs. Namely, we work with small x-ray wavelengths which
can be on the order of the surface roughness. Reflectance measurements are taken
at angles close to grazing where the scattering is strong. Additionally, in a rough
multilayer stack, interference effects between rough layers could potentially return

nonspecular radiation back into the specular peak.

14 Chapter 1 Introduction

1.5 Project Scope and Applications

The purpose of this research was to computationally model the scattering of electro-
magnetic radiation from rough multilayer surfaces. This involved formulating and
solving a series of integral equations in Matlab to determine the angular spread and
intensity of the reflected wave. Rough surfaces were generated using a Gaussian ran-
dom distribution centered on the ideal interface. Points were generated at specified
intervals and were connected using third order spline interpolation. The problem was
restricted to two dimensions, meaning there was translational symmetry along the in-
variant axis. Also, for computational efficiency, the dielectric multilayer was limited
to two interfaces.

This numerical simulation was created to address the issues raised in Section
1.4. Because of the limitations of the AFM, we seek a better understanding of the
parameters of our surfaces. These include, but are not limited to: spatial frequency,
magnitude of RMS roughness, correlation between adjacent interfaces, and correlation
between neighboring surface atoms (or regions). Moreover, we would like to determine
how the AFM tip’s finite width affects the quality of its measurement. By varying the
physical characteristics of a theoretical rough surface until its reflectance signature
mirrors that of the actual sample, we could recalibrate the AFM to give us correct
data.

Another major goal of this research is to develop a new roughness correction
method which more accurately fits our measured data. Through analysis of compre-
hensive data sets acquired from this simulation, we hope to come up with an improved
empirical expression which can be easily applied. This could either be a modification

of the existing standard or an entirely new approach.

Chapter 2

Derivations

2.1 Helmholtz Equation

The well-known Maxwell’s Equations in a material in the absence of sources are given

by

V-D=0 (2.1)

V-B=0 (2.2)

oD
H=-"— 2.
V x oy (2.3)
0B
E4+ = — 2.4
V x +8t 0 (2.4)

If solutions with harmonic time dependence e~ are assumed, from which we can

build arbitrary solutions by Fourier superposition, equations (2.3) and (2.4) can be

written as

V x H = —iweE (2.5)

V x E =iwuH (2.6)

15

16 Chapter 2 Derivations

where we have noted that D = ¢E and H = %. Taking the curl of both sides of these

equations and applying a vector identity yields

Vx(VxH)=V(V-H) - VH = —iwe(V x E) (2.7)

V x (VxE)=V(V-E) - V?E =iwu(V x H) (2.8)

In general € can be a tensor, but locally assuming an isotropic, homogeneous medium,
it is constant and commutes with the derivative operators. At this point, we note
that the divergence of both fields is zero, and substitute equations (2.5) and (2.6)
into (2.7) and (2.8) respectively. With some rearranging, the result is the Helmholtz

equation, shown only for the electric field:
(V2+EHE =0 (2.9)

where k? = pew?.

2.2 Green’s Function

We now establish that the two dimensional free space Green’s Function of the Helmholtz

operator can be found by solving
(V2 + k)G (x,x) = =6 (x — X (2.10)

For future reference, it is important to establish that the primed coordinates refer to
the sources, while the unprimed coordinates refer to the point of observation. The

polar coordinate equivalent of (2.10) is

G 1dG o(r)
kG = L 2.11
dr? rdr G r ()

where r = \/(z — 2/)2 + (y — ¥/)?, x = (x,y), and X' = (2/, /). The origin has been

shifted to the singular point, and the angular derivative has been dropped because

2.2 Green’s Function 17

of symmetry. If r # 0, then equation (2.11) can be identified as Bessel’s Equation of

order zero, with solutions given by
G(z,y,z',y") = CrJo(kr) + CoNo(kr) (2.12)

where Jy(kr) and Ny(kr) are the Bessel functions of the first and second kind, respec-
tively. Alternatively, the solution can be represented as Hankel functions, which are

linear combinations of the aforementioned Bessel functions.
G(x,x) = C1HY (kr) + CoH (kr) (2.13)

The outgoing scattered fields are required to satisfy the Sommerfeld radiation con-
dition. Thus, the Green function is also under the same restriction. If the incident

wave is an incoming plane wave, this requirement can be expressed as [17]

N[

rlirilor (% - zk:) G(x,x')=0 (2.14)

From this condition, we recognize that C', = 0 in order to guarantee an outgoing

scattered wave. The remaining expression is
G(x,x) = CHV (kr) (2.15)

To find the normalization constant C, equation (2.15) is substituted back into (2.10).

This is then integrated over a circle centered at the origin of radius € as shown
/(V2 + KB)C HY (kr) dPx = —1 (2.16)
S
/ V- (vzvé”(m)) d*x + C1 k2 / HV (kr)d®x = -1 (2.17)
S S

At this point, we invoke the divergence theorem. Otherwise known as Gauss’s Theo-

rem, this allows us to write

/V-ud2:x:/u-ﬁdl, (2.18)
s c

18 Chapter 2 Derivations

where n is the outward normal unit vector. Applying this to the first integral in

equation (2.17) and continuing leaves us with

c / VH (kr) - #dl + C1 2 / H (kr) d>x = —1 (2.19)
C S

o [()

—2mekCyH" (ke) + 2mC1 k2 / HO (kr)yr dr = —1 (2.21)
0

21 €
edf + Ok / / HY (kryrdr do = —1 (2.20)
0 0

r=e

Now, let’s shrink the circle so that its area goes to zero.

lim {—271’6]{201H§1)(k}6) + 27TC’11<:2/ Hél)(kr)r dr} =—1 (2.22)
0

e—0

If we look at the behavior of Hl(l)(ke) as € — 0, we see that the leading order term

goes like

2i
HY (ke) ~ - (2.23)

Additionally, if we look at the behavior of the integrand in the second integral as

€ — 0, we see that

lim {eHg”(ke)} ~0 (2.24)

e—0
The integral of a term which is going to zero evaluated from zero to something ap-

proaching zero will equal zero. Therefore, we can remove the second term and solve

for Ol [18} .

4iCy = —1 (2.25)

|

Cy (2.26)

The final Green function is

G(x,x) = iH(gl)(Mx — %) (2.27)

2.3 Source Field Relations 19

2.3 Source Field Relations

Maxwell’s Equations can be re-written in the suggestive form

V- (E) = pe (2.28)
V- (ioH) = g (2.29)
VX E =iwpH - K (2.30)
V xH=—iwegE +J (2.31)
where
1
pe = €g6, -V (—> (2.32)
€
1
K = —iwpo(pr — 1)H (2.34)
J = —iwey(e, — 1E (2.35)
and
&= — (2.36)
€0
i
, = — 2.37
= (2.37)

It now appears as though the equations describe homogeneous vacuum, except for the
addition of source terms p., p,, K, and J. These new terms carry the information
about the particular material we are working in. The p terms containing the gradient
operator may seem rather mysterious, but they have been constructed to accurately
account for both volume polarization currents and surface currents. The remainder
of this chapter is based on derivations presented in reference [19].

The scattering problem can be attacked by breaking up the total field present into

the incident and scattered field. Working only with the electric field, this is expressed

20 Chapter 2 Derivations

scattered wave

—

meident wag‘ ’

scatterer

Figure 2.1 A depiction of an incident and scattered wave. p is the incident

wavevector, and q is the scattered wavevector.

as

E = Einc =+ Es

(2.38)

where it is assumed that the fields satisfy the Helmholtz equation. The equation for

the scattered field is derived using the following identity for the vector Laplacian:

V’E* =V(V-E) -V x V x Ef

(2.39)

Taking the divergence of (2.31), and noting that the divergence of a curl is always

zero, we have the continuity equation

0
v N =V (—iweE) + V- J
-J
V.E =Y
1WeEg

Substituting both (2.41) and (2.30) into (2.39) gives

V2E* =V (V : J) — V x (iwpoH* — K)

iWEQ

-J
:V(v)—iwuo(Vst)+VxK

iCUEo

(2.40)

(2.41)

(2.42)

(2.43)

2.3 Source Field Relations 21

Now, we substitute (2.31) into (2.43) to produce

J

=V (sze) —iwpp (—iweE* +J) +V x K (2.44)
0

=V (e) — F’E* —iwped +V x K (2.45)

(V2 +KHE® = (o) —iwped +V x K (2.46)
0

This equation looks like the familiar Helmholtz equation with the addition of several
source terms on the right hand side. In order to solve this equation for E*, we first

define the new quantities
AG) = [3G x) (2.47)
/ K(x)G(x,x') d*x’ (2.48)
The Green’s function is the solution to (2.10). Right multiplying by J(x’) renders
(V2 + 12)G(x,X)3 () = —5)(x — x)3(x) (2.49)

We then integrate with respect to the primed coordinates and are left with

/(V2 + E)G(x,x)I(x) d*x' = / —0P(x — xJ(x') d®x’ (2.50)
S S
(V?+ k%) / G(x,x)J(x) d%' = —J(x) (2.51)
s
(V2 + E)A(x) = —J(x) (2.52)

Similarly, it can be shown that
(V24 E)F(x) = —K(x) (2.53)

Using these relationships, and the fact that unprimed operators commute with inte-

grals over primed coordinates, it is clear that

V(V-A)+ kA

iweo

E’ = —

-V xF (2.54)

22 Chapter 2 Derivations

Figure 2.2 An illustration of the parameters of the two geometries used to
derive the surface equivalence principle.

Carrying out a similar procedure for H yields

V(V-F)+ k*F
l’

Wit

H = — V x A (2.55)

2.4 Surface Equivalence Principle

The surface equivalence principle allows us to define the mathematical sources J and
K on the boundaries between regions of space. If the composition of these regions is
homogeneous, then these surface sources are sufficient to describe the scattering prob-
lem. Volume sources are only necessary in the presence of inhomogeneities contained
within the boundaries.

Although there is a lengthy derivation associated with the surface equivalence
principle, its results are very powerful. Figure 2.2 will help illustrate the concepts.
There are two regions of space, I and II, both homogenous materials characterized by
€1, 1 and €5, o respectively. The total fields in each domain are E;,H; and Ey,Hs.

First, we consider the exterior region I. According to the surface equivalence prin-

2.4 Surface Equivalence Principle 23

ciple, we are able to define two mathematical surface currents J; and K; as

J1 =1n X H1 (256)

K1 = E1 X N (257)

where 10 is the outward normal from the surface. It points from region II into region I.
These mathematical sources radiate to produce the scattered fields E* and H®. In
region I, they combine with the incident fields E™ and H"* to reproduce the total
fields E and H as shown in (2.38). In region II however, it turns out that the fields
always combine in such a way to produce null fields. This allows us to replace the
material in region II with that of region I without changing the result, effectively
transforming the problem into one infinite region of material ¢; and p;. Obviously,
the fields in region II will not always have zero magnitude. This process only leads
us to the correct fields in region I.

To find the correct fields in region II, the same surface equivalence technique is

applied. Sources J, and Ky are defined on the boundary as

where n still points from region II into region I. This time, the scattered fields pro-
duced by the radiating sources Jo and K, are the total fields. The incident field is
defined only in region I and is left out of region II. These sources will produce the
correct fields in region II with null fields in region I, allowing us to replace the entire

problem with a material characterized by €5 and .

Because J and K have been defined as surface currents, A and F become
A(x) = / J(x')G(x,x) dx’' (2.60)

c
F(x):/CK(X')G(X,X') dx’ (2.61)

24 Chapter 2 Derivations

Figure 2.3 An illustration of the orientation of the scattering surfaces
relative to the coordinate axes.

where C' denotes the integral over the surface contour.

2.5 Electric Field Integral Equation (EFIE)

The overall scattering problem is now ready to be setup and solved. Substituting

(2.38) into (2.54) leaves us with

V(V-A)+ kA
|

Einc —E + :
1WEQ

V xF (2.62)

The electric field integral equation is most conducive to s polarized waves. This
means that the fields are polarized along the z-axis in our geometry. With this in
mind, (2.62) becomes
0
. V (V- k*A

1Wweg

(2.63)

z

The divergence term goes to zero because the sources are invariant in the z direction.
Looking at (2.57), we see that if E only has a z component, then K will only have a

component tangent to the surface. n, K;, and E, (subscript ¢ indicating tangential

2.5 Electric Field Integral Equation (EFIE) 25

component) are then all mutually perpendicular, and we can note for the outside
region

E, = K, (2.64)

The inside region will pick up a minus sign. Using this result and continuing,

OF _ m] (2.65)

Em¢ = K, — iknA, —
z t (2] +|:8I ay

where n = \/g . This equation is known as the electric field integral equation, spe-
cialized to our two dimensional geometry with s polarized light.

To solve the scattering problem of a closed surface surrounded by another material,
we first invoke the surface equivalence principle. Using the electric field integral
equation (2.65), we write down the two equations representing both the outside and

the inside problem.

; . OF OF,
ET = Ky —ikimAr. + [3x1y - ayl } (2.66)
: OF: 0F,,
0= =Ko — ikonaAg, + { a;y — a; } (2.67)

The subscripts 1 and 2 represent that the terms contain either surface currents or
other parameters as defined in regions I and II.

At this point, we have two equations and four unknowns. In order to solve the
problem, we must have equal numbers of equations and unknowns. Applying bound-
ary conditions addresses this issue. The electromagnetic boundary conditions on the

tangential components of E and H are

Ax(E —E)=0 (2.68)

Looking only at the E field, equations (2.57) and (2.59) can be added together to

26 Chapter 2 Derivations

produce

K1 + K2 = El X N+ E2 X (—fl) (270)

Kl + K2 = (—fl) X E1 +n X Eg (271)
0

K, + K :M (2.72)

Similarly, it can be shown that

J=-J, (2.74)

Using this to eliminate the variables from regions 2, (2.66) and (2.67) become

. aF(l) aF(l)
Ere = Ky — ik AW + | =4 - =2 2.75
p 1t — KAy + Dr oy ()
8F(2) aF(Q)
0=—Ky; — ikony A CA 2.76
1t 1R2T)2.A + ax ay ()

where now the notation has been changed so that everything is in terms of K; and

Jli
l

A (x) = / Jl(x’)ZHél)(kw\x— x'|) dx’ (2.77)
C

PO (x) = / K () S HYY (kb —) dx’ (2.78)
C

2.6 Magnetic Field Integral Equation (MFIE)

The fields describing the behavior of the magnetic field are similar to those of the
electric field. In fact, a similar procedure to that outlined in the previous sections

can be used to derive an equation for magnetic field. Instead of reworking all these

2.6 Magnetic Field Integral Equation (MFIE) 27

details, however, the so-called duality relationships can be applied.

E—H (2.79)
H— -E (2.80)
J—K (2.81)
K — —J (2.82)
Pe = Pm (2.83)
P = —Pe (2.84)
€— [(2.85)
Iy (2.86)
A—F (2.87)
F— A (2.88)

If the quantities on the left are substituted for those on the right, the resulting
relationships are valid. Performing these substitutions on (2.75) and (2.76) gives us

the desired version of the magnetic field integral equation.

. by oA 9aM
Hine — —J, — _F(l) _ vy __ d 2.89
z 1t an z or dy ()
ks AP 94
0= J, _ipe |94 04 2.90
1t Z772 z ox dy ()

The MFIE relates the incident magnetic field to the induced sources. Since the
magnetic field is polarized along the z-axis, the accompanying electric field in the
propagating wave will be polarized perpendicular to the z-axis. This corresponds to
p polarization. So, using (2.89) and (2.90) to solve for the scattered magnetic field is
equivalent to solving for the scattered p polarized electric field, up to a proportionally

factor relating the fields.

28

Chapter 2 Derivations

Chapter 3

Problem Setup and Solution

Techniques

3.1 Numerical Quadrature

3.1.1 Basics

Definite integrals can be approximated using a discretization scheme known as nu-

merical quadrature. The basic idea is that the integral can be represented as

[f@ae =Y astw) 3.)

where x; are a series of x values at which the function is to be evaluated. Almost
always, x; are contained within the limits of integration. ¢; are the coefficients of the
series, which depend on the type and order of the particular quadrature rule.

The simplest rule is the so called rectangle or midpoint rule. The integral is
essentially approximated as the sum of rectangularly shaped boxes which are arranged

to fit under the curve of the function. In mathematical language, this can be expressed

29

30 Chapter 3 Problem Setup and Solution Techniques

as
b
| #a)da =3 nfw) (3.2)
a ,
where h is the distance between the evenly s;iaced x values.

The rectangle rule uses a zero order quadrature rule. In other words, the function
is approximated as a constant over the range of each cell. In order to improve accuracy
without adding more discretization points, it is necessary to use a higher order rule
which more closely mirrors the function across each cell. The trapezoid rule and

Simpson’s rule are two well known higher order rules.

3.1.2 Regular Integrals

In our case, solving for the mathematical surface currents poses a challenge. We
would prefer to employ a quadrature rule of higher order than the simple zero order
midpoint rule. The reason for this is higher order rules will converge more quickly
to the exact solution for a given number of quadrature points. However, high order
quadrature rules necessitate the use of a greater number of quadrature points. Also,
solving for and implementing such a complex rule is not ideal. This aside, because
there will be many current oscillations over the surface, the advantages of a high order
rule are attractive.

The solution to this issue comes in the use of patches. The surface is divided
up into sections which are separately integrated using a third order quadrature rule.
This rule is exact for all polynomials third order and smaller. A third order rule is
still relatively easy to work with, yet guarantees better convergence.

To integrate one of these patches, four equally spaced points are identified at é,
%l, %l, and %l, where [is the length of the patch. The distance between the points
is then h = i. In general, it is not necessary for the patch to be perfectly flat, as [

could be a parametric parameter. If even spaced values in a given coordinate are used

3.1 Numerical Quadrature 31

oo|

o0~
oo
1
J1 %<

Figure 3.1 The layout of a typical patch.

as the quadrature points, a Jacobian factor can be introduced to compensate for the
particular contour of the surface. This idea will be explicitly related to our particular
problem later in the chapter. We must first find the values of the four quadrature
weights ¢; by solving a system of four equations. The rule must be able to integrate

a function of each order exactly, and all the equations will have the form

af (é) +cof <3§l) +csf (%l) + e f (g) =A (3.3)

where A is the area of the given order’s function over the range of the patch. The

zero order equation will represent a line at f(x) = 1:
01+CQ+C3+C4ZZ (34)

Similarly, the other three equations will look like:

[3l 5l o
C1§+62§+03§+C4§:§ ; fl@) == (3:5)

12 912 25[? 4912 E

I - - I . — 2
6164+0264+6364 +C464 7 flz)==x (3.6)

3 2713 12573 34302 4 3
01534—02512 + c3 5192 +C4 512 —Z 3 f(ﬂ?)—.’l? (37)

32 Chapter 3 Problem Setup and Solution Techniques

When this linear system is solved, the quadrature weights turn out to be:

o = % _ % (3.8)
R (39)
GB=g =1y (3.10)
o = % _ % (3.11)

Now that the quadrature rule has been developed, an arbitrary function can be ap-
proximately integrated if the value of the function is known at the quadrature points.
This will work for a general class of functions, provided the function is well defined

at the quadrature point.

3.1.3 Singular Integrals

If the patch contains a quadrature point which is singular, the quadrature rule breaks
down. There is no way to evaluate the function at the singular point and we have to
develop another technique. This depends on what type of singularity we are dealing
with. Weakly singular kernels contain a singularity but can be integrated. More
strongly singular kernels (i.e. hypersingular) are not integrable and require some
more care and finesse [20]. Luckily, all the terms found in our integral equations can
be integrated, which allows us to use the following quadrature rule.

If a function is of the form

/ C(@) f(x) da (3.12)

where ((z) contains an integrable singularity, then it is possible to find an n-point
quadrature rule which approximates the integral. Again, we choose 4 evenly spaced

points per patch at é, %l, %l, and %l, where [is the length of the patch. The distance

3.2 Path Integrals 33

i. The rule will be exact up to third order poly-

between the points is again h =
nomials. Solving the four independent equations for the four quadrature weights as

performed in section 3.1.2, we find that [21]

/abc‘(x)f(x) dr = ¢\ f (é) +cof (g) +csf (g) +of (g) (3.13)

where
1 -
e = < [13.125W0 — 17.75W3 + 5, = Wg] (3.14)
1 -
2 = 5| = A3TIWo + 1LT5W) — 6.5W; + Wg} (3.15)
1 ~
s = 5| 2:625W0 = T.T5W3 +5.5W, — Wg] (3.16)
1 -
co = < | = L8T5W, + 57501 — 4505 + Wg] (3.17)
and
1 b
W, = ﬁ/ 2"((r) dx (3.18)

3.2 Path Integrals

The integral equations we need to solve contain integrals of the form

/C F(x) dx (3.19)

where the C denotes that the integral is performed around a specific contour. These

are different from the standard integrals we are used to such as

b
/ f(z)dx (3.20)

In this integral, the function f(x) is integrated from one x value to another. In the
path integral of equation (3.19), the function f(x) is integrated along the path that is

traced out by C. It is important to realize that f(x) is NOT the path of integration.

34 Chapter 3 Problem Setup and Solution Techniques

In the two dimensional case, f(x) can be a function of both x and y depending on
the integration path.

Equation 3.19 can be expressed in two dimensions as

/ f(z,y)ds (3.21)
c

where ds indicates the path of integration. If we use the Pythagorean Theorem to

break up the differential ds, we can write

/Cf(x, y)\/ dx? + dy? (3.22)

Factoring, we can pull out a dz and re-express the limits of the integral in terms of

/ fxy,/1+<)dm (3.23)

The integral can now be evaluated using standard methods. The square root term is

x.

simply tacked on to the rest of the integrand, which is evaluated as a whole. As a last

clarification, the derivative term (%)2 pertains to the surface and not the integrated

function f(z,y) [22].

3.3 Nystrom Method

3.3.1 General Technique

We have now built up the mathematical machinery to begin solving (2.75) and (2.76).
Replacing A and F' with (2.77) and (2.78), (2.75) becomes

B (2,9) = Ki(w.y) ~ thun | Jz<x’,y’>zﬂé”(k1r> as
C

| iR pH) s
H

_8%[;@ /C(x VK (@, y)4 (/ﬁ'r’)d/} (3.24)

3.3 Nystrom Method 35

where ds’ indicates integration over the surface, and r is given by

r=+(z—2)2+ (y—y)? (3.25)

The dot products can be taken care of by noting

Ny

>
I

wm
=,
)

—~
CQ

S~—

(3.26)

>
>
I
@)
@}
n
—~
D
N

(3.27)

and identifying ¢’ as the angle tangent to the surface. Also, we can make use of the

fact that
9 a 1
o, 1" (2) = —H}"(2) (3.28)
Using these, (3.24) becomes
4 k
B = Ko+ = | Ly (k) d’

c

' 1

— 3/ sin(0) K, (2,) H® (kyr)y —2(z — o) ds'
4 C 2r

' 1
+ < /C cos(O) (', y) Hy) (kn Rk -2(y — o) ds' - (3.29)

which simplifies to

Einc — Kt + % Jz(x,7 y,)H(()l)(k’l’r’) dSl
C
" H(l) k
g / Ko) [COSW’)(Z/—Z/) —sin(¢)(z —a’)| ds’ (3.30)
c T

Now, we can use the discretization schemes of section 3.1 to solve this integral equation

(along with (2.76)). We discretize the integral by writing

. k
Eir = Kt+—1nlz S ()i H (k)

HY (kyrs)

D eS8 T cos(B)(y — o) — sin() (@ —)| (331

36 Chapter 3 Problem Setup and Solution Techniques

In this equation, we are summing over ¢, which are the discretization points. The
values ¢; are the quadrature weights, and S; is the Jacobian factor which takes into
account the path integration over the surface. From section 3.2, we saw that this can

be defined as

/

P AN (3.32)
v dz’ ’

(2

when the integration is performed over dx’. If the surface configuration is circular, a

change to polar coordinates is optimal. S; takes the form

Si

R (3.33)

when parameterized by df’, where R is the radius of the circle.
The next step is the key in the magic behind the Nystrom Method [23]. If we
also evaluate the equations at the exact same points as the ones we discretized the

integrals at, then we have j equations as follows
(ET); = 1771 Z iSi(L) HSY (ki)

ik kir;;
LM Cisi(Kt)iM
4 i rij

[coswg)(yj ~) i) (a; —)] (330
As a side note, using basic trigonometry to recognize the following relationships,

cos(tf) = ————= =< (3.35)

o 1 dy;\ _ 1 (dy;
sin(0;) = { (dw‘) =3 (d:r:’-) (3.36)

it is possible to simplify the second term of (3.34):

. k
(B); = 1771 Z iSi(L) HSY (ki)
1ky HF)(lez‘j) / dyz/‘ /
+ e 4 Ci(Kt)iT (yj — ;) — dz’! (xj —x;)| (3.37)

2y

3.3 Nystrom Method 37

This form of the equation allows us to easily see that the second term goes to zero if
the surface of integration is flat and the evaluation point has the same y value as the
integration point.

Returning to the derivation, there is a crucial subtlety in performing the step of
(3.34) which slightly alters the equations. If not respected, it introduces a catastrophic
error into the simulation. It can be shown that the second integral in (3.30) can be
expressed in the alternate form:

% /C Ky(2, y’)w cos(0)(y — ') — sin(0') (z — x’)] ds'
- /C (', y)a(x) - VG(x,¥) (3.38)

It turns out that if the observation point x coincides with the boundary x’, which we
just established is the case with (3.34), then a careful limit needs to be taken. The
details of this limit can be found in a number of references including [24], and the
result is

lim n(x’) - VG(x,x') = —%5(x —x')+n(x") - VG(x,x') (3.39)

r—x!
The second term remains the same as it would if we had naively missed performing
this limit. The first term, however, is a delta function which picks a —%Kt term out
of the integral. If the limit is performed from the other side of the boundary in region
II, a %Kt term is picked out. These terms will be included in the equations to follow.
The index notation shown in (3.34) can be worked with to produce a matrix

equation. First, we define some quantities:

w kw w
M](z)= 477 Cz'SiH(gl)(kwTij) (3.40)
o _ ik o H (kyr;
N = B g, i) | o019, —) — sin(@(a; —) (3.41)
Tij

Dropping the subscripts and superscripts on E; J, and K, this allows us to write

38 Chapter 3 Problem Setup and Solution Techniques

(3.34) as

|
By = 5K, + MP T+ NYK, (3.42)

where there is an implicit summation over ¢. Re-writing this in vector notation,
1
E= K+ MBI + NOK (3.43)
or
1
E = (5 + N<1>) K-+MWYJ (3.44)

where 1 is half the identity matrix. Along with equation (3.44), the second equation

(2.76) in the coupled pair can be expressed as
L. NO @)
0= —§+N K+ M¥J (3.45)
Combining these into one larger block matrix equation, we have

E (2 +NO) MO K (3.46)
| raNe) M@ || g '

The currents J and K can be solved for by inverting the 2 x 2 block matrix.

3.3.2 Singular Patches

There is an important correction which needs to be noticed in (3.40) and (3.41). If
1 = j, then the matrix elements are singular and the formalism breaks down. The
ripple effect is that the 4 quadrature points 7 of the entire patch containing the singular
index j are unusable. The quadrature rule of section 3.1.3 must be used for these

patches, which form a diagonal strip through each block. The form of the weight

3.3 Nystrom Method 39

integrals of (3.18), neglecting the constant in front of the integral, will thus be

M® — W) = k“’fw / 2" SH (kyr;) da’ (3.47)
patch
K H" (K,
N® — W) — Z—/ x'"SM cos(0")(y; — ') — sin(8')(x; — 2') | da’
4 patch Ty
(3.48)
where
r; = \/(xj — @)+ (y; —y)? (3.49)

M and N do not transform exactly into the W, ’s, but they are loosely related.
Studying the details of section 3.1.3 should elucidate the differences. If the integral
is performed in polar coordinates, x and y transform in the usual manner, S takes
on the form of (3.33), and 2’ — 6. More on the implementation of this rule will be

discussed in section 3.6.3.

3.3.3 Incident Field

For the incident field, the simplest wave is an infinitely extending uniform plane wave.

Mathematically, this looks like

Einc — Eoeikx (350)
_ B itk (3.51)
_ Eoeik[gccos(G)-i-ySin(@)} (352)

where 6 is the incident angle and Ejy can be set to 1 as a convenient normalization.
Also, because the convention is for the incident beam to impinge from the top, a
minus sign is added in front of the sin(f) term. In index form, £ then takes the

final form

(E;nC) — etklzi cos(0)—yisin(0)] (3.53)

7

40 Chapter 3 Problem Setup and Solution Techniques

3.4 Far Field Scattered Intensity

3.4.1 Green’s Function Expansion

Once the currents have been solved for, we can use them with source-field relations to
find the scattered fields in the far field limit. First, let’s expand the Green’s function

in the far field limit |x| >> |x/|

G(x,x) = iH(g”(Mx —x|) (3.54)

i
4

7 (1) p, 2x - x/
=—-H kpy/1 — 3.56
1 Ho P\/ +Z)2Z = (3.56)

where the magnitudes of x and x’ have been expressed in polar coordinates [18]. The

v (k\/p2 % 2x - x’> (3.55)

second term under the radical is dropped because it is very small, and the radical is
Taylor expanded to first order about %gxl =0

G(x,x') ~ ng” <k‘p (1 - X'px) > (3.57)

~ ng” <k (p—%-%)) (3.58)

Now, we can expand the Hankel function for very large arguments to see that the

dominant far field term is

2 =
HV(2) ~ \/Ee’(z’z) ; Z— 00 (3.59)

) 2 cox!)T
G(x,x) ~ i, /W—kpe’@@“)=%) (3.60)
1 /2 = =, G
~ Z Trkpezge—zzezkpe—zkxx (361)

(3.62)

Therefore,

3.4 Far Field Scattered Intensity 41

The first fraction term only contains the normalization constant and the outgoing

spherical wave information. It shows the % behavior that we expect for an outgoing

spherical wave in two dimensions. The second term holds all the angular information

as a result of the dot product in the exponent.

3.4.2 Scattered Wave

Using the techniques of section 2.5, (2.54) can be written as

Bw) =tk [L)) {HE i) ds
c
-9 ﬁ'/f(ﬂf’ V) K of) S B (ki) s
ox C ’ ’ 4 0
9, A YA ro i (1) /
+— |z [ty) K (o', y)-Hy ' (kyr)ds'| (3.63)
oy c 4
Putting in the far field Green function expansion (3.62) and continuing,

oi(k1ptg)

= ik
Y1 Bt Je

a : / / /
- 55 |sm@E

EZ(p, ¢) (2 o Je~kaleost@)a+sin(@)y) g

oi(k1p+g)

2421k p

oi(kirtg)

24/ 21k p

The partial derivatives with respect to x and y will act on all the terms containing

etk (cos(d)z' +sin()y’) g/

8 ; / H !
o /C cos(8") Ko, o) e (eos @ +sm(O) gt (3.64)

unprimed coordinates. Explicitly in terms of x and y,

p =2+ y? (3.65)

cos(¢) = \/%W (3.66)
sin(¢) = 4 (3.67)

vVt +y?
Performing these derivatives using the product rule produces several terms which are

added together. Because we only consider the dominant far field term as p — oo, all

42 Chapter 3 Problem Setup and Solution Techniques

terms of order greater than \/Lﬁ are dropped. The only term which survives effectively

brings an extra ¢-dependent factor down from the exponent.
6i(k1p+§)

BPNZIRY

+ ik / [cos(8") sin(¢) — sin(8") cos(@)] Ky(a',y)e~ k1 (cos(@)a’+sin(0)y) ds'} (3.68)
c

EZ(p, ¢) {ikﬁlnl /c J. (&, y e~ thi(cos(@)r+sin(@)y) g6/

The same quadrature rule of section 3.1 can be used to numerical integrate this

expression. First, we define
P = CiSiklnlei:%re_ikl (cos(d)):v;—l-sin((z))yg) (369)
Qi = ¢;S;ky [cos(6)) sin(¢) — sin(0)) cos(9)] eI etk (cos(@)ai+sin(@)y) (3.70)

Then, the scattered field is simply given by

eiklp

EZ(p,¢) = NG (FiJi + QiKi) = g(p) f(9) (3.71)

where
0) = 5 e (372
f(8) = (Pidi + Qi) (3.73)

An implicit sum over ¢ (Einstein notation) is assumed in (3.73). f(¢) will prove to
be the more useful term because it contains all the angular information. g(p) adjusts

the phase and normalization of the wave at an arbitrary distance p.

3.5 (Geometry of the Scatterer

3.5.1 General Description

The scatterer used in this numerical simulation is designed to probe how roughness

affects reflection from deposited multilayer surfaces. Its general shape is that of a

3.5 Geometry of the Scatterer 43

Scattering Surface

)

0 5 10 15 20
X (wavelengths)

y (wavelengths)
AN o
)

Figure 3.2 A typical scattering surface with a length of 20 wavelengths and
a thickness of 3 wavelengths.

deformed athletic jogging track. There are two flat strips (actually rough depending
on the surfaces) which are connected by semicircle regions on either end. For the
integral equations to represent a well-posed problem, the scatterer must be a closed
surface [19]. This excludes the possibility of constructing the problem as two parallel
rough surfaces which either extend outward indefinitely or abruptly end, leaving the
sides open.

The interior of the scatterer is composed of dielectric material. The incident wave
impinges on the scatterer from above and passes through two interfaces. Because there
are only two materials present, both interfaces involve the same two materials, albeit
in opposite alignments. This limits the number of materials we can model, but still
allows us to study the effects of multiple surfaces on reflection. Additionally, it greatly
assuages the computational burden of solving for many more surface unknowns.

Circular caps were chosen to close off the sides because they are smooth and
don’t create abrupt edges. Such jagged, pointy regions cause major spikes and even

singularities in surface currents [6], making them computationally difficult to handle.

44

Chapter 3 Problem Setup and Solution Techniques
1
0.8
0.6
S
a
04
0.2
0
-5 0 5
X

Figure 3.3 A normal distribution with ¢ =0 and o = 0.5.

3.5.2 Modeling the Rough Sections

Roughness is added to the scatterer using a random normal (Gaussian) distribution.
The probability density of this distribution is defined as

202

1 _ 2
p(z) = exp (——(x)) (3.74)
oV 2T
where p in this case is the mean and o is the standard deviation. The probability
density has the property

/_Oop(x)dle

o0

(3.75)
so that the absolute probability of obtaining a value in the domain a < x < b is

(3.76)
In our case, p is the height of the ideal interface, while ¢ is the targeted RMS

roughness. Points are first identified along the surface at equally spaced intervals.
Then, the distribution is applied to each of these points to create an array of Gaussian

random points which will define the surface. A smooth connection is drawn between

3.5 Geometry of the Scatterer 45

Scattering Surface

A N O DN

y (wavelengths)

0 5 10 15 20
X (wavelengths)

Figure 3.4 An example of uncorrelated roughness. The top and bottom
surfaces are generated independent of one another so that there is no visible
relation between the two.

these points using a piecewise continuous third order spline interpolant. (see spline
in Matlab)

This is an important step because in using this interpolating function we are
implicitly introducing information about the correlation between neighboring atoms.
This opposes the notion of the surface being a totally random, uncorrelated collection
of atoms. This type of surface would be present if there were no energetic or physical
interactions between neighboring atoms. During film deposition, atoms would simply
stack in a random manner. In reality, adjacent atoms must have some type of effect on
each other. This leads to the expectation that there is a degree of local continuity on
the surface. The spline in effect forces the locations of adjacent atoms to be related.
The third order character of the spline ensures that there will not be an excessive
number of wild oscillations between the chosen surface points.

Uncorrelated roughness means that the top and bottom surfaces are generated
independent of each other. The word ‘correlated’ is now being used in a different
context than the previous paragraph. A random distribution is separately applied to
each so that the bottom surface does not influence the top.

Correlated roughness takes the bottom surface into account when modeling the

top. This is potentially seen a more realistic model because thin films are deposited

46 Chapter 3 Problem Setup and Solution Techniques

Scattering Surface

A N O DN

y (wavelengths)

0 5 10 15 20
X (wavelengths)

Figure 3.5 An example of correlated roughness. The top surface is gener-
ated based on the parameters of the bottom surface. Although they are not
identical, the top surface shows traits and the general shape of the bottom
surface.

on substrates which are already rough. First, the rough bottom surface is specified.
The top surface is then generated using the normal distribution, except that u at each
point now deviates from the ideal interface by its corresponding random deviation
from the bottom surface. This creates a scatterer where similarities are seen between

the bottom and top surfaces.

3.6 Program Methods and Structure

3.6.1 Overview

Because of its familiarity to myself and other members of the BYU XUV optics group,
the scattering problem was solved using Matlab. One of the strengths of Matlab is
its ability to manipulate large vectors and matrices with relative ease. The code
was broken up into sections known as .m files, which were then also broken up into
subsections and so on. This allows for hierarchal organization intended to avoid an
excessively lengthy, unwieldy program. Additionally, it prepares the program to run
as a parallel process. The specifics of this issue will be discussed in section 4.2.

For reference, the entire program is cataloged in appendix A, with the .m files

3.6 Program Methods and Structure 47

listed in alphabetical order. The primary .m files which are run by the user from
the Matlab interface are TM.m (pg. 120) and TE.m (pg. 97). These master files
contain a sequence of .m files which the program will execute in solving the scattering
problem. Some of these subroutines are necessary, while others are options which can
be commented out if not needed. All the uncommented .m files in the versions of
TM.m and TE.m shown in Appendix A are necessary.

The other file which is important for routine calculations is userinputs.m (pg.
144). This file contains all the parameters which are routinely toggled by the user.
At this stage, both TM.m and TE.m run off this same input file. Comments are present
next to the variables which explain their purpose. If the user desires to execute a series
of scattering problems as a function of one of the parameters in the userinputs.m
file, this parameter can be commented out of userinputs.m and added as an input of
TM.m or TE.m. Note that if this action is performed an output must also be specified.

The length scale of surface features and incident x-ray radiation is on the order of
nanometers. It can become confusing and cumbersome to always work with such small
numbers. To make things easier, the unit of length has been defined as the wavelength
of the incident light. This allows us to easily compare relative lengths. Also, parallels

can easily be seen between combinations of larger scatterers and incident wavelengths.

3.6.2 The Scatterer

The top and bottom portions of the scattering surface are each divided into an equal
number of patches given by the parameter patches. Likewise, the number of patches
on each side section is tpatches. It is important to understand that these quadra-
ture points are different than the points which are used to define the surface. The
quadrature points are computed after the surface has been generated by the proce-

dure detailed in section 3.5.2. The spacing of the array of surface points is governed

48 Chapter 3 Problem Setup and Solution Techniques

by rfreq. This parameter specifies the number of random surfaces points to place per
wavelength. For example, if the scattering surface has a length 10\, and rfreq is as-
signed the value 0.5, then the program generates 20 random surface points. Therefore,
as rfreq decreases, the frequency of surface roughness increases.

There are some other subtleties with the rough surfaces which are important to
recognize. In userinputs.m, there are terms which deal with RMS roughness heights
and correlation. The surfaces can be forced to repeatedly generate the same random
surfaces by fixing the seed of the random number generator. Conversely, if it is allowed
to float, new surfaces are created. The fixsurface terms control whether the seed
is allowed to float, and if they are not, the inpstate terms specify the seed.

The bottom surface is always generated independent of the top and its RMS height
is expected to correlate with the standard deviation o of its normal distribution. The
same cannot always be said of the top surface. If the surfaces are uncorrelated, the top
surface behaves as we expect from its specified 0. The presence of correlation, how-
ever, effectively creates a surface with the combination of two standard deviations. An
overall RMS height can be predicted in the standard method by adding the two o val-
ues in quadrature. Correlation is toggled on and off using the correlatedroughness

variable in userinputs.m.

3.6.3 Nystrom Matrix Fill

The .m files TEnystromfill.m (pg. 101) and TMnystromfill.m (pg. 125) fill the
entire Nystrom matrix for each polarization. The structure of these files is such
that the fill is broken up into different sections of the matrix. This is done because
the matrix element calculations depend on whether they correspond with J or K
elements, are located on the inner or outer region, or are top/bottom or side sections

of the scatterer. The scatterer has been broken up into four sections: the bottom,

3.6 Program Methods and Structure 49

the right side, the top, and the left side. For each of these sections, there is a J and
a K element, which each also have an outer and an inner region element. Therefore,
the Nystrom fill is composed of 16 block submatrix fills.

Each block submatrix is filled using a double loop. The outer loop moves through
all the possible observation points, while the inner one goes through the integration
quadrature points of the particular block submatrix. The shape of these block sub-
matrices is thus a long, skinny rectangle. Each iteration of the inner loop contains
a check to establish whether the quadrature points and observation point lie on the
same patch or not. This determines whether the matrix fill is done using the standard
quadrature rule of section 3.1.2 or the singularity-containing rule of section 3.1.3.

While the off-diagonal patch fill is relatively straightforward, the singular patches
require more care. The W integrals are performed by calling either cartK.m (pg. 88),
cartJ.m (pg. 88), polK.m (pg. 94), or polJ.m (pg. 94). The names of these files
are constructed so that the J and K refer to the mathematical surface currents J and
K, and ‘cart’ and ‘pol’ indicate either cartesian or polar coordinates. This notation
is only relevant in the TM case. Because the side sections are perfectly circular, the
path integrals over their surfaces are ideally performed in polar coordinates with the
origin shifted to the center of the circle.

There are several arguments which are passed into these four .m files. The first
two numbers are always the limits of integration, the third identifies which point on
the patch is singular, and the fourth sets the order of the monomial weight function
(either '™ or %) in the integrand of W. We want the monomial weight function in
each W integral to range from 0 to the end of the patch, but the rest of the integrand
to be evaluated at its specific location on the scatterer. The variable offset lets the
function know which part of the scatterer to integrate since the limits of integration

which are passed into the function are always the same. The other input terms send

50 Chapter 3 Problem Setup and Solution Techniques

information about the surfaces and parameters of the problem into the function.

The four .m files each call the subfunction 11quadr.m (pg. 92) twice. This routine
numerically integrates the function from the singular point (where it may contain a
logarithmic singularity such as the zeroth order Hankel function) to one end of the
patch. 1lquadr.m’s four inputs are the symbolic integrand, the order, and the limits
of integration. It is called twice because the contributions from the singular point to
both ends of the patch are added together. The integrands are given by cartKfunc.m
(pg. 89), cartJfunc.m (pg. 88), polKfunc.m (pg. 94), and polJfunc.m (pg. 94).
Even though the polar integrals are performed over ', the symbolic variable used in
these functions is still z.

The order input of 11quadr.m lets the function know how many points to use in
its quadrature rule. The location of the quadrature points and the weights of this rule
are contained in 11lquadzw.txt (pg. 144) [25]. The higher the order of the monomial
weight function in W and the longer the patch, the more quadrature points are
necessary for a given accuracy. llquadr.m uses linlogOrder.m (pg. 92) to predict
the necessary order for about 7 digits of accuracy using the monomial weight order
and the length of the patch as inputs. This algorithm was developed by comparing
‘exact’ integrals against the quadrature result and looking at the error for different
lengths and monomial orders. Using this input, 11quadr.m calls 1inlogweights.m
(pg. 90), which loads the quadrature points and weights of the particular order.
Finally, 11quadr.m computes the value of the integral.

The matrix elements corresponding to the top section of the scatterer all have
an overall minus sign with respect to the bottom section. This is because the path
integral around the surface has been defined in the counterclockwise direction. The
bottom section is integrated to the right (positive x direction), while the top is in-

tegrated to the left (negative x direction). The limits of integration are essentially

3.6 Program Methods and Structure 51

reversed between the top and bottom surfaces, introducing the minus sign.

3.6.4 Far Field Calculation

After the files TEsolvematrix.m (pg. 119) and TMsolvematrix.m (pg. 143) solve
the matrix system for J and K, TEfarfield (pg. 98) and TMfarfield (pg. 122)
perform the far field calculation. This is much simpler than the matrix fill because the
observation point not located on the surface and the quadrature rule of section 3.1.2 is
sufficient. The dominant far field term of the reflected electric field is given by (3.71).
The path integrations are again broken up into both the side and top/bottom regions
of the scatterer. Also, the minus sign associated with the top surface integration is
present.

In general, f(¢) as defined in (3.73) is a complex quantity associated with the
angular distribution of the scattered field. When a reflectance measurement is taken,
it is not the ratio of the fields which is acquired, but rather the intensities. The
intensity is given by the absolute square of the field. Therefore, the quantity of

interest which will be plotted and compared is actually

F(¢) = |f(o)* (3.77)

3.6.5 Extras

The other .m files contained in TE.m and TM.m are extra options which are not essential
for basic program operation. TEcylcon.m (pg. 97) and TMcylcon.m (pg. 121) plot
the numerical solution against that of a cylindrical conductor of radius %t. The origin
and applications of this analytical conductor solution will be addressed later. For the
sake of comparison, it is desirable to change the limits of the far field angle evaluation

to include the entire 27 angular range. This is automatically built into the program

52 Chapter 3 Problem Setup and Solution Techniques

if 1en and patches are both set to zero. Shrinking the length of the top and bottom
sections to zero leaves only the two adjoining side sections, which forms a perfect
circle of radius %t.

TMphysoptcompare.m (pg. 142) compares the the numerical solution against the
TM physical optics approximate solution of a perfectly flat conductor. The theory

and implications of this will also be thoroughly examined in subsequent chapters.

Chapter 4

Numerical Issues

4.1 Convergence

The accuracy of the scattering problem solution depends on how finely the scatterer
is discretized. This corresponds to the choice of patches and tpatches for a given
geometry. In general, there are two physical factors which influence how these pa-
rameters are chosen.

The first deals with the number of quadrature points per wavelength of incident
light. At the absolute minimum, at least two quadrature points are necessary per
wavelength. If fewer are taken, we don’t obtain enough information about the wave
for the solution to converge to the correct value. The literature suggests using an
absolute minimum of 10 points per wavelength for low order quadrature rules to obtain
reasonable accuracies. For most applications, many more points are desired [19].

The second consideration is the physical characteristics of the scatterer. Figure
4.1 depicts a rough scatterer which is discretized using two different sets of quadrature
points. For the set of quadrature points to be a good approximation of the surface,

they must trace out the details of the surface. The red dots are spaced so that they

23

54 Chapter 4 Numerical Issues

Figure 4.1 A comparison of two quadrature point schemes. The closely
spaced blue dots preserve more information about the surface than the red
dots.

completely leave out several peaks. If only these points were referenced without any
prior knowledge of the actual surface, we would be unable to recreate it, leaving its
structure lost. Using only the blue points, however, we would be able to reproduce a
surface much like the actual one. The number of quadrature points must be chosen
so as to contain a high level of information about the structure of the surface.

Figure 4.2 shows the computed reflectance at 20 degrees from grazing of a 50
wavelength long, 0.5 wavelength thick flat scatterer as a function of the number of
patches per straight section. The number of patches per curved side section was
held fixed at 10, and the index of refraction was n = 1.05, k = 0.05. The method of
computing reflectance is unimportant at this point and will be explained in subsequent
chapters. The same is true for the ideal blue reflectance, which is predicted using
the Fresnel coefficients. The point relevant to this discussion is that the reflectance
appears to be asymptotically converging to a value which coincides with the blue line.
It is reasonable to infer that as the number of patches is increased, the accuracy of
computed reflectance improves.

Roughness has been added to the specifications of Figure 4.2 to produce Figures
4.3 and 4.4. Figure 4.3 has been changed so that rheighttop = 0.1 and rfreq = 0.5.

In Figure 4.4, rheighttop = 0.05 and rfreq = 3, so that both the frequency and

4.1 Convergence

0.5 T T T T
. —Fresnel
* Nystrom
0.4} -
S 0.3 -
8
[&]
i)
“a:) 0.2F k
0.1 .
G 'l 'l 'l 'l
100 150 200 250

patches per straight section

Figure 4.2 Computed reflectance at § = 20° as a function of patches,
where len = 50, t = 0.5, tpatches = 10, n = 1.05, and k£ = 0.05. The is no
roughness present and exponential convergence is observed.

o
o)
L]

L

——Fresnel

+ Nystrom . .

o
&)
L]

©

N
L]
L

o
w
L]

L

reflectance

o
N
T
1

o
H

100 150 200 250
patches per straight section

Figure 4.3 Computed reflectance at § = 20° as a function of patches, where

len = 50, t = 0.5, tpatches = 10, n = 1.05, £ = 0.05, rheighttop = 0.1,

and rfreq = 0.5. No convergence is observed due to the significant amount

of roughness.

56 Chapter 4 Numerical Issues

—Fresnel

025k . * Nystrom| |
0.2r -
Q
o
3
© 0.15F -
Q
©
0.1
0.05r -
G 1 1 1 1
100 150 200 250

patches per straight section

Figure 4.4 Computed reflectance at § = 20° as a function of patches,
where len = 50, t = 0.5, tpatches = 10, n = 1.05, £ = 0.05, rheighttop =
0.05, and rfreq = 3. A pattern consistent with convergence appears at 175
patches.

RMS height of the roughness are smaller. The erratic pattern of the red dots in Figure
4.3 indicates that after 250 patches the program has still not begun to converge. We
do not see the signatures of the exponential convergence apparent in Figure 4.2.
We conclude that enough roughness has been introduced so that 250 patches is now
inadequate.

Figure 4.4 shows a combination of Figures 4.2 and 4.3. The red dots at first
seem to jump around chaotically, which is typical before convergence. At about
175 patches, however, the pattern shifts so that we see the exponential convergence
pattern of Figure 4.2. This seems to indicate that the addition of roughness does
indeed increase the number of patches needed for a desired level of accuracy. At this
point, no method has been developed for predicting the number of required patches.

A few calibration runs to check for convergence is necessary.

4.2 Run Time 57

5000 T T T T T

4000

time (s)

2000r

1000

100 200 300 400 500
total patches

Figure 4.5 Run time vs. total patches.
4.2 Run Time

The practicality of using the program depends on the amount of time it takes to
run. As more unknowns are added to the mix, the computational price is increased.
Figure 4.5 shows the time of calculation as a function of the total number of patches.
This relationship is clearly nonlinear, and is expected to be second order in character.
This is mainly because the number of Nystrom matrix entries scales as the number
of quadrature points squared. The diagonal patch blocks of the Nystrom matrix
employ the quadrature rule of section 3.1.3, where the integration and observation
points are on the same patch. These matrix elements require a numerical integration
subroutine, which is expected to increase their proportional runtime significantly. The
time expenditure of these regions, along with other code sections such as the far field
intensity, should scale linearly with the number of patches.

If Figure 4.5 is fit with a second order polynomial, the result is qualitatively poor.

When a third order term is included, however, the result is much much more accurate.

58 Chapter 4 Numerical Issues

4%

4% | I Nystrom Matrix Fill
I Matrix Inversion
Bl = Field Intensity

92%

Figure 4.6 A breakdown of run time into individual program sections of a
long run.

The approximate overall run time as a function of the total number of patches is
t=1.708-10"°p% 4+ 8.542 - 103p% + 9.482 - 10~2p + 12.33 (4.1)

where t is the time in seconds and p is the total number of patches. It is not intuitively
clear where the third order term originates. This formula will of course depend on
the processing speed and memory of the computer. (4.1) was generated using a 1.4
GHz Pentium M processor with 512 MB of RAM.

A realistic model of x-ray reflectance from a rough surface requires a plate which
is long with respect to the wavelength. As the length of the plate increases, more
quadrature points are necessary to preserve accuracy, especially as the surfaces be-
come rough. Figure 4.6 shows the time breakdown of a 520 patch (2080 quadrature
point) run which had flat section lengths of 50 wavelengths. The Nystrom fill over-
whelmingly dominates for this specific number of quadrature points. Eventually, the

matrix inversion will begin to catch up and overtake the fill. At this point, how-

4.2 Run Time 59

ever, the Nystrom fill is a perfect candidate to be broken up in a massively parallel
process. The elements of the matrix are calculated independent of one another, sug-
gesting they could be parceled out to several CPU’s for calculation. These individual
sections could then be recombined in preparation for matrix inversion and subsequent
subroutines. The Marylou supercomputing clusters at BY U are ideal for such a serial

process.

60

Chapter 4 Numerical Issues

Chapter 5

Validation

5.1 Physical Optics Flat Plate (TM)

5.1.1 Derivation

The TM scattered wave is given by (3.64). Let’s consider a flat perfect conductor of
length L. The plate will lie along the x axis and be centered at the origin. The unit
normal from the surface is y. The tangential component of the total electric field on

the boundary is zero for a perfect conductor, so K; = 0. (3.64) becomes

ei<k1p+%)

Ei(p,d) =ik ——— [J.(2',y —iki(cos(d)z'+sin(d)y’) g4/ 5.1
z(p ¢) ¢ 17712\/m c (LE y)e S ()

61

62 Chapter 5 Validation

From the definition of J in (2.56),

J=yxH (5.2)
=y x (H™ +H’) (5.3)
= (H™ + H*)sin()z (5.4)

1)
= — (B™* + B*) sin(0)z (5.5)
H1
1 .
= — (E" 4+ E®)sin(0)z 5.6
el)sin(®) (5.6
1))
= — (eP* 4+ e"9) sin(h)z 5.7
el)sin(®) (5.7
1) ,
= [ez(pzwﬂ)yy) + GZ(qszrqyy)] sin(#)z (5.8)
pic

where 0 is the incident angle and p and q represent the wavevectors of the incoming
and outgoing waves. Note there is no phase shift in H after reflection from a per-
fect conductor. This is the reason the incident and scattered field magnitudes add
together. Only the E field undergoes a 7 radian phase change. The approximation

is made as we invoke the law of reflection:

pe = ki cos(0) = ¢, (5.9)

py = —kisin(f) = —q, (5.10)

Putting this all together into (5.1) gives

ei(/ﬂp-‘r%) {eikl(cos(ﬁ)m’—sin(e)y’) + eih(cos(@)z’—&-sin(@)y’)

E? =ik
z(p7¢> ? 17712% .

pic
sin(g)e ™ (cos@)s +sn(6)y) ds’} (5.11)

5.1 Physical Optics Flat Plate (TM) 63

In the limit as ¥’ — 0, and if region I is vacuum, then E? becomes [18,26]

El(p,9) = sin(6 2tk cos(O)z" =ik cos(@)z’ 1 5.12
(p.9) wic 2/ 2mkyp () L2 ()
]{,‘ ei(kup-i-%) (9) /L/2 i /[() (#)] d , ()
= ki ——— sin gtk1"[cos(9)—cos X 513
! V2rkip 12
i<k1p+3—”) .
_ 2 +) sin(6) “in Sky L 1)
AV 27T]{31p 1) 2
eik1p s 48in(6) . Sk L -
= € n '
2\/ 27Tk31p 1 2
where
d = cos(f) — cos(¢) (5.16)
Therefore,
.37 SI L
f(¢) = 46T Smé(e) sin (5k21) (5.17)

5.1.2 Comparison

The computed far field intensity was compared against the physical optics solution of
a flat conductor excited by a TM wave. The thickness of the plate is mostly unimpor-
tant because a prefect conductor reflects 100% of the incident radiation without any
transmission. This negates any possible interference effects from the back surface.
The only possible effect thickness could have is from the circular side sections of the
scatterer, which change dimensions as the thickness is increased. The so called edge
effects would then also be altered. The physical optics, or Kirchoff approximation,
does not take these edge effects into account. Rather, it assumes an induced current
based on an infinite conducting plate tangent to each surface point. This suggests
the approximation gets better as the length of the plate increases.

In order to simulate a perfect conductor, the real part of the index of refraction

is set to the very large value of n = 10'°. Figures 5.1, 5.2, and 5.3 show comparison

64 Chapter 5 Validation

2% 10
—computed
6k - - physical optics| -
5- -
24t :

(2]}

c

[

E3r '
2- -
l- -

e T /\ 1 /\ e S
%O 85 90 95 100

observation angle (degrees)

Figure 5.1 Comparison of computed solution with physical optics approx-
imation for a flat perfect conductor. len = 20, patches = 50, t = 0.5,
tpatches = 10, n = 10'°, k = 0, and thetadeg = 90. The polarization is
TM.

—computed
- - physical optics

w
(&)
L]

intensity
N
%

=

()
L]
L

1F -

0.5

%O 85 90 95 100
observation angle (degrees)

Figure 5.2 Comparison of computed solution with physical optics approx-

imation for a flat perfect conductor. len = 50, patches = 100, t = 0.5,

tpatches = 10, n = 10'° k = 0, and thetadeg = 90. The polarization is
TM.

5.1 Physical Optics Flat Plate (TM) 65

x 10

—computed
== physical optics

2.5

intensity
BN
S+

0.5

%5 30 35 40 45 50
observation angle (degrees)

Figure 5.3 Comparison of computed solution with physical optics approx-
imation for a flat perfect conductor. len = 20, patches = 100, t = 0.5,
tpatches = 10, n = 10'°, k = 0, and thetadeg = 40. The polarization is
TM.

plots between the computed solution and the physical optics solution for different
plate lengths and incident angles. The reflected diffraction patterns match almost
perfectly in each case. Slight discrepancies can be noticed in the height of the central
specular peaks of the shorter plate graphs. This is presumably due to the increasing
contribution of the edge effects.

The height of the specular peak increases and its width decreases as the plate
length increases. This can be seen in Figures 5.1 and 5.2. These effects occur because
the phase of the reflected wave at each point on the surface is such that more con-
structive interference is produced at the specular angle as length is increased. In the
limit of an infinite plate, the angular intensity distribution will be a delta function at

the specular angle of with a strength of the incident intensity.

66 Chapter 5 Validation

5.2 Perfectly Conducting Cylinder

The perfectly conducting cylinder provides another useful validation of the code,
particularly the side sections which are integrated using polar coordinates. The two
dimensional circular shape is constructed by setting both len and patches to zero
so that the two hemispherical side sections are in contact. Twice the tpatches
parameter is then the total number of patches of the circle. The index of refraction is
again set to a very large value to mimic a perfect conductor. The angle of incidence
thetadeg is set to zero and the angular distribution of the scattered intensity is
plotted over the entire 27 range.

The analytic Mie series solutions of the two dimensional perfectly conducting cylin-
der are well known. The solution using our notation and normalization convention

for both polarizations is

P) = — E Enl— n—n(k(l> cos(no 'M
o) =— E Enl— n—J7/1<ka) cos(no I'E

where €, = 1 if n = 0 and 2 otherwise [27]. Figures 5.4 and 5.5 show TM comparisons,
while Figures 5.6 and 5.7 show TE comparisons. There is excellent quantitative

agreement between the analytic predictions and the computed Nystrom solutions.

5.3 Dielectric Cylinder

Up to this point, only the extreme limit of a perfect conductor has been verified. The
index of refraction for a thin film in the x-ray region however is typically much closer

to that of vacuum. It becomes necessary to check the code against known solutions

5.3 Dielectric Cylinder 67

10 T T T T T T T
—computed
- --analytic solution
2
£ 10t]
E
101 L L L L L L L
0 50 100 150 200 250 300 350 400

observation angle (degrees)

Figure 5.4 Comparison of computed solution with analytic solution for a
cylindrical perfect conductor. len = 0, patches = 0, t = 1, tpatches = 10,
n = 10 k = 0, and thetadeg = 0. The polarization is TM. Note the
logarithmic y-axis scale.

10 T T T T T L] L]
—computed
---analytic solution
10" :
P
‘0
c
Q
£
10 :
102 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

observation angle (degrees)

Figure 5.5 Comparison of computed solution with analytic solution for a
cylindrical perfect conductor. len = 0, patches = 0, t = 8, tpatches = 50,
n = 10 k = 0, and thetadeg = 0. The polarization is TM. Note the
logarithmic y-axis scale.

Chapter 5 Validation

10 T T T T T

—computed
- --analytic solution
10> .
2
‘B
c
[
E
10'F .
100 L L L L L L L
0 50 100 150 200 250 300 350 400

observation angle (degrees)

Figure 5.6 Comparison of computed solution with analytic solution for a
cylindrical perfect conductor. len = 0, patches = 0, t = 1, tpatches = 10,
n = 10, k = 0, and thetadeg = 0. The polarization is TE. Note the
logarithmic y-axis scale.

10 T T T T T T T
—computed

10° b ---analytic solution 1
>10°F .
‘0
c
e
£ 101 L i

10° i 3

1
10_1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

observation angle (degrees)

Figure 5.7 Comparison of computed solution with analytic solution for a
cylindrical perfect conductor. len = 0, patches = 0, t = 8, tpatches = 50,
n = 10!° k = 0, and thetadeg = 0. The polarization is TE. Note the
logarithmic y-axis scale.

5.3 Dielectric Cylinder 69

tpatches | ¢ = 180°
10 -1.8420
20 -1.8423
40 -1.8425
80 -1.8425
160 -1.8426
exact -1.8426

Figure 5.8 Comparison of computed and exact TM scattering cross section
at ¢ = 180° of a homogeneous circular dielectric cylinder with a circumference
of 0.5137\ and ¢, = 10.

of a dielectric of arbitrary index of refraction. The scattering cross section is defined

as

o(6,67) = lim 2mp- | L2 O

_— 5.20
L 2P e (0, 0) (5.20)

where the units of this quantity are given in wavelengths. Applying our normalization

convention, this takes the form

o(¢) = (5.21)

Comparison data obtained from the literature [19] is given in terms of decibels, which
is defined as

o4p = 10log,, o (5.22)

So, substituting (5.21) into (5.22) produces the quantity we will use for comparison.

2
705(6) = 101ogy 20 (.29

Figures 5.8-5.10 show comparisons of exact [19] and computed scattering cross
sections as expressed in (5.23). The computed row with the highest supposed ac-

curacy, tpatches = 160, matches perfectly with the exact solution to the precision

70 Chapter 5 Validation

tpatches | ¢ =0° ¢ =30° ¢ =60° ¢=90° ¢ =120° ¢ =150° ¢ = 180°

10 5.5793 2.3621 -5.9468 -7.9133 -15.0969 -8.8516 -6.4536
20 5.5782 23624 -5.9418 -7.9203 -15.1078 -8.8509 -6.454
40 5.5776 2.3625 -5.9391 -7.9238 -15.1132 -8.8504 -6.454
80 5.5772 23625 -5.9378 -7.9255 -15.1159 -8.8501 -6.4541
160 5.5771 23625 -5.9371 -7.9264 -15.1172 -8.8499 -6.4541

exact 5.58 2.36 -5.94 -7.94 -15.12 -8.85 -6.45

Figure 5.9 Comparison of computed and exact TE scattering cross section
at multiple ¢ angles of a homogeneous circular dielectric cylinder with a
circumference of 2\ and €, = 2.56 + 2.561.

tpatches | ¢ =0° ¢ =30° ¢=60° ¢=90° ¢=120° ¢=150° ¢ =180°

10 -22.3142 -23.6361 -28.6524 -37.7197 -26.6924 -22.5859 -21.4615
20 -22.31564 -23.6375 -28.6543 -37.7118 -26.6902 -22.5846 -21.4604
40 -22.3161 -23.6382 -28.6554 -37.7079 -26.6890 -22.5840 -21.4599
80 -22.3164 -23.6385 -28.6559 -37.7059 -26.6885 -22.5837 -21.4596
160 -22.3165 -23.6387 -28.6561 -37.7049 -26.6882 -22.5835 -21.4595

exact -22.32 -23.64 -28.66 -37.70 -26.69 -22.58 -21.46

Figure 5.10 Comparison of computed and exact TE scattering cross section
at multiple ¢ angles of a homogeneous circular dielectric cylinder with a
circumference of 0.248\ and €, = 2 + 50s.

5.4 Fresnel Coefficients 71

given in the literature. The one exception to this occurs in Figure 5.9. The rounded
computed value at ¢ = 90° is still 0.01 greater than the exact value, but is converging
towards it as tpatches is increased. There is no cause for alarm because of the small
nature of the error. If tpatches were to be further increased, it appears as though

the program would converge to the exact solution.

5.4 Fresnel Coefficients

Perhaps the most convincing validation of the code is a comparison with Fresnel
theory. (see section 1.2.2) A convenient program (rt.m) was written in Matlab by
R. Steven Turley and Amy Baker which predicts the reflection and transmission of a
specified multilayer stack at a given angle. This program uses the Fresnel coefficients,
and thus drags along the associated approximations. The Fresnel model assumes
an infinitely long interface so that the reflected wave only has a component at the
specular angle [6]. The nonspecular reflection and edge effects associated with our

finite surface are not present. This notwithstanding, if a method can be developed

L

T of our scatterer, then a comparison

to compute the approximate reflectance R =
with the Fresnel prediction is a powerful validation tool.

For a flat scatterer of length 50, the full width at half maximum (FWHM) of
the specular peak is still relatively large. As roughness is introduced or the incident
angle is changed, both the height and FWHM of the specular peak can visibly change.
This seems to suggest that it is the area of this peak which is relevant for measuring
reflection. Because a perfect conductor reflects 100% the light incident on it, the
reflected specular peak at the same angle of the perfect conductor can be used as a

normalization Ij.

Generalizing this technique, it is possible to form a crude estimate of reflectance

72 Chapter 5 Validation

0.4 L] L] L] L] L] T T
—Fresnel

+ computed

0.35

0.3

0.25r

reflectance
o

- O

[6]] N

o
=
T

0 10 15 20 25 30 35 40

incident angle (degrees)

Figure 5.11 Comparison of TM computed reflectance and Fresnel model
predicted reflectance as a function of incident angle from 6 = 10° to = 40°.
len = 50, patches = 250, t = 0.5, tpatches = 10, n = 1.05, and k = 0.05.

by simply taking the ratio of the specular peak heights. With no roughness involved,
the widths of the two peaks should be comparable. Reflectance is then approximately
equal to the height of the dielectric’s specular peak divided by the height of the perfect
conductor’s specular peak. The latter is easily determined by looking at the peak of
the analytic physical optics solution for a perfect conductor, which has already been
demonstrated to be in agreement with the code. (Section 5.1.2)

The agreement between the Fresnel prediction and the computed solution is quan-
titatively very good throughout most of the angular range. This provides yet another
verification of the accuracy of the code if a sufficient number of patches are used.
The only significant discrepancy occurs near § = 90° where the computed reflection
takes an unpredicted jump. In Figure 5.12, where the index of refraction is n = 1.05
and k = 0.05, the relative error is greater than an order of magnitude. The relative
error is much less extreme in Figure 5.14, where n = 0.8 and k£ = 0.2. Even though

the values are both very small, the error is significant. There is most likely nothing

5.4 Fresnel Coefficients

0.014— T T T T
—Fresnel

+ computed

0.012

0.01

o
o
S
©

reflectance

0 40 50 60 70 80 90
incident angle (degrees)

Figure 5.12 A continuation of the comparison of TM computed reflectance
and Fresnel model predicted reflectance as a function of incident angle from
6 = 40° to # = 90°. len = 50, patches = 250, t = 0.5, tpatches = 10,
n = 1.05, and k = 0.05.

08 L] L] L] L] L] T T
—Fresnel

+ computed| 1

o
~
T

o
)
L]

reflectan
o o
W N

©
N
T

o
H
L]

L

0 10 15 20 25 30 35 40

incident angle (degrees)

Figure 5.13 Comparison of TM computed reflectance and Fresnel model
predicted reflectance as a function of incident angle from 6 = 10° to 8 = 40°.
len = 50, patches = 250, t = 0.5, tpatches = 10, n = 0.8, and k = 0.2.

74 Chapter 5 Validation

—Fresnel
+ computed |

0.25

o
N

0.15

reflectance

o
H

0.05

40 50 60 70 80 90
incident angle (degrees)

G 1 1

Figure 5.14 A continuation of the comparison of TM computed reflectance
and Fresnel model predicted reflectance as a function of incident angle from
6 = 40° to # = 90°. len = 50, patches = 250, t = 0.5, tpatches = 10,
n=0.8, and k =0.2.
wrong with the calculation or convergence. At incident angles near 90°, the scattered
wave solution when added to the incident wave will reproduce the correct total field

outside the scatterer. In this specific instance, the scattered wave does not entirely

correspond to our particular notion of the ‘reflected beam.’

Chapter 6

Results

Now that the program has been shown to work for known geometries, we can add
different types of roughness and analyze the corresponding reflection. As a first
experiment, the comparison between the predicted reflectance of a rough surface
using the Nevot-Croce factor and its computed analog will be performed.

Figure 6.1 depicts the rough scatterer with index of refraction n = 1.05, £ = 0.05.
The smooth scatterer is identical except the top section is perfectly flat. The rough
section was generated by setting rfreq = 5 and sigma = 0.05. The length of these
long sections was set at len = 20, shorter than the surfaces constructed in Section
5.4. Note that the scale of the y-axis is much different than the x-axis scale in Figure
6.1. This has been done to more clearly see the shape of the top rough section.

Figure 6.2 plots the reflected angular intensity distribution of the two surfaces
as a function of the observation angle. The width of both specular peaks is large
because the scatterer is only 20\ long. The maximum intensity of the specular peak
is significantly smaller for the rough surface as expected. The other nonspecular side
peaks, however, have roughly the same amplitude and shape. This suggests that the

total reflected power from the rough surface has been both diminished and scattered

5

76

Chapter 6 Results

Scattering Surface

02 LI T T T T

0.1f .

0- M -

@ -0.1f -
S

5 -0.2F .
g

z —0.3r .
2

>.—0.4r l } .

-0.5F .

-0.6fF .

0 5 10 15 20
X (wavelengths)

Figure 6.1 The rough scattering surface whose reflectance is compared to the
Nevot-Croce prediction. len = 20, patches = 250, t = 0.5, tpatches = 10,
n = 1.05, k = 0.05, rfreq = 5, rheighttop = 0.05, rheightbot = 0, and
inpstatetop = 44.

800 T T T T T T T !
—smooth computed

700} -=rough computed sigma=0.05

600}]

500}]

intensity
N
o
(@)

300f 7
200f 7
100f 7
e A
G0 é 10 1I5 20 25 30 ‘3; 40

observation angle (degrees)

Figure 6.2 Comparison of TM computed angular intensity distribution of a
rough and smooth surface. len = 20, patches = 250, t = 0.5, tpatches =
10, n = 1.05, and k = 0.05 for both surfaces. Additionally, rfreq = 5,
rheighttop = 0.05, rheightbot = 0, and inpstatetop = 44 for the rough
surface.

77

04 T T

+ smooth computed

0.35 o rough computed sigma=0.05

—smooth Fresnel
Nevot-Croce Fresnel sigma=0.05

0.3

0.25r

reflectance
o
N

=
T

0 10 15 20 25 30

incident angle (degrees)

Figure 6.3 Comparison of TM computed reflectance and Fresnel model pre-
dicted reflectance modified by the Nevot-Croce factor as a function of inci-
dent angle from 6 = 10° to § = 30°. len = 20, patches = 250, t = 0.5,
tpatches = 10, n = 1.05, k = 0.05, rfreq = 5, rheighttop = 0.05,
rheightbot = 0, and inpstatetop = 44.

into nonspecular angles.

Figure 6.3 presents a plot of reflectance vs. incident angle. The reflectance is
calculated in the same manner as Section 5.4. The solid blue curve shows the predicted
reflectance of the smooth scatterer. The red dots are the computed data points which
are close to those in Figure 5.11. The discrepancy arises from the difference in length
between the two scatterers. The black circles are the computed data points for the
corresponding rough surface, while the green dash-dot line is the predicted value using
the Nevot-Croce factor. The Nevot-Croce factor only modifies the Fresnel coefficient
of the top interface when using the recursive Parratt formula because the bottom
surface is perfectly smooth.

The data appears to be qualitatively consistent with the Nevot-Croce factor pre-

diction. The smooth and rough data points are both monotonically decreasing func-

tions of incident angle, with the rough points shifted down in intensity due to the

78 Chapter 6 Results

roughness. This difference is on order of the predicted shift seen by the difference be-
tween the solid blue and dash-dot green lines. In this respect, the Nevot-Croce factor
looks like it adequately estimates the approximate drop in reflectance. But, looking
more carefully at the relative difference between the computed smooth and rough
points, this quantity evolves from greater than to less than predicted. Furthermore,
at # = 15°, the rough data point is below the predicted green line, while at # = 30°,
it is greater than the prediction. This supports the idea that the Nevot-Croce factor
doesn’t capture the true decrease in reflectance as a function of incident angle.

While this data is a start, the scatterer we have used (Figure 6.1) is far from ideal
for studying the Nevot-Croce factor. In particular, the frequency of the roughness
is low compared with the length of the plate. The length is small enough that the
reflectance is highly dependent on the particular random numbers used to generate
the surface. In fact, only three non-zero points were used to create the surface. The
reflectance can significantly change based on the surface these three random points
define. In other words, the sample size is small enough that the averaging effects
of a long surface do not take place. The Nevot-Croce factor is based on the sample
size being large enough that random statistical phenomena are insignificant. I have
attempted to create a surface which is representative of a typical undulating rough
surface.

The length and amount of roughness of the scattering surface is limited by com-
puting power. It was shown in Section 4.1 that the introduction of roughness into
the model increases the number of necessary quadrature points. If the surface is too
long, or if the roughness frequency or amplitude is too high, then the computed accu-
racy of the surface currents suffers. One symptom of this is rapid oscillations of the
surface currents which is suppressed as the number of quadrature points is increased.

Figure 6.1 represents a surface whose reflectance could be accurately modeled us-

79

ing my present workstation. When the program is adapted to run on the Marylou
supercomputing cluster at BYU, longer, more realistic surfaces will be studied.
Longer surfaces will narrow the width of the specular intensity peak. The peak
width in this analysis is dominated by diffraction from the relatively short 20\ length.
The expected change in the width of this peak due to roughness will be more appar-
ent when the peak is very narrow to begin with. Thus, the current approximation of
taking a simple ratio of the peak heights to determine reflection could need modifica-
tion. Because the reflected wave is smeared out over an angular range, the definition

of what angles corresponds to ‘reflection” will need to be addressed.

80

Chapter 6 Results

Chapter 7

Conclusions

Starting from Maxwell’s Equations, surface integral equations were developed to sim-
ulate the scattering of electromagnetic radiation from two-dimensional closed bodies.
It was shown that the scatterers could be created in multilayer mirror-like forms.
This allowed us to specify the parameters of the mirror and analyze the associated
reflection.

The source code used for calculating reflectance has been shown to correctly pre-
dict the scattered angular intensity of several common test cases. The scattering data
obtained from both conductors and dielectrics agreed well with analytic solutions and
approximations.

Based on the limited amount of data which has been acquired, the Nevot-Croce
correction factor appears to reasonably estimate the decrease in reflectance due to
roughness. However, the data indicates that it does not manifest the correct angular
behavior. If this is truly the case, it could be a possible explanation for the discrepancy
between the measured data and the fits presented in Section 1.4.

In order to verify this preliminary conclusion, more runs with different randomly

generated surfaces need to be acquired and analyzed. This would allow us to average

81

82 Chapter 7 Conclusions

over many surfaces to predict the average effects of roughness. Also, the length of the
plate needs to be increased so that the roughness can be treated more as a general
macroscopic property of the surface rather than being dependent on the particular
surface. The tools are all in place to run the program on the Marylou supercomputing
cluster at BYU. The reflectance of surfaces which are longer, rougher, and more
representative of our actual mirrors will then be computed to yield more meaningful
data. When this has been accomplished, the data will be fit to find an efficient formula
which will be adapted to our optical constant fits. This will allow us to determine
the optical constants of materials in the extreme ultraviolet much more accurately.
This research approaches the problem of multilayer roughness differently than
others in the field have. We have solved for the reflected intensity of a two interface
multilayer up to an arbitrary accuracy dependent upon the number of quadrature
points used. The specific effects of RMS amplitude, spatial frequency, and correla-
tion between surfaces can now be analyzed and merged to correct for the particular
characteristics of a mirror. The prevailing techniques, pioneered by Stearns and oth-
ers, rely on the use of approximations which are grossly violated in our experiments.
Rather than estimating the specific effects of roughness from an analytic perspective,
this code has been developed to extract the roughness corrections from the actual

reflectance data itself.

Bibliography

1]

G. L.-T. Chiu and J. M. Shaw, “Optical Lithography: Introduction,” http://

www.research.ibm.com/journal /rd/411/chiu.html (Accessed July 27, 2006).

K. Takemoto, et. al., “Transmission x-ray microscopy with 50 nm resolution in
Ritsumeikan synchrotron radiation center,” X-ray Microscopy AIP conference

proceedings 446-51 (2-6 Aug 1999).

B. R. Sandel, et. al., “The Extreme Ultraviolet Imager Investigation for the
IMAGE Mission,” Space Science Reviews 91 (1-2), 197-242 (2000).

D. D. Allred, M. B. Squires, R. S. Turley, W. Cash, and A. Shipley, “Highly
reflective uranium mirrors for astrophysics applications,” Proc. SPIE 4782, 212-

223 (2002).

S. Lunt, “Determining the indices of refraction of reactively sputtered uranium
dioxide thin films from 46 to 584 angstroms,” M.S. Thesis (Brigham Young

University, Provo, UT, 2000).
J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1998.
D. Attwood, Soft X-Rays and FExtreme Ultraviolet Radiation, Cambridge Univer-

sity Press, Cambridge, 1999.

33

http://www.research.ibm.com/journal/rd/411/chiu.html
http://www.research.ibm.com/journal/rd/411/chiu.html
http://www.research.ibm.com/journal/rd/411/chiu.html

84

BIBLIOGRAPHY

8]

[10]

[11]
[12]
[13]
[14]
[15]

[16]

18]

[19]

[20]

N. Brimhall, “Thorium-Based Mirrors in the Extreme Ultraviolet,” Honors The-

sis (Brigham Young University, Provo, UT, 2005).

V.G. Kohn, “On the theory of reflectivity by an x-ray multilayer mirror,” Phys.
Stat. Sol. 185(61), 61-70 (1995).

L.G. Parratt, “Surface studies of solids by total reflection of x-rays,” Physical

Review 95 (2), 359-369 (1954).

M. Ohring, Materials Science of Thin Films Academic Press, San Diego, 2001.
V. Holy, J. Kubena, and I. Ohlidal, Phys. Rev. B 47, 23 (1993).

L. Nevot, B. Pardo, and J. Corno, Revue Phys. Appl. 23, (1988).

P. Debye, Verh. D. Deutsch. Phys. Ges. 15, 22 (1913).

P. Croce and L. Nevot, J. De Physique Appliquee 11, 5 (1976).

D.G. Stearns “The Scattering of x rays from nonideal multilayer structures,” J.

Appl. Phys. 65(2), 491-506 (1988).

J.J.H. Wang, Generalized Moment Methods in Electromagnetics, John Wiley &

Sons, Inc., New York, 1991.

R.S. Turley, “Scalar Physical Optics,” Brigham Young University Internal Re-

port. (2005)

A F. Peterson, et. al., Computational Methods for Electromagnetics, IEEE Press,

New York, 1998.

L.F. Canino, et. al., “Numerical Solution of the Helmholtz Equation in 2D and 3D
Using a High-Order Nystrom Discretization,” Journal of Computational Physics
146, 627-663 (1998).

BIBLIOGRAPHY 85

[21] W.H. Press, et. al., Numerical Recipes in C: The Art of Scientific Computing

Cambridge University Press, Cambridge, 1992.
[22] R.S. Turley, “Path Integrals,” Brigham Young University Internal Report. (2005)

[23] R.S. Turley, “Using the Nystrom Method to Solve the Scalar Electric Field In-

tegral Equation,” Brigham Young University Internal Report. (2005)
[24] P. MacDonald, R.S. Turley, Hughes Research Labs Internal Report.
[25] S. M. Wandzura, Hughes Research Labs Internal Report.

[26] S. M. Wandzura, “Scattering from Surfaces, Version 2.0,” Hughes Research Labs

Internal Report. (1995)

[27] J.J. Bowman, et. al., Electromagnetic and Acoustic Scattering by Simple Shapes,
North-Holland Publishing Co., Amsterdam, 1969.

86

BIBLIOGRAPHY

Appendix A

Matlab Source Code

A.1 Sample Run

This section contains a simple example of how to run the program. Suppose we want
to look at the reflection from a scatterer which is rough at both the top and bottom
interfaces. The scatterer is 100\ long and 2\ thick. We determine that we want to use
200 patches per long section of the scatterer and 10 patches per circular cap section.
The complex index of refraction will be N' = 1.05 + 0.05i. The incident angle of the
radiation will be 20° from grazing. Now, we decide parameters which will be used
to model the rough sections. We would like the random points surface points which
serve as the framework of the surface spline to be spaced by 5A. We will shoot for
the rms roughness of the top surface to be 0.03\ and for the bottom surface to be
0.02). Each time the run is performed, we would like to randomize the surfaces, and
the roughness will be uncorrelated.

To perform this run, we first open the .m file userinputs.m and change the
parameters accordingly. It should look something like this:

len = 100; % length of the straight sections of the scatterer

patches = 200; % num patches (4 pts each) for each straight section

t = 2; % thickness of the scatterer

tpatches = 10; % num patches (4 pts each) for each curved section

n = 1.05; % real part of complex index of refraction

beta = 0.05; % imaginary part of complex index of refraction

thetadeg = 20; % incident angle from grazing

rfreq = 5; % spacing per random surface point (units of wavelengths/point)
rheightbot = 0.02; % std dev of normal random number distribution (bot)
rheighttop = 0.03; % std dev of normal random number distribution (top)
fixsurfacebot = 2; % if 1, WON’T generate new random surface, else will

87

88 Chapter A Matlab Source Code

inpstatebot = 25; % random generator seed (when fixsurface = 1)
fixsurfacetop = 2; % if 1, WON’T generate new random surface, else will
inpstatetop = 71; % random generator seed (when fixsurface = 1)
correlatedroughness = 2; %if 1, surfaces ARE CORRELATED. If 2, not.
thrange = 20; % range of theta scan, centered around thetadeg in degrees
thsteps = 1000; % number of points to evaluate theta scan at

Once these have been set, the .m file can be saved and closed. The run for either
polarization is performed by calling:

TM; (s polarization)
TE; (p polarization)

A.2 cartJ.m

This function calls 11quadr.m which performs the integrations of the weight integral

found in (3.47).

% *x* Specifies quadrature weight integration (cartesian J (TM case)) x**x

function f = cartJ(a,b,sing,n,spp,dpp,offset,k) f =

1llquadr(@(x)cartJfunc(x,n,sing,spp,dpp,offset,k),...
linlogOrder (b-sing,n),sing,b)-...
1lquadr(@(x)cartJfunc(x,n,sing,spp,dpp,offset,k),...
linlogOrder(sing-a,n),sing,a);

A.3 cartJfunc.m
This function specifies the integrand of (3.47).

% **x Specifies quadrature weight function (cartesian J (TM case)) x***

function y = cartJfunc(x, n, sing, spp, dpp, offset, k) y =
1./4.*besselh(0,k*sqrt ((x-sing) . 2+. ..
(ppval(spp, (x+toffset))-ppval (spp, (singtoffset)))."2))...
.xx."n.*sqrt (1+(ppval (dpp, (x+offset))) . 2);

A.4 cartK.m

This function calls 11quadr .m which performs the integrations of the weight integrals
found in (3.48).

A.5 cartKfunc.m 89

% *x* Specifies quadrature weight integration (cartesian K (TM case)) x*x*x

function f = cartK(a,b,sing,n,spp,dpp,offset,k) f =
1lquadr (@ (x)cartKfunc(x,n,sing,spp,dpp,offset,k),...
linlogOrder(b-sing,n),sing,b)-...
11quadr (@ (x) cartKfunc(x,n,sing,spp,dpp,offset,k),. ..
linlogOrder(sing-a,n),sing,a);

A.5 cartKfunc.m

This function specifies the integrand of (3.48).

% **x Specifies quadrature weight function (cartesian K (TM case)) x**x*

function y = cartKfunc(x, n, sing, spp, dpp, offset, k) y =
i./4.*besselh(1,k*sqrt((x-sing) . 2+...
(ppval(spp, (sing+offset))-ppval (spp, (xtoffset)))."2))...
.xx."n.*sqrt (1+(ppval (dpp, (x+offset)))."2) ...
./sqrt ((x-sing) . "2+(ppval (spp, (singt+offset))-...
ppval (spp, (x+toffset)))."2) .xk...
.x(cos(atan(ppval (dpp, (x+offset))))...
.x(ppval(spp, (sing+offset))-ppval (spp, (x+toffset)))-...
sin(atan(ppval (dpp, (x+offset)))).*(sing-x));

A.6 constants.m

% *** defines constants and index of refraction **x

O
Il
N

.99792458E8;

4xpi*x1E-7;

N = n + ixbeta;

epsilon0 = 1/c”2/mu0;

epsilon = N"2/c"2/mu0;

omega = 2*pi*c;

kO = omegax*sqrt (epsilonO*mu0) ;
k = omegaxsqrt(epsilon*mu0) ;
etald = sqrt(mul/epsilon0);

eta = sqrt(mu0/epsilon);

=]

=

o
I

A.7 dsurface.m

% **x Computes the derivative of a piecewise polynomial *x*x

90 Chapter A Matlab Source Code

% The function returns another piecewise polynomial with the
P poly
% derivative.

function dpp = dsurface(pp) [breaks coefs 1] = unmkpp(pp); for i=1:1
dcoefs (i, :)=polyder(coefs(i,:));
end dpp = mkpp(breaks, dcoefs);

A.8 FFTsurf.m

% **x computes the power spectral density of both surfaces *x*x

numpts = 8196;

tau = len/numpts;

xf = O:tau:len;

yftop = ppval(spptop,xf);

yfbot = ppval (sppbot,xf);

amptop = fft(yftop);

ampbot = fft(yfbot);

Ptop = abs(amptop)."2;

Pbot = abs(ampbot)."2;

df = 1/(numpts*tau);

f = 0:df:1/tau;

figure plot(f,Pbot,’c-’);

xlabel(’f (inverse wavelengths)’)

ylabel("P(£)’)

title(’Power spectrum bottom surface’)

axis([tau max(f)/2,0 max(Pbot(2:1length(Pbot)))]);
figure plot(f,Ptop,’c-’);

xlabel(’f (inverse wavelengths)’)

ylabel(’P(f)’) title(’Power spectrum top surface’)
axis([tau max(f)/2,0 max(Ptop(2:length(Ptop)))]);

A.9 1lin log weights.m

This function determines the quadrature zeros and weights for the integrals of the
form of (3.18).

/ *** Returns a matrix with quadrature zeros and weights... **¥x*
% for integrating polynomials or polynomials times

% logs exactly. Results are exact for polynomials

% up to order (order-1)

T

A.9 1lin log weights.m

91

% This function assumes these weights have already
% been loaded into the matrix llquadzw by the

% commands:

% global llquadzw

% load /(directory)/llquadzw.txt

% This permits multiple calls without having

% to reload this each time.

function zw = lin_log_weights(order)
global llquadzw

offset = (order)x*(order-1)/2 + 1;

zw = llquadzw(offset:offset+order-1,:);

return
switch order
case (1)
zw=[0.3678794411714423216 1];
case (2)
zw=[0.08829686513765301176 0.298499893705524914708;. ..
0.67518649090988720104 0.70150010629447508529] ;
case (3)
zw=[0.0288116625309518311743, 0.103330707964928646769;. ..
0.304063729612137652611, 0.45463652597009870884; ...
0.81166922534407811686, 0.44203276606497264439] ;
case (4)
zw=[0.0118025909978449182649, 0.043391028778414391102;. ..
0.142825679977483695137, 0.240452097659460675978; . ..
0.48920152265457447872, 0.42140345225977593198; ...
0.87867997406918370281, 0.294753421302349000941] ;
case (5)
zw=[0.0056522282050800971359, 0.021046945791854629119;. ..
0.073430371742652273406, 0.130705540744446697591 ;. ..
0.284957404462558153715, 0.289702301671314156842; . ..
0.61948226408477838141, 0.35022037012039871029; ...
0.91575808300469833378, 0.208324841671985806163] ;
end

% This could also be done with cell arrays
% example a{1}=[0.37 1]

%» a{2}=[0.09 .298; 0.675 .702]

h etc.

92 Chapter A Matlab Source Code

A.10 1linlogQOrder.m

This function determines the order of the linlog integration necessary to integrate
(7?) to a certain accuracy.

% **x Returns the order to user for 7 digit precision in linlog... **x*
% quadratures (llquadr) for a patch of the given length with
% a monomial of the given order.

function ord = linlogOrder(length, order)
ord = ceil(4.15+0.53*1length+0.43%*order) ;
% In general, this overestimates the order a little

A.11 1llquad.m

% *x* Calling syntax: llquad(@func, order)... *xx

/» integrates func using a order-order rule on

% the interval 0..1. It can have a log singularity
% at 0.

function r = llquad(func, order)
zw = lin_log_weights(order) ;
r = sum(func(zw(:,1)) .xzw(:,2));

A.12 1lquadr.m

This function is called to perform perform the linlog integration of (3.18).

% **x Calling syntax: llquadr(@func, order)... **x
% integrates func using a order-order rule on

% the interval a..b. It can have a log singularity
h at a.

function r = llquadr(func, order, a, b)
zw = 1lin_log_weights(order);

dx = b-a;

r = dx*sum(func(atdx*zw(:,1)) .*zw(:,2));

A.13 makesurface.m

This function constructs the rough sections of the scatterer as described in Section
3.5.2.

A.14 nystromconstants.m 93

% *x* Constructs a surface described by a piece-wise cubic... **x
% polynomial with random heights.

/» Parameters:

% length: length of surface in wavelengths

% spacing: spacing between random points

% sigma: rms deviation of surface from O (gaussian noise)

% fixsurface: see user inputs

% inpstate: seed of random generator

% t: mean of distribution

% Return values

% surfpp: piecewise cubic interpolating polynomial for surface
% y: random height values for each surface point x

function [surfpp,y] = makesurface(length, spacing,...
sigma, fixsurface, inpstate, t)
if fixsurface ==
state = inpstate;
randn(’state’, state);
end x = O+spacing:spacing:length-spacing; y =
normrnd(t,sigma,size(x));
surfpp = spline([0 x length],[0 t y t 0]);

A.14 nystromconstants.m

The constants including the numbers 1 and 2 in the variable name are a combination
of the quadrature weights found in (3.8) - (3.11) and the factors of § found in (3.40)
and (3.41). The constants including 3 and 4 are only the quadrature weights.

% **x constants used in solving Nystrom problem **x*

Cl1 = 13*dx/48; % flat sections constants

C2 = 11xdx/48;

C3 = 13*dx/12;

C4 = 11xdx/12;

Clt = 13xdthetaxr/48; % rounded section constants
C2t = 11xdthetaxr/48;

C3t = 13xdthetaxr/12;

C4t = 11xdthetaxr/12;

94 Chapter A Matlab Source Code

A.15 polJ.m

This function calls 11quadr.m which performs the polar coordinate analog of the
integrations of the weight integral found in (3.47).

% *x* Specifies quadrature weight integration (polar J (TM case)) *x*x

function f = polJ(a,b,sing,n,offset,k,r)

f = llquadr(@(x)polJfunc(x,n,sing,offset,k,r),...
linlogOrder(b-sing,n),sing,b)-...
1lquadr(@(x)polJfunc(x,n,sing,offset,k,r),...
linlogOrder(sing-a,n),sing,a);

A.16 polJfunc.m

This function specifies the polar coordinate analog of the integrand of (3.47).

% **x Specifies quadrature weight function (cartesian J (TM case)) x***

function y = polJfunc(x, n, sing, offset, k, 1)
y = r./4.*%besselh(0,kxsqrt ((r*cos(x+toffset)-rxcos(sing+toffset)). 2+...
(r*sin(x+offset)-r*sin(sing+offset))."2)) .*x. n;

A.17 polK.m

This function calls 11quadr.m which performs the polar coordinate analog of the
integrations of the weight integral found in (3.48).

% **x Specifies quadrature weight integration (polar K (TM case)) *x*x

function f = polK(a,b,sing,n,offset,k,r)

f = 1llquadr(@(x)polKfunc(x,n,sing,offset,k,r),...
linlogOrder (b-sing,n),sing,b)-...
1lquadr(@(x)polKfunc(x,n,sing,offset,k,r),...
linlogOrder(sing-a,n),sing,a);

A.18 polKfunc.m

This function specifies the polar coordinate analog of the integrand of (3.48).

% **x Specifies quadrature weight function (cartesian K (TM case)) x**x*

A.19 storedata.m 95

function y = polKfunc(x, n, sing, offset, k, 1)

y = i.*r./4.*xbesselh(1l,k*sqrt((r*cos(x+toffset)-rxcos(sing+toffset)). 2+...
(r*sin(x+offset)-r*sin(sing+offset)).”2)) .*x. n...
./sqrt ((r*cos(x+offset)-rxcos(sing+toffset)). 2+...
(r*sin(x+offset)-r*sin(sing+offset))."2) .xk...
.x(cos(x+pi/2+offset) .*(r*sin(sing+offset)-r*sin(x+offset))...
-sin(x+pi/2+offset) .*(r*cos(singtoffset)-r*cos(x+offset)));

A.19 storedata.m

% **x* stores the output angles and intensity in a text file *xx*

intensityout=[thevaldeg;intensity];

fid = fopen(’intensityoutfile’,’w’);

fprintf (£fid,’%7.3f %24.20f \r\n’,intensityout);
st = fclose(fid);

A.20 surfacesetup.m

This function is responsible for constructing the scatterer according to the information
found in Sections 3.5 and 3.6.2. It calls makesurface.m.

% *** set up surface and quadrature points **x

pl = len/patches; % patch length = tot length div number of patches
dx = pl/4; % distance between quadrature points
thetar = thetadeg*pi/180; % switching to radians
if len "= 0 % when scatterer is a circle (no flat sections)
[sppbot,randybot] = makesurface(len,rfreq,rheightbot,fixsurfacebot,...
inpstatebot,-t); % generates random piecewise spline surface (bot)
dppbot = dsurface(sppbot); ’% computes p.w. dy/dx of surface (bot)

end
x = (.5+(0: ((4*patches)-1)))*dx; % array of evenly spaced quad points
if len "= 0 7 when scatterer is a circle (no flat sections)

ybot = ppval(sppbot,x); % y values for each x quadrature point (bot)
ypbot = ppval(dppbot,x); % dy/dx at each quadrature point (bot)
randn(’state’ ,sum(100*clock)); % initializes rand number distribution
if correlatedroughness "= 1 7 if surfaces aren’t correlated,...
% then mean of top distribution is centered at ideal interface
randybot = -t;
end
[spptop,randytop] = makesurface(len,rfreq,rheighttop,fixsurfacetop,...

96 Chapter A Matlab Source Code

inpstatetop,randybot+t); 7 generates top surface
dpptop = dsurface(spptop); % generates p.w. dy/dx of surface (top)
ytop = fliplr(ppval(spptop,x)); % y values for each x quad point (top)
yptop = fliplr(ppval(dpptop,x)); % dy/dx at each quad point (top)

end

if len "= 0 % when scatterer is a circle (no flat sections)
stermtop = sqrt(l+yptop.~2); 7% path integral Jacobian (top)
stermbot = sqrt(l+ypbot.~2); % path integral Jacobian (bot)

end

r=t/2; % radius is half of scatterer thickness

cir=pixt; % half circle circumference

tl = pi/tpatches; J theta length = pi / theta patches

dtheta = tl/4; % delta theta between each quadrature point on sides
theta = (.5+(0: ((4xtpatches)-1)))*dtheta; % setup for side (theta) quad
thetaa = theta-pi/2; % right side points (theta)

thetab = theta+pi/2; ' left side points (theta)

xr = rxcos(thetaa)+len; 7% x values for right side
yr = r*xsin(thetaa)-r; % y values for right side
x1 = r*xcos(thetab); % x values for left side

yl = r*xsin(thetab)-r; % y values for left side

for bb=1:4xpatches % these loops create an array for the theta values...
% (theta = 0 for flat sections, not included in calculation)
theta(bb)=0;
end
for bb=1:4xtpatches
theta(4*patches+bb)=thetaa(bb) ;
end
for bb=1:4xpatches
theta (4% (patches+tpatches)+bb)=0;
end
for bb=1:4xtpatches
theta(4*(2*patches+tpatches)+bb)=thetab(bb);
end
x1=x; ' storing the initial x values before x is altered
x = [x xr len-x x1]; % x values for entire scattering surface
if len "= 0 % when scatterer is a circle (no flat sections)
y = [ybot yr ytop yll; % y values for entire scattering surface
yp = [ypbot zeros(1l,4xtpatches) yptop zeros(l,4xtpatches)]; % dy/dx ...
% at each quadrature point (0 = side sections)
sterm = [stermbot zeros(1,4*tpatches) stermtop zeros(l,4*tpatches)];
% surface term for flat sections only
else % when scatterer is a circle (no flat sections)

y = [yr yl1l;

A.2]1 TE.m 97

end

figure % plots the surface
plot(x,y,’r-’);

axis equal;
title(’Scattering Surface’);
xlabel(’x (wavelengths)’);
ylabel(’y (wavelengths)’);

A.21 TE.m

This file is called to execute a run for TE polarization. It references all the other
subfunctions which are called.

function TE % function so outputs and inputs can be specified by user
tO=cputime; % marks time at start of program

global llquadzw;

load llquadzw.txt; % weights and quadrature points for the linlog int

userinputs; 7% contains program parameters specified by user

constants; % defines constants

surfacesetup; 7% constructs scattering surfaces and quadrature points

% FFTsurf; J computes and displays power spectral density
nystromconstants; J defines constants used in filling and solving matricies
tl=cputime;

TEnystromfill; % fills Nystrom matrix

t2=cputime;

TEsolvematrix; % solves matrix equation currents / defines inc. beam
t3=cputime;

TEfarfield; % solves for far field intensity as a function of angle
t4=cputime;

% TEcylcon; % analytic solution cylinder (change thevaldeg in far field)
% storedata; % stores the data in an output text file

t5=cputime;

timeinfo; % displays the elapsed time information

A.22 TEcylcon.m
This routine plots (5.19).

% **x Analytic solution for TE cylindrical conductor *x*x

a=r;

98 Chapter A Matlab Source Code

fO=besselj(1,2*pi*a)/besselh(1l,2*pi*a);
an = 0:pi/1800:pi;
for ss = 1:length(an)
for mm = 1:100
fsum(mm)=(-1) . "mm.*2*cos (mm.*an(ss)) .*. ..
(-besselj(mm+1,2*pixa)+mm/2/pi/a.*besselj(mm,2*pi*a))./. ..
(-besselh(mm+1,2*pi*a)+mm/2/pi/a.*besselh(mm,2*pi*a)) ;
end
ftheta(ss)=-4*x(fO+sum(fsum)); % factor of 4 makes...
%» normalization consistent w/ our notation
end
andeg = an*180/pi+180-thetadeg;
fintensity = abs(ftheta)."2;
figure
plot(thevaldeg,intensity,’r-’,andeg,fintensity,’g-’);
xlabel (’observation angle (degrees)’);
ylabel(’intensity’);
title([’Plane wave at ’,num2str(thetadeg),’ degrees from grazing.’]);
legend(’intensity’,’analytic solution TE cylinder conductor)’);

A.23 TEfarfield.m

This .m file calculates the TE analog of (3.73), which contains (3.69) and (3.70), for
many observation angles.

% **x solving for the far field amplitude as a function of angle **x*

% commented line is for viewing 360 degree view of scattered intensity
% active when looking at analytic cylinder solution

if len == 0 7 far field theta range (for circle & flat scatters)
thevaldeg = 0:360/thsteps:360;
else
thevaldeg = thetadeg-thrange/2:thrange/thsteps:thetadeg+thrange/2;
end
thevalr = thevaldeg*pi/180;

for v=1:thsteps+1
for g=1:patches
pvq = 4%(q-1);
B(v,pvg+1)=C3.*sterm(pvg+l) .*. ..
exp (-1*k0* (x(pvg+1) *cos (thevalr(v))+. ..
y(pvg+1l)*sin(thevalr(v)))) .*...

A.23 TEfarfield.m

99

(1/eta0*K(pvq+1)-J(pvg+l) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+1)))-...
cos(thevalr(v)) .*sin(atan(yp(pvg+1)))));
B(v,pvq+2)=C4.*sterm(pvqg+2) .*. ..
exp (-1*k0* (x(pvg+2) *cos (thevalr(v))+. ..
y(pvg+2) *sin(thevalr(v)))) .*...
(1/eta0*K(pvq+2)-J(pvg+2) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+2)))-...
cos(thevalr(v)) .*sin(atan(yp(pvg+2)))));
B(v,pvg+3)=C4.*sterm(pvg+3) .*. ..
exp (-i*k0* (x (pvq+3) *cos (thevalr(v))+. ..
y(pvg+3)*sin(thevalr(v)))) .*...
(1/eta0*K(pvq+3)-J(pvg+3) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+3)))-...
cos(thevalr(v)) .*sin(atan(yp(pvg+3)))));
B(v,pvq+4)=C3.*sterm(pvq+4) .*. ..
exp (-i*k0* (x (pvq+4) *cos (thevalr(v))+. ..
y(pvg+4)*sin(thevalr(v)))) .*. ..
(1/eta0*K(pvq+4)-J(pvg+4) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+4)))-...
cos(thevalr(v)) .xsin(atan(yp(pvg+4)))));
end
end

for v=1:thsteps+1
for g=patches+1l:patches+tpatches

pvq = 4*(q-1);

B(v,pvq+1)=C3t.x*. ..
exp (-ixk0* (x(pvg+1) *cos (thevalr(v))+. ..
y(pvg+1l)*sin(thevalr(v)))) .*...
(1/eta0*K(pvg+1)-J(pvg+l) .*. ..
(sin(thevalr(v)) .*cos(theta(pvg+l)+pi/2)-. ..
cos(thevalr(v)) .*sin(theta(pvq+1)+pi/2)));

B(v,pvq+2)=C4t.*. ..
exp (-1*k0* (x (pvg+2) *cos (thevalr(v))+. ..
y(pvg+2) *sin(thevalr(v)))) .*...
(1/eta0*K(pvg+2)-J(pvg+2) .*. ..
(sin(thevalr(v)) .*cos(theta(pvqg+2)+pi/2)-...
cos(thevalr(v)) .*sin(theta(pvqg+2)+pi/2)));

B(v,pvq+3)=C4t.x*. ..
exp (-1*k0* (x(pvg+3) *cos (thevalr(v))+. ..
y(pvg+3)*sin(thevalr(v)))) .*...
(1/eta0*K(pvq+3)-J(pvg+3) . *. ..

100 Chapter A Matlab Source Code

(sin(thevalr(v)) .*cos(theta(pvq+3)+pi/2)-...
cos(thevalr(v)) .*sin(theta(pvqg+3)+pi/2)));
B(v,pvq+4)=C3t.x*. ..
exp (-1*k0* (x (pvg+4) *cos (thevalr(v))+. ..
y(pvg+4) *sin(thevalr(v)))) .*...
(1/eta0*K(pvq+4)-J(pvg+4) . *. ..
(sin(thevalr(v)) .*cos(theta(pvq+4)+pi/2)-...
cos(thevalr(v)) .*sin(theta(pvqg+4)+pi/2)));
end
end

for v=1:thsteps+1
for g=patches+tpatches+l:2*patches+tpatches

pvq = 4x(q-1);

B(v,pvg+1)=-C3.*sterm(pvqg+l) .*. ..
exp (-1*k0* (x(pvg+1) *cos (thevalr(v))+. ..
y(pvg+1)*sin(thevalr(v)))) .x...
(1/eta0*K(pvg+1)-J(pvg+l) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+1)))-...
cos(thevalr(v)) .*sin(atan(yp(pvg+1)))));

B(v,pvg+2)=-C4.*xsterm(pvqg+2) .*. ..
exp (-i*k0* (x (pvq+2) *cos (thevalr(v))+. ..
y(pvg+2)*sin(thevalr(v)))) .*...
(1/eta0*K(pvq+2)-J(pvg+2) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+2)))-...
cos(thevalr(v)) .xsin(atan(yp(pvg+2)))));

B(v,pvq+3)=-C4.*sterm(pvq+3) .*. ..
exp (-1*k0* (x (pvg+3) *cos (thevalr(v))+. ..
y(pvg+3) *sin(thevalr(v)))) .*. ..
(1/eta0*K(pvg+3)-J(pvg+3) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+3)))-...
cos(thevalr(v)) .xsin(atan(yp(pvg+3)))));

B(v,pvq+4)=-C3.*sterm(pvq+4) .*. ..
exp (-ixk0* (x (pvg+4) *cos (thevalr(v))+. ..
y(pvg+4) *sin(thevalr(v)))) .*...
(1/eta0*K(pvg+4)-J(pvg+4) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+4)))-...
cos(thevalr(v)) .*sin(atan(yp(pvq+4)))));

end
end

for v=1:thsteps+1
for g=2*patches+tpatches+1:2*(patches+tpatches)

A.24 TEnystromfill.m 101

pvq = 4*(q-1);

B(v,pvg+1)=C3t.*...
exp (-1*k0* (x(pvg+1) *cos (thevalr(v))+. ..
y(pvg+1l)*sin(thevalr(v)))) .*...
(1/eta0*K(pvg+1)-J(pvg+l) .*. ..
(sin(thevalr(v)) .*cos(theta(pvg+l)+pi/2)-. ..
cos(thevalr(v)) .*sin(theta(pvqg+1)+pi/2)));

B(v,pvq+2)=C4t.*. ..
exp (-1*k0* (x(pvg+2) *cos (thevalr(v))+. ..
y(pvg+2) *sin(thevalr(v)))) .*...
(1/eta0*K(pvq+2)-J(pvg+2) . *. ..
(sin(thevalr(v)) .*cos(theta(pvq+2)+pi/2)-...
cos(thevalr(v)).*sin(theta(pvqg+2)+pi/2)));

B(v,pvq+3)=C4t.x*. ..
exp (-1*k0* (x(pvg+3) *cos (thevalr(v))+. ..
y(pvg+3) *sin(thevalr(v)))) .*. ..
(1/eta0*K(pvq+3)-J(pvg+3) . *. ..
(sin(thevalr(v)) .*cos(theta(pvg+3)+pi/2)-...
cos(thevalr(v)).*sin(theta(pvg+3)+pi/2)));

B(v,pvq+4)=C3t.x*. ..
exp (-1*k0* (x(pvg+4) *cos (thevalr(v))+. ..
y(pvg+4) *sin(thevalr(v)))) .x...
(1/eta0*K (pvq+4)-J(pvg+4) .*. ..
(sin(thevalr(v)) .*cos(theta(pvq+4)+pi/2)-. ..
cos(thevalr(v)) .*sin(theta(pvq+4)+pi/2)));

end
end

B=B.*i.*sqrt(i).*k0; % gets normalization and phase correct for field
field=sum(B.’); % computes far field amplitude

intensity = abs(field)."2; % computes far field intensity

figure

plot(thevaldeg,intensity,’r-’);

xlabel(’observation angle (degrees)’);

ylabel(’intensity’);

title([’Plane wave at ’,num2str(thetadeg),’ degrees from grazing.’]);
legend(’intensity’);

A.24 TEnystromfill.m

This .m file fills the Nystrom matrix of the TE analog of (3.46). It is broken up into
patches which contain singularities and patches which don’t. The patches which con-

102

Chapter A Matlab Source Code

tain singularities use (3.47) and (3.48). The patches which don’t contain singularities
use (3.40) and (3.41).

% *x%x £ills Nystrom matrix sk

% Bottom J outside
for j=1:(2*(patches+tpatches)) % looping through observation points
pv = 4x(j-1);
for 1=1:patches % looping through the patches
pvl = 4x(1-1);

offs

et

(1-1)*pl;

if(j==1) % if the observation point is on the patch,

else

for

end

for

% we need to use a quadrature which

% integrates over the green function

% (see numerical methods section 18.3)
m=1:4 9 these different m’s correspond to observation pts
pvm = pv + m;

singpt = x(m);

WO = cartK(0,pl,singpt,0,sppbot,dppbot,offset,k0);

W1l = cartK(0,pl,singpt,1,sppbot,dppbot,offset,k0)./dx;

W2 = cartK(0,pl,singpt,2,sppbot,dppbot,offset,k0)./dx."2;
W3 = cartK(0,pl,singpt,3,sppbot,dppbot,offset,k0)./dx."3;

A(pvm,pv+1)=-(13.125.%W0-17.75.*xW1+7.5.%W2-W3) . /6;
A(pvm,pv+2)=-(-4.375.%W0+11.75. *W1-6.5. ¥W2+W3) . /2;
A(pvm,pv+3)=-(2.625.*xW0-7.75.*W1+5.5. xW2-W3) . /2;
A(pvm,pv+4)=-(-1.875.*%W0+5.75.xW1-4.5. ¥W2+W3) . /6;
A(pvm,pvm)=A(pvm,pvm)-.5;

n=1:4 % now filling off diagonal blocks...

pvh = pv + n;

A(pvn,pvl+l)=-i*Cl*sterm(pvl+1)*. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+l)). 2+...
(y(pvn) -y (pvl+1))."2))*k0/sqrt ((x(pvn) -x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1)) .~ 2) .*x((y(pvn) -y (pvl+1l)) .*. ..
cos(atan(yp(pvl+1)))-(x(pvn) -x(pvl+l)) .*. ..
sin(atan(yp(pvl+1))));

A(pvn,pvl+2)=-i*C2xsterm(pvl+2)*. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+2)). 2+. ..
(y(pvn) -y (pvl+2)) .7 2))*k0/sqrt ((x(pvn) -x(pvl+2)) . 2+. ..
(y(pvn) -y (pvl+2)) .~ 2) .*x((y(pvn) -y (pvl+2)) .*. ..
cos(atan(yp(pvl+2)))-(x(pvn) -x(pvl+2)) .*. ..
sin(atan(yp(pvl+2))));

A.24 TEnystromfill.m 103

A(pvn,pvl+3)=-i*C2xsterm(pvl+3)*. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..

(y(pvn) -y (pvl+3))."2))*k0/sqrt ((x(pvn) -x(pvl1+3)) . 2+. ..

(y(pvn) -y (pvl+3)) .~ 2) .x((y(pvn) -y (pvl1+3)) .*. ..
cos(atan(yp(pvl+3)))-(x(pvn) -x(pvl+3)) .*. ..
sin(atan(yp(pv1+3))));
A(pvn,pvl+4)=-ixClxsterm(pvl+4)*. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..

(y(pvn) -y (pvl+4d)) . 2))*k0/sqrt ((x(pvn) -x(pvl+4)) . 2+. ..

(y(pvn) -y (pvl+4)) .~ 2) .*x((y(pvn) -y (pvl+d)) .*. ..
cos(atan(yp(pvl+4)))-(x(pvn)-x(pvl+d)) .*. ..
sin(atan(yp(pvl+4))));
end
end
end
end

bp = 8+(patches+tpatches);

% Bottom J inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=1:patches
pvl = 4x(1-1);
offset = (1-1)*pl;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = x(m);

WO = cartK(0,pl,singpt,0,sppbot,dppbot,offset,k);

W1l = cartK(0,pl,singpt,1,sppbot,dppbot,offset,k)./dx;

W2 = cartK(0,pl,singpt,2,sppbot,dppbot,offset,k)./dx."2;
W3 = cartK(0,pl,singpt,3,sppbot,dppbot,offset,k)./dx."3;

A(pvm+bp,pv+1)=-(13.125.%W0-17.75.%W1+7.5.*%W2-W3) . /6;
A(pvm+bp,pv+2)=-(-4.375.%W0+11.75.%W1-6.5.*W2+W3) . /2;
A(pvm+bp,pv+3)=-(2.625.*W0-7.75.*%W1+5.5.xW2-W3) . /2;
A(pvm+bp,pv+4)=-(-1.875.*W0+5.75.*%W1-4.5.xW2+W3) . /6;
A(pvm+bp, pvm) =A(pvm+bp,pvm)+.5;

end

else

for n=1:4
pvh = pv + n;
A(pvn+bp,pvl+1)=-i*Clxsterm(pvl+1)*. ..

104 Chapter A Matlab Source Code

besselh(1,k*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1)).~2)) *k/sqrt ((x(pvn) -x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1)) ."2) . *((y(pvn) -y (pvli+1)) .*. ..
cos(atan(yp(pvl+1)))-(x(pvn)-x(pvl+1)) .*. ..
sin(atan(yp(pvl+1))));

A(pvn+bp,pvl+2)=-i*C2*sterm(pvl+2)*. ..
besselh(1,k*sqrt ((x(pvn)-x(pvl+2)) . 2+. ..
(y(pvn) -y (pvl+2)) .7 2))*k/sqrt ((x(pvn) -x(pvl+2)) . 2+. ..
(y(pvn) -y (pv1+2)) . 2) . *((y(pvn) -y (pv1+2)) .*. ..
cos(atan(yp(pvl+2)))-(x(pvn)-x(pvl+2)) .*. ..
sin(atan(yp(pvl+2))));

A(pvn+bp,pvl+3)=-i*C2xsterm(pvl+3)*. ..
besselh(1,k*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3))."2)) *k/sqrt ((x(pvn) -x (pvl+3)) . 2+. ..
(y (pvn) -y (pvl+3)) .~ 2) . % ((y(pvn) -y (pv1+3)) .*. ..
cos(atan(yp(pvl+3)))-(x(pvn)-x(pvl+3)) .*. ..
sin(atan(yp(pvl+3))));

A(pvn+bp,pvl+d)=-i*Cl*sterm(pvl+4)*. ..
besselh(1,k*sqrt ((x(pvn)-x(pvl+4)). 2+. ..
(y(pvn) -y (pvl+4)) .~ 2)) *k/sqrt ((x(pvn) -x(pvl+4)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2) .x((y(pvn) -y (pvl+d)) .x. ...
cos(atan(yp(pvl+4)))-(x(pvn)-x(pvl+d)) .*. ..
sin(atan(yp(pvl+4))));

end
end
end
end

% Bottom K Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=1:patches
pvl = 4x(1-1);
offset = (1-1)*pl;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = x(m);

WO = cartJ(0,pl,singpt,0,sppbot,dppbot,offset,k0);

W1l = cartJ(0,pl,singpt,1,sppbot,dppbot,offset,k0)./dx;

W2 = cartJ(0,pl,singpt,2,sppbot,dppbot,offset,k0)./dx."2;
W3 = cartJ(0,pl,singpt,3,sppbot,dppbot,offset,k0)./dx."3;

A(pvm,bp+pv+1)=k0/etalx*. ..

A.24 TEnystromf

ill.m 105

end
else
for
end
end
end
end
% Bottom K Insi
for j=1:(2x(pat
pv = 4x(j-1
for 1=1:pat
pvl = 4
offset
if (j==1
for

(13.125.%W0-17.75.*%W1+7 .5 .%W2-W3) . /6;
A(pvm,bp+pv+2)=k0/etal*. ..
(-4.375.%W0+11.75.%W1-6.5.*W2+W3) . /2;
A(pvm,bp+pv+3)=k0/etal*. ..
(2.625.%W0-7.75.%W1+5.5.xW2-W3) . /2;
A(pvm,bp+pv+4)=k0/etalx*. ..
(-1.875.%W0+5.75.%W1-4.5.*xW2+W3) . /6;

n=1:4

pvn = pv + n;

A(pvn,bp+pvl+1)=k0/etaO*Cl*sterm(pvl+1)*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(pvn,bp+pvl+2)=k0/eta0*C2*sterm(pvl+2) *. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+2)) .7 2+. ..
(y(pvn) -y (pvl+2))."2));

A(pvn,bp+pvl+3)=k0/eta0*C2*sterm(pvl+3)*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3))."2));

A(pvn,bp+pvl+d)=k0/etaO*Cl*sterm(pvl+4)*. . .
besselh(0,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d))."2));

de
ches+tpatches))
)

ches

*x(1-1);
= (1-1)*pl;

)

m=1:4

pvm = pv + m;
singpt = x(m);

WO = cartJ(0,pl,singpt,0,sppbot,dppbot,offset, k);

Wl = cartJ(0,pl,singpt,1,sppbot,dppbot,offset,k)./dx;

W2 = cartJ(0,pl,singpt,2,sppbot,dppbot,offset,k)./dx."2;
W3 = cartJ(0,pl,singpt,3,sppbot,dppbot,offset,k)./dx."3;

A(bp+pvm, bp+pv+l)=k/etax*. ..

106 Chapter A Matlab Source Code

(13.125.%W0-17.75.*%W1+7 .5 . %W2-W3) . /6;
A(bp+pvm, bp+pv+2)=k/etax. ..
(-4.375.%W0+11.75.%W1-6.5.*W2+W3) . /2;
A(bp+pvm, bp+pv+3)=k/etax*. ..
(2.625.%W0-7.75.%W1+5.5.xW2-W3) . /2;
A(bp+pvm, bp+pv+4)=k/etax*. ..
(-1.875.%W0+5.75.%W1-4.5.xW2+W3) . /6;

end
else
for n=1:4

pvh = pv + n;

A(bp+pvn,bp+pvl+l)=k/eta*Cl*sterm(pvl+1)*. ..
besselh(0,k*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(bp+pvn, bp+pvl+2)=k/etaxC2*sterm(pvl+2) *. ..
besselh(0,k*sqrt ((x(pvn) -x(pvl+2)) . 2+. ..
(y(pvn) -y (pvl+2))."2));

A(bp+pvn, bp+pvl+3)=k/etaxC2*sterm(pvl+3)*. ..
besselh(0,k*sqrt ((x(pvn) -x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3))."2));

A (bp+pvn,bp+pvl+d)=k/eta*Cl*sterm(pvli+4)*. ..
besselh(0,kxsqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) ."2));

end
end
end
end

% Right Semicircle J Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+1): (patches+tpatches)
pvl = 4x(1-1);
offset=(1-patches-1)*tl-pi/2;
if (3==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polK(0,tl,singpt,0,offset,k0,r);

W1l = polK(0,tl,singpt,1,o0ffset,k0,r)./dtheta;
W2 = polK(0,tl,singpt,2,0ffset,k0,r)./dtheta."2;
W3 = polK(0,tl,singpt,3,0ffset,k0,r)./dtheta."3;

A(pvm,pv+1)=-(13.125.%W0-17.75.%W1+7.5.%W2-W3) . /6;

A.24 TEnystromfill.m 107

A(pvm,pv+2)=-(-4.375.%W0+11.75.%W1-6.5.*xW2+W3) . /2;
A(pvm,pv+3)=-(2.625. W07 .75 . ¥W1+5.5. ¥W2-W3) . /2;
A(pvm,pv+4)=-(-1.875.%W0+5.75.*W1-4.5 . %xW2+W3) . /6;
A(pvm,pvm)=A(pvm,pvm)-.5;
end
else
for n=1:4
pvh = pv + n;
A(pvn,pvl+1)=-i*Clt*besselh(1,kO*sqrt. ..
((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+1)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+1l))."2) .*. ..
((y(pvn)-y(pvl+1l)) .*cos(theta(pvl+l)+pi/2)-. ..
(x(pvn) -x(pvl+1)) .*sin(theta(pvl+1)+pi/2));
A(pvn,pvl+2)=-i*C2t*besselh(1,k0*sqrt. ..
((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)) .72)) *k0/. ..
sqrt ((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2))."2) .*. ..
((y(pvn) -y (pv1+2)) .*cos (theta(pvl+2)+pi/2)-. ..
(x(pvn) -x (pvl+2)) . *sin(theta(pvl+2)+pi/2));
A(pvn,pvl+3)=-i*C2t*besselh(1,k0*sqrt. ..
((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3)) ."2)) *k0/. ..
sqrt ((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3))."2) .*. ..
((y(pvn) -y (pv1+3)) .*cos (theta(pvl+3)+pi/2)-. ..
(x(pvn) -x(pvl+3)) .*sin(theta(pvl+3)+pi/2));
A(pvn,pvl+4)=-i*Clt*besselh(1,kO*sqrt. ..
((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) . 2) .*. ..
((y(pvn) -y (pvl+4)) .*cos(theta(pvl+d)+pi/2)-. ..
(x(pvn)-x(pvl+4)) .*sin(theta(pvl+4)+pi/2)) ;
end
end
end
end

% Right Semicircle J Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+1): (patches+tpatches)
pvl = 4x(1-1);
offset=(1-patches-1)*tl-pi/2;
if (3==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;

108 Chapter A Matlab Source Code

WO = polK(0,tl,singpt,0,offset,k,r);

W1l = polK(0,tl,singpt,1,offset,k,r)./dtheta;

W2 = polK(0,tl,singpt,2,0ffset,k,r)./dtheta."2;
W3 = polK(0,tl,singpt,3,offset,k,r)./dtheta."3;

A(pvm+bp,pv+1)=-(13.125.%W0-17.75.%W1+7.5.*%W2-W3) . /6;
A(pvm+bp,pv+2) =— (-4.375 . ¥W0+11.75 . ¥W1-6. 5. ¥W2+W3) . /2;
A(pvm+bp, pv+3)=-(2.625 . ¥W0-7.75 . ¥W1+5.5 . ¥W2-W3) . /2;
A(pvm+bp,pv+4)=-(-1.875.*%W0+5.75.*xW1-4.5.%W2+W3) . /6;
A(pvm+bp, pvm) =A (pvm+bp,pvm) +.5;

end

else

for n=1:4
pvh = pv + n;
A(pvn+bp,pvl+l)=-i*Clt*besselh. ..

(1,k*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..

(y(pvn) -y (pvl+1))."2))*xk/sqrt ((x(pvn) -x(pvl+l)) . 2+. ..

(y(pvn) -y (pvl+1)) .~ 2) .x((y(pvn) -y (pvl+1)) .*. ..
cos(theta(pvl+1)+pi/2) - (x(pvn)-x(pvl+l)) .*. ..
sin(theta(pvl+1)+pi/2));
A(pvn+bp,pvl+2)=-i*C2t*besselh. ..
(1,k*sqrt ((x(pvn) -x(pvl+2)) . 2+. ..

(y(pvn) -y (pvl+2))."2))*xk/sqrt ((x(pvn) -x(pvl+2)) . 2+. ..

(y(pvn) -y (pvl+2)) .7 2) .*x((y(pvn) -y (pvl+2)) .*. ..
cos(theta(pvl+2)+pi/2) - (x(pvn)-x(pvl+2)) .*. ..
sin(theta(pvl+2)+pi/2));
A(pvn+bp,pvl+3)=-ixC2t*besselh. ..
(1,k*sqrt ((x(pvn) -x(pvl+3)) .7 2+. ..

(y(pvn) -y (pvl+3))."2))*k/sqrt ((x(pvn) -x(pvl+3)) . 2+. ..

(y(pvn) -y (pvl+3)) .~ 2) .*x((y(pvn) -y (pvl1+3)) .*. ..
cos(theta(pvl+3)+pi/2) - (x(pvn)-x(pvl+3)) .*. ..
sin(theta(pvl+3)+pi/2));
A(pvn+bp,pvl+4)=-i*Clt*besselh. ..
(1,k*xsqrt ((x(pvn) -x(pvl+d)) . 2+. ..

(y(pvn) -y (pvl+d)) . 2))*k/sqrt ((x(pvn) -x(pvl+d)) . 2+. ..

(y(pvn) -y (pvl+4)) ."2) .*x((y(pvn) -y (pvl+4d)) .*. ..
cos(theta(pvl+d)+pi/2)-(x(pvn)-x(pvl+d)) .*. ..
sin(theta(pvl+4)+pi/2));
end
end
end
end

% Right Semicircle K Outside

A.24 TEnystromfill.m

109

for j=1:(2x(patches+tpatches))
pv = 4*x(j-1);
for 1=(patches+1): (patches+tpatches)
pvl = 4x(1-1);
offset=(1-patches-1)*tl-pi/2;

end

end

if (j==1)

else

end

for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;

end

for

end

WO
W1
W2
W3

polJ(0,tl,singpt,0,0ffset,k0,r);
polJ(0,tl,singpt,1,0ffset,k0,r)./dtheta;
polJ(0,tl,singpt,2,0ffset,k0,r)./dtheta.” 2;
polJ(0,tl,singpt,3,0ffset,k0,r)./dtheta."3;

A(pvm,bp+pv+1)=k0/etal*. ..

(13.125.%W0-17.75.%W1+7 .5 .%W2-W3) . /6;

A(pvm, bp+pv+2)=k0/etalx. . .

(-4.375.%W0+11.75.%W1-6.5.*xW2+W3) . /2;

A(pvm,bp+pv+3)=k0/etalx*. ..

(2.625.%W0-7.75.%W1+5.5.%W2-W3) . /2;

A(pvm,bp+pv+4)=k0/etal*. ..

(-1.875.%W0+5.75.%W1-4.5.%W2+W3) . /6;

n=1:4
pvh = pv + n;
A(pvn,bp+pvl+1)=k0/etalO*Clt*. ..

besselh(0,k0*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(pvn,bp+pvl+2)=k0/etaO*C2tx*. ..

besselh(0,k0*sqrt ((x(pvn)-x(pvl+2)) .7 2+. ..
(y(pvn) -y (pv1+2))."2));

A(pvn,bp+pvl+3)=k0/eta0*C2tx*. ..

besselh(0,k0*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3))."2));

A(pvn,bp+pvl+4)=k0/etal0*Cltx*. ..

besselh(0,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2));

% Right Semicircle K Inside

110 Chapter A Matlab Source Code

for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+1): (patches+tpatches)
pvl = 4x(1-1);
offset=(1-patches-1)*tl-pi/2;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;

WO = polJ(0,tl,singpt,0,offset,k,r);

Wl = polJ(0,tl,singpt,l,offset,k,r)./dtheta;

W2 = polJ(0,tl,singpt,2,0ffset,k,r)./dtheta."2;
W3 = polJ(0,tl,singpt,3,offset,k,r)./dtheta."3;

A(bp+pvm,bp+pv+l)=k/eta*. ..
(13.125.%W0-17.75.*xW1+7.5.*xW2-W3) ./6;
A(bp+pvm,bp+pv+2)=k/etax*. ..
(-4.375.%W0+11.75. *W1-6.5. ¥W2+W3) . /2;
A(bp+pvm, bp+pv+3) =k/etax. ..
(2.625.%W0-7.75.%W1+5. 5. ¥W2-W3) . /2;
A(bp+pvm,bp+pv+4)=k/etax. ..
(-1.875.%W0+5.75.%W1-4.5.xW2+W3) ./6;
end
else
for n=1:4
le’l=pV+n;
A(bp+pvn,bp+pvl+l)=k/eta*xCltx*. ..
besselh(0,kxsqrt ((x(pvn)-x(pvl+1)). 2+. ..
(y(pvn) -y (pvl+1))."2));
A(bp+pvn,bp+pvl+2) =k/etaxC2t*. ..
besselh(0,kxsqrt ((x(pvn)-x(pvl+2)) . 2+. ..
(y(pvn) -y (pv1+2))."2));
A(bp+pvn,bp+pvl+3)=k/eta*xC2tx. ..
besselh(0,k*sqrt ((x(pvn)-x(pvl+3)). 2+...
(y(pvn) -y (pvl+3))."2));
A(bp+pvn,bp+pvl+d)=k/etaxClt*. ..
besselh(0,k*sqrt ((x(pvn)-x(pvl+4)) . 2+. ..
(y (pvn) -y (pvl+d)) .~2));
end
end
end
end

% Top J outside

A.24 TEnystromfill.m 111

for j=1:(2x(patches+tpatches))
pv = 4*x(j-1);
for 1=(patches+tpatches+1): (2*patches+tpatches)
pvl = 4x(1-1);
offset = (2*patches+tpatches-1)x*pl;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = x(5-m);

WO = cartK(0,pl,singpt,0,spptop,dpptop,offset,k0);

Wl = cartK(0,pl,singpt,1,spptop,dpptop,offset,k0)./dx;

W2 = cartK(0,pl,singpt,2,spptop,dpptop,offset,k0)./dx."2;
W3 = cartK(0,pl,singpt,3,spptop,dpptop,offset,k0)./dx."3;

A(pvm,pv+1)=(13.125.%W0-17.75.*W1+7.5.*W2-W3) . /6;
A(pvm,pv+2)=(-4.375.%W0+11.75.%W1-6.5.%xW2+W3) . /2;
A(pvm,pv+3)=(2.625.*%W0-7.75.*W1+5.5.%W2-W3) . /2;
A(pvm,pv+4)=(~1.875.%W0+5.75 . *W1-4.5 . ¥W2+W3) . /6;
A(pvm,pvm)=A(pvm,pvm)-.5;

end

else

for n=1:4
pvh = pv + n;
A(pvn,pvl+1l)=ixCl*sterm(pvl+1)*. ..

besselh(1,k0*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..

(y(pvn) -y (pvl+1))."2))*k0/sqrt ((x(pvn) -x(pvl+l)) . 2+. ..

(y(pvn) -y (pvl+1)) .~ 2) .x((y(pvn) -y (pvl+l)) .*. ..
cos(atan(yp(pvl+l)))-(x(pvn) -x(pvl+l)) .*. ..
sin(atan(yp(pvl+1))));
A(pvn,pvl+2)=i*xC2*sterm(pvl+2) *. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+2)) .7 2+. ..

(y(pvn) -y (pvl+2))."2))*k0/sqrt ((x(pvn) -x(pvl+2)) . 2+. ..

(y(pvn) -y (pvl+2)) .~ 2) .x((y(pvn) -y (pvl+2)) .*. ..
cos(atan(yp(pvl+2)))-(x(pvn) -x(pvl+2)) .*. ..
sin(atan(yp(pvl+2))));
A(pvn,pvl+3)=i*xC2*sterm(pvl+3) *. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..

(y(pvn) -y (pv1+3)) .7 2))*k0/sqrt ((x(pvn) -x(pvl+3)) . 2+. ..

(y(pvn) -y (pvl+3)) .7 2) .x((y(pvn) -y (pvl+3)) .*. ..
cos(atan(yp(pvl+3)))-(x(pvn) -x(pvl+3)) .*. ..
sin(atan(yp(pvl1+3))));
A(pvn,pvl+4)=ixCl*sterm(pvli+4)*. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..

(y(pvn) -y (pvl+4)) ."2))*k0/sqrt ((x(pvn) -x(pvl+d)) . 2+. ..

112 Chapter A Matlab Source Code

(y(pvn) -y (pvl+d)) . 2) .*((y(pvn) -y (pvl+d)) .*. ..
cos(atan(yp(pvl+d)))-(x(pvn) -x(pvl+d)) .*. ..
sin(atan(yp(pvl+4))));
end
end
end
end

% Top J Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+tpatches+1): (2*patches+tpatches)
pvl = 4x(1-1);
offset = (2*patches+tpatches-1)x*pl;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = x(5-m);

WO = cartK(0,pl,singpt,0,spptop,dpptop,offset, k);

W1l = cartK(0,pl,singpt,1,spptop,dpptop,offset,k)./dx;

W2 = cartK(0,pl,singpt,2,spptop,dpptop,offset,k)./dx."2;
W3 = cartK(0,pl,singpt,3,spptop,dpptop,offset,k)./dx."3;

A(bp+pvm, pv+1)=(13.125 . 4W0-17.75 . ¥W1+7 . 5. ¥W2-W3) . /6;

A(bp+pvm, pv+2)=(-4.375 . ¥W0+11.75 . ¥W1-6.5 . ¥W2+W3) . /2;

A(bp+pvm,pv+3)=(2.625. xW0-7.75. xW1+5.5 . ¥W2-W3) . /2;

A(bp+pvm,pv+4)=(-1.875.*%W0+5.75.¥W1-4.5. ¥W2+W3) . /6;

A (bp+pvm, pvm) =A (bp+pvm,pvm) +.5;

end
else
for n=1:4

pvn = pv + n;

A(bp+pvn,pvl+l)=i*Cl*sterm(pvl+1)*. ..
besselh(1,k*sqrt ((x(pvn) -x(pvl+l)) . 2+. ..
(y (pvn) -y (pvi+1)) .~2))*k/sqrt ((x(pvn)-x (pvi+1)) . 2+. ..
(y (pvn) -y (pvl+1)) .~ 2) .x((y(pvn) -y (pvi+1)) .*. ..
cos (atan (yp (pvl+1)))-(x(pvn) -x (pvl+1)) . x. ..
sin(atan(yp(pvi+1))));

A(bp+pvn,pvl+2)=i*C2*sterm(pvl+2)*. ..
besselh(1,kksqrt ((x(pvn)-x(pvl+2)) . 2+. ..
(y(pvn) -y (pv1+2)) ."2)) *k/sqrt ((x(pvn) -x(pvl+2)) . 2+. ..
(y (pvn) -y (pv1+2)) .~ 2) .x((y (pvn) -y (pvl+2)) .*. ..
cos (atan (yp (pv1+2)))-(x(pvn) -x (pv1+2)) . *. ..
sin(atan(yp(pvl+2))));

A.24 TEnystromfill.m 113

end
end
end

% Top K Outs

end

ide

A(bp+pvn,pvl+3)=i*C2*sterm(pvl+3) *. ..
besselh(1l,k*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3))."2))*k/sqrt ((x(pvn) -x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3)) .~ 2) .x((y(pvn) -y (pvl1+3)) .*. ..
cos(atan(yp(pvl+3)))-(x(pvn) -x(pvl+3)) .*. ..
sin(atan(yp(pv1+3))));
A(bp+pvn,pvl+d)=i*Cl*sterm(pvl+4)*. ..
besselh(1,k*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2))*xk/sqrt ((x(pvn) -x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2) .x((y(pvn) -y (pvl+d)) .*. ..
cos(atan(yp(pvl+d)))-(x(pvn) -x(pvl+d)) .*. ..
sin(atan(yp(pvl+4))));

for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+tpatches+1): (2*patches+tpatches)
pvl = 4%(1-1);

offs

if (j==1)

else

et

for

end

for

(2xpatches+tpatches-1)*pl;

m=1:4
pvm = pv + m;
singpt = x(5-m);

WO = cartJ(0,pl,singpt,0,spptop,dpptop,offset,k0);

Wl = cartJ(0,pl,singpt,1,spptop,dpptop,offset,k0)./dx;

W2 = cartJ(0,pl,singpt,2,spptop,dpptop,offset,k0)./dx." 2;
W3 = cartJ(0,pl,singpt,3,spptop,dpptop,offset,k0)./dx."3;

A(pvm,bp+pv+1)=-k0/etalx*. ..
(13.125.%W0-17.75.*W1+7.5.*xW2-W3) ./6;
A(pvm,bp+pv+2)=-k0/etalx*. . .
(-4.375.%W0+11.75.%W1-6.5.*W2+W3) . /2;
A(pvm,bp+pv+3)=-k0/etal*. ..
(2.625.%W0-7.75.%W1+5.5.xW2-W3) . /2;
A(pvm,bp+pv+4)=-k0/etal*. ..
(-1.875.%W0+5.75.%W1-4.5.%W2+W3) . /6;

n=1:4
pvnh = pv + n;

114

Chapter A Matlab Source Code

end
end
end

% Top K Insi

end

de

A(pvn,bp+pvl+1)=-k0/etaO*Cl*sterm(pvl+1)*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(pvn,bp+pvl+2)=-k0/eta0*C2*sterm(pvl+2) *. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+2)) .7 2+. ..
(y(pvn) -y (pvl+2)).72));

A(pvn,bp+pvl+3)=-k0/eta0*C2*sterm(pvl+3)*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+3)). 2+. ..
(y(pvn) -y (pvl+3))."2));

A(pvn,bp+pvl+4)=-k0/eta0*Clxsterm(pvl+4) *. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2));

for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+tpatches+1): (2*patches+tpatches)
pvl = 4%(1-1);

offs

et

= (2xpatches+tpatches-1)*pl;

if (j==1)

else

for

end

for

m=1:4

pvm = pv + m;

singpt = x(5-m);

WO = cartJ(0,pl,singpt,0,spptop,dpptop,offset, k);

Wl = cartJ(0,pl,singpt,1,spptop,dpptop,offset,k)./dx;

W2 = cartJ(0,pl,singpt,2,spptop,dpptop,offset,k)./dx."2;

W3 = cartJ(0,pl,singpt,3,spptop,dpptop,offset,k)./dx."3;

A(bp+pvm, bp+pv+l)=-k/etax. ..
(13.125.%W0-17.75.*W1+7.5.*xW2-W3) ./6;

A (bp+pvm, bp+pv+2)=-k/etax*. ..
(-4.375.%W0+11.75.%W1-6.5.%W2+W3) . /2;

A(bp+pvm, bp+pv+3)=-k/etax. ..
(2.625.*%W0-7.75.*W1+5.5.%W2-W3) . /2;

A (bp+pvm, bp+pv+d)=-k/etax. ..
(-1.875.%W0+5.75.%W1-4.5.%W2+W3) . /6;

n=1:4
pvnh = pv + n;

A.24 TEnystromfill.m 115

A(bp+pvn,bp+pvl+1)=-k/eta*Clxsterm(pvl+1)*. ..
besselh(0,k*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A (bp+pvn, bp+pvl+2)=-k/etaxC2*sterm(pvli+2)*. ..
besselh(0,k*sqrt ((x(pvn) -x(pvl+2)) . 2+. ..
(y(pvn) -y (pvl+2)).72));

A (bp+pvn, bp+pvl+3)=-k/eta*xC2*xsterm(pvl+3)*. ..
besselh(0,k*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3))."2));

A(bp+pvn, bp+pvl+4)=-k/eta*Cl*sterm(pvi+4)*. ..
besselh(0,kxsqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2));

end
end
end
end

% Left Semicircle J Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(2*patches+tpatches+1) :2x(patches+tpatches)
pvl = 4%(1-1);
offset=(1-2*patches-tpatches-1)*tl+pi/2;
if (3==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polK(0,tl,singpt,0,offset,k0,r);
W1l = polK(0,tl,singpt,1,o0ffset,k0,r)./dtheta;
W2 = polK(0,tl,singpt,2,0ffset,k0,r)./dtheta."2;
W3 = polK(0,tl,singpt,3,0ffset,k0,r)./dtheta."3;
A(pvm,pv+1)=-(13.125.%W0-17.75.*xW1+7.5.%W2-W3) . /6;
A(pvm,pv+2)=-(-4.375.%W0+11.75. ¥W1-6.5. W2+W3) . /2;
A(pvm,pv+3)=-(2.625.*xW0-7.75.%W1+5.5. xW2-W3) . /2;
A(pvm,pv+4)=-(-1.875.%W0+5.75.%W1-4.5.%xW2+W3) . /6;
A(pvm,pvm)=A(pvm,pvm)-.5;

end
else
for n=1:4
pvh = pv + n;
A(pvn,pvl+1)=-i*Clt*besselh(1,kO*sqrt. ..
((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+1)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+1))."2) .*. ..

116 Chapter A Matlab Source Code

((y(pvn) -y (pvl+1)) .*cos(theta(pvl+l)+pi/2)-. ..
(x(pvn) -x(pvl+1)) .*sin(theta(pvl+1)+pi/2));

A(pvn,pvl+2)=-i*C2t*besselh(1,k0*sqrt. ..
((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)) .~ 2)) *k0/. ..
sqrt ((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)).72) .*. ..
((y(pvn) -y (pv1l+2)) .*cos(theta(pvl+2)+pi/2)-. ..
(x(pvn) -x(pvl+2)) .*sin(theta(pvl+2)+pi/2));

A(pvn,pvl+3)=-i*C2t*besselh(1,k0*sqrt. ..
((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3))."2) .*. ..
((y(pvn) -y (pv1+3)) .*cos(theta(pvl+3)+pi/2)-. ..
(x(pvn)-x(pvl+3)) .*sin(theta(pvl+3)+pi/2)) ;

A(pvn,pvl+4)=-i*Clt*besselh(1,k0*sqrt. ..
((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) . 2) .*. ..
((y(pvn) -y (pvl+4)) .*cos(theta(pvl+d)+pi/2)-. ..
(x(pvn)-x(pvl+4d)) .*sin(theta(pvl+4)+pi/2));

end
end
end
end

% Left Semicircle J Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(2*patches+tpatches+1) :2x(patches+tpatches)
pvl = 4x(1-1);
offset=(1-2*patches-tpatches-1)*tl+pi/2;
if (3==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polK(0,tl,singpt,0,offset,k,r);

W1l = polK(0,tl,singpt,1,offset,k,r)./dtheta;
W2 = polK(0,tl,singpt,2,0ffset,k,r)./dtheta."2;
W3 = polK(0,tl,singpt,3,offset,k,r)./dtheta."3;

A(bp+pvm,pv+1)=-(13.125. ¥W0-17.75 . ¥W1+7.5. *W2-W3) . /6;
A(bp+pvm, pv+2) == (-4.375 . ¥W0+11.75 . %W1-6.5. ¥W2+W3) . /2;
A(bp+pvm, pv+3)=-(2.625.*W0-7.75.*W1+5.5. xW2-W3) . /2;
A(bp+pvm,pv+4)=-(-1.875.%W0+5.75.%W1-4.5 . %xW2+W3) . /6;
A (bp+pvm, pvm)=A (bp+pvm,pvm) +.5;
end
else

A.24 TEnystromfill.m 117

for n=1:4

pvh = pv + n;

A(bp+pvn,pvl+1l)=-i*Clt*besselh(1,k*sqrt. ..
((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvli+1)) . 2))*k/. ..
sqrt ((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+1l))."2) .*. ..
((y(pvn) -y (pvl+1)) .*cos(theta(pvl+l)+pi/2)-. ..
(x(pvn) -x(pvl+l)) .*sin(theta(pvl+l)+pi/2));

A(bp+pvn,pvl+2)=-i*C2t*besselh(1l,k*sqrt. ..
((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)) .7 2)) *k/. ..
sqrt ((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2))."2) .*. ..
((y(pvn) -y (pv1+2)) .*cos(theta(pvl+2)+pi/2)-. ..
(x(pvn) -x(pvl+2)) .*sin(theta(pvl+2)+pi/2));

A(bp+pvn,pvl+3)=-i*C2t*besselh(1l,k*sqrt. ..
((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3)) . 2))*k/. ..
sqrt ((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3))."2) .*. ..
((y(pvn) -y (pv1+3)) .*cos(theta(pvl+3)+pi/2)-. ..
(x(pvn) -x (pv1+3)) .*sin(theta(pvl+3)+pi/2));

A(bp+pvn,pvl+d)=-i*Clt*xbesselh(1l,k*sqrt. ..
((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvli+d)) . 2))*k/. ..
sqrt ((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d))."2) .*. ..
((y(pvn) -y (pvl+4)) .*cos(theta(pvl+d)+pi/2)-. ..
(x(pvn)-x(pvl+4d)) .*sin(theta(pvl+4)+pi/2));

end
end
end
end

% Left Semicircle K Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(2*patches+tpatches+1) :2x(patches+tpatches)
pvl = 4x(1-1);
offset=(1-2*patches-tpatches-1)*tl+pi/2;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polJ(0,tl,singpt,0,o0ffset,k0,r);

Wl = polJ(0,tl,singpt,1,0ffset,k0,r)./dtheta;
W2 = polJ(0,tl,singpt,2,0ffset,k0,r)./dtheta."2;
W3 = polJ(0,tl,singpt,3,0ffset,k0,r)./dtheta."3;

A(pvm,bp+pv+1)=k0/etalx. ..
(13.125.%W0-17.75.*%W1+7 .5 . %W2-W3) . /6;

118 Chapter A Matlab Source Code

A(pvm,bp+pv+2)=k0/etal*. ..
(-4.375.%W0+11.75.%W1-6.5.%W2+W3) . /2;
A(pvm,bp+pv+3)=k0/etalx. ..
(2.625.%W0-7.75.%W1+5.5.xW2-W3) . /2;
A(pvm,bp+pv+4)=k0/etal*. ..
(-1.875.%W0+5.75.*%W1-4.5.xW2+W3) . /6;
end
else
for n=1:4
pvn = pv + n;
A(pvn,bp+pvl+1)=k0/etal*C1lt*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));
A(pvn,bp+pvl+2)=k0/eta0*C2tx*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+2)) .7 2+. ..
(y(pvn) -y (pv1+2))."2));
A(pvn,bp+pvl+3)=k0/eta0*C2tx*. . .
besselh(0,k0*sqrt ((x(pvn)-x(pvl+3)). 2+. ..
(y(pvn) -y (pvl+3))."2));
A(pvn,bp+pvl+4)=k0/etal0*Cltx*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+4d))."~2));
end
end
end
end

% Left Semicircle K Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(2*patches+tpatches+1) :2x(patches+tpatches)
pvl = 4x(1-1);
offset=(1-2*patches-tpatches-1)*tl+pi/2;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polJ(0,tl,singpt,0,offset,k,r);

Wl = polJ(0,tl,singpt,1,offset,k,r)./dtheta;
W2 = polJ(0,tl,singpt,2,0ffset,k,r)./dtheta."2;
W3 = polJ(0,tl,singpt,3,o0ffset,k,r)./dtheta."3;

A (bp+pvm, bp+pv+l)=k/eta*x(13.125.%W0-17.75.%W1+7.5.*W2-W3) . /6;
A (bp+pvm, bp+pv+2) =k/etax(-4.375.*%W0+11.75.*%W1-6.5.*xW2+W3) . /2;

A.25 TEsolvematrix.m 119

A(bp+pvm, bp+pv+3) =k/eta* (2.625.%W0-7.75. ¥W1+5.5. ¥W2-W3) . /2;
A(bp+pvm, bp+pv+4)=k/eta*(-1.875.*%W0+5.75.*%W1-4.5. xW2+W3) . /6;
end
else
for n=1:4

pvn = pv + n;

A(bp+pvn,bp+pvl+l)=k/etaxClt*. ..
besselh(0,kxsqrt ((x(pvn)-x(pvl+1)). 2+. ..
(y(pvn) -y (pvl+1))."2));

A(bp+pvn,bp+pvl+2)=k/etaxC2t*. . .
besselh(0,kx*sqrt ((x(pvn)-x(pvl+2)) . 2+. ..
(y(pvn) -y (pvl+2)).72));

A(bp+pvn,bp+pvl+3)=k/etaxC2t*. ..
besselh(0,k*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y (pvn) -y (pv1l+3)) ."2));

A(bp+pvn,bp+pvl+d)=k/eta*xCltx. . .
besselh(0,k*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d))."2));

end
end
end
end

A.25 TEsolvematrix.m

This .m file solves the TE analog of (3.46).

% **x solve matrix and define incident beam **x
rhs=exp(i*k0.*(cos(thetar) .*x-sin(thetar).*y)); % incident plane wave
% the following comments section is the code for a tapered beam

% rhs = erf(20/len*((len/2-5E-8)-abs((y+t/2)/tan(thetar)+len/2-x)));
% for g=1:length(rhs)

yA if rhs(g)< 0
yA rhs(g)=0;
% end

% end

% rhs=rhs.*exp(i*k0.*(cos(thetar) .*x+sin(thetar).*y));

for j=1:bp % bottom half of incident block matrix is null
rhs (bp+j)=0;

120 Chapter A Matlab Source Code

end

KJ=A\rhs.’; % invert matrix and solve for surface currents
J=KJ(1:bp);
K=KJ (bp+1:2xbp) ;

figure % plots surface current J and K magnitudes
plot(x,abs(J),’r-’,x,abs(K),’b-");

xlabel(’x’);

ylabel (’magnitude’);

title([’Plane wave at ’,num2str(thetadeg),’ degrees from grazing.’]);
legend(’abs(J)’,’abs(K)’);

A.26 timeinfo.m

% **x Displays the elapsed time information **x

fprintf (’\nElapsed time of indicated calculations: (in seconds) \n\n’)
fprintf (’Problem Setup: %g’,t1-t0)

fprintf (’\nNystrom Matrix Fill: Y%g’,t2-t1)

fprintf (’\nMatrix Inversion: %g’,t3-t2)

fprintf (’\nFar Field Intensity: %g’,t4-t3)

fprintf (’\nComparison Plots and Power Spectral Density: %g’,tb5-t4)
fprintf (’\nTotal: %g’,t5-t0)

fprintf(’\n’)

fprintf (’\n’)

A.27 TM.m

This file is called to execute a run for TM polarization. It references all the other
subfunctions which are called.

function TM % function so outputs and inputs can be specified by user
tO=cputime; % marks time at start of program

global llquadzw;

load llquadzw.txt; % weights and quadrature points for the linlog int

userinputs; 7% contains program parameters specified by user

constants; % defines constants

surfacesetup; 7% constructs scattering surfaces and quadrature points

% FFTsurf; 7 computes and displays power spectral density

nystromconstants; % defines constants used in filling and solving matricies

A.28 TMcylcon.m 121

tl=cputime;

TMnystromfill; 7% fills Nystrom matrix

t2=cputime;

TMsolvematrix; % solves matrix equation currents / defines inc. beam
t3=cputime;

TMfarfield; % solves for far field intensity as a function of angle
t4=cputime;

% TMcylcon; % analytic solution cylinder (change thevaldeg in far field)
% TMphysoptcompare; 7 compares plate solution to physical optics

% storedata; % stores the data in an output text file

tb=cputime;

timeinfo; % displays the elapsed time information

A.28 TMcylcon.m
This routine plots (5.19).

% **x* Analytic solution for TM cylindrical conductor *xx

a=r;
fO=besselj(0,2xpix*a)/besselh(0,2*pix*a);
an = 0:pi/1800:pi;
for ss = 1:length(an)
for mm = 1:100
fsum(mm)=(-1) . “mm.*2*cos (mm.*an(ss)) .*. ..
besselj(mm,2*pi*a)./besselh(mm,2*pi*a) ;
end
ftheta(ss)=-4*(fO+sum(fsum)); % factor of 4 makes normalization...
J» consistent w/ our notation
end
andeg = anx*x180/pi+180-thetadeg;
fintensity = abs(ftheta)."2;
figure
plot(thevaldeg,intensity,’r-’,andeg,fintensity,’g-’);
xlabel(’observation angle (degrees)’);
ylabel(’intensity’);
title([’Plane wave at ’,num2str(thetadeg),’ degrees from grazing.’]);
legend(’intensity’,’analytic solution TM cylinder conductor)’);

122 Chapter A Matlab Source Code

A.29 TMfarfield.m

This .m file calculates (3.73), which contains (3.69) and (3.70), for many observation
angles.

% **x solving for the far field amplitude as a function of angle **x*

% commented line is for viewing 360 degree view of scattered intensity
% active when looking at analytic cylinder solution

if len == 0 7 far field theta range (for circle & flat scatters)
thevaldeg = 0:360/thsteps:360;
else
thevaldeg = thetadeg-thrange/2:thrange/thsteps:thetadeg+thrange/2;
end
thevalr = thevaldeg*pi/180;

for v=1:thsteps+1
for g=1:patches

pvq = 4x(q-1);

B(v,pvg+1)=C3.*sterm(pvg+l) .*. ..
exp (-i*k0* (x (pvq+1) *cos (thevalr(v))+. ..
y(pvg+l)*sin(thevalr(v)))) .*x...
(eta0*J(pvg+1)+K(pvg+1l) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+1)))-...
cos(thevalr(v)) .*sin(atan(yp(pvg+1)))));

B(v,pvg+2)=C4.*sterm(pvg+2) .*. ..
exp (-i*k0* (x (pvg+2) *cos (thevalr(v))+. ..
y(pvg+2)*sin(thevalr(v)))) .*. ..
(eta0*J(pvq+2) +K(pvg+2) . *. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+2)))-...
cos(thevalr(v)) .xsin(atan(yp(pvg+2)))));

B(v,pvq+3)=C4.*sterm(pvqg+3) .*. ..
exp (-1*k0* (x (pvg+3) *cos (thevalr(v))+. ..
y(pvg+3)*sin(thevalr(v)))) .*...
(eta0*J(pvq+3)+K(pvg+3) . *. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+3)))-...
cos(thevalr(v)) .xsin(atan(yp(pvg+3)))));

B(v,pvq+4)=C3.*sterm(pvq+4) .*. ..
exp (-ixk0* (x (pvg+4) *cos (thevalr(v))+. ..
y(pvg+4) *sin(thevalr(v)))) .*...
(eta0*J(pvq+4)+K(pvg+4) . *. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+4)))-...

A.29 TMfarfield.m

123

end
end

for v=1:

for

end
end

for v=1:
for

cos(thevalr(v)) .xsin(atan(yp(pvg+4)))));

thsteps+1

g=patches+l:patches+tpatches

pvq = 4x(q-1);

B(v,pvg+1)=C3t.*...
exp (-1*k0* (x(pvg+1l) *cos (thevalr(v))+. ..
y(pvg+1l)*sin(thevalr(v)))) .*...
(etaO*J(pvg+1)+K(pvg+l)
(sin(thevalr(v)) .*cos(theta(pvqg+1l)+pi/2)-...
cos(thevalr(v)).*sin(theta(pvqg+1)+pi/2)));

B(v,pvq+2)=C4t.x*. ..
exp (-1*k0* (x(pvg+2) *cos (thevalr(v))+. ..
y(pvg+2) *sin(thevalr(v)))) .x...
(eta0*J(pvq+2) +K(pvg+2)
(sin(thevalr(v)) .*cos(theta(pvq+2)+pi/2)-...
cos(thevalr(v)).*sin(theta(pvg+2)+pi/2)));

B(v,pvq+3)=C4t.x*. ..
exp (-1*k0* (x(pvg+3) *cos (thevalr(v))+. ..
y(pvg+3) *sin(thevalr(v)))) .*...
(eta0*J(pvq+3) +K(pvg+3) .*. ..
(sin(thevalr(v)) .*cos(theta(pvq+3)+pi/2)-. ..
cos(thevalr(v)) .*sin(theta(pvg+3)+pi/2)));

B(v,pvq+4)=C3t.x*. ..
exp (-i*k0* (x (pvq+4) *cos (thevalr(v))+. ..
y(pvg+4) *sin(thevalr(v)))) .*...
(eta0*J(pvq+4) +K(pvg+4) .*. . .
(sin(thevalr(v)) .*cos(theta(pvq+4)+pi/2)-. ..
cos(thevalr(v)) .*sin(theta(pvq+4)+pi/2)));

thsteps+1
g=patches+tpatches+1:2*xpatches+tpatches
pvq = 4x(q-1);
B(v,pvg+1)=-C3.*sterm(pvq+1) .*. ..
exp (-ixk0* (x(pvg+1) *cos(thevalr(v))+. ..
y(pvg+1l)*sin(thevalr(v)))) .*...
(eta0*J(pvg+1)+K(pvg+l) .*. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+1)))-...
cos(thevalr(v)) .xsin(atan(yp(pvg+1)))));

124 Chapter A Matlab Source Code

B(v,pvq+2)=-C4.*sterm(pvq+2) .*. ..
exp (-1*k0* (x(pvg+2) *cos (thevalr(v))+. ..
y(pvg+2) *sin(thevalr(v)))) .*. ..
(eta0*J(pvq+2) +K(pvg+2) . *. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+2)))-...
cos(thevalr(v)) .xsin(atan(yp(pvg+2)))));

B(v,pvq+3)=-C4.*sterm(pvq+3) .*. ..
exp (-1*k0* (x (pvg+3) *cos (thevalr(v))+. ..
y(pvg+3)*sin(thevalr(v)))) .*...
(eta0*J(pvq+3)+K(pvg+3) . *. ..
(sin(thevalr(v)).*cos(atan(yp(pvg+3)))-...
cos(thevalr(v)) .*sin(atan(yp(pvq+3)))));

B(v,pvq+4)=-C3.*sterm(pvq+4) .*. ..
exp (-1*k0* (x (pvg+4) *cos (thevalr(v))+. ..
y(pvg+4) *sin(thevalr(v)))) .*...
(eta0*J(pvq+4)+K(pvg+4) . *. ..
(sin(thevalr(v)) .*cos(atan(yp(pvg+4)))-...
cos(thevalr(v)) .*sin(atan(yp(pvg+4)))));

end
end

for v=1:thsteps+1
for gq=2*patches+tpatches+1:2*(patches+tpatches)

pvq = 4x(q-1);

B(v,pvg+1)=C3t.x*. ..
exp (-1*k0* (x(pvg+1l) *cos (thevalr(v))+. ..
y(pvg+1)*sin(thevalr(v)))) .*...
(eta0*J(pvqg+1)+K(pvg+l) .*. ..
(sin(thevalr(v)) .*cos(theta(pvg+1l)+pi/2)-...
cos(thevalr(v)) .*sin(theta(pvq+1)+pi/2)));

B(v,pvq+2)=C4t.x*. ..
exp (-1*k0x* (x(pvg+2) *cos (thevalr(v))+. ..
y(pvg+2) *sin(thevalr(v)))) .*x...
(eta0*J(pvq+2) +K(pvqg+2) . *. ..
(sin(thevalr(v)) .*cos(theta(pvq+2)+pi/2)-. ..
cos(thevalr(v)) .*sin(theta(pvg+2)+pi/2)));

B(v,pvq+3)=C4t.x*. ..
exp (-ixk0* (x (pvg+3) *cos (thevalr(v))+. ..
y(pvg+3) *sin(thevalr(v)))) .*. ..
(eta0*J(pvq+3)+K(pvg+3) . *. ..
(sin(thevalr(v)) .*cos(theta(pvq+3)+pi/2)-. ..
cos(thevalr(v)) .*sin(theta(pvg+3)+pi/2)));

B(v,pvg+4)=C3t.*. ..

A.30 TMnystromfill.m 125

exp (-1*k0* (x(pvg+4) *cos (thevalr(v))+. ..
y(pvg+4) *sin(thevalr(v)))) .*...
(etaOxJ(pvq+4)+K(pvg+4)
(sin(thevalr(v)) .*cos(theta(pvq+4)+pi/2)-. ..
cos(thevalr(v)) .*sin(theta(pvq+4)+pi/2)));
end
end

B=B.x*i.*sqrt(i).*k0; % gets normalization and phase correct for field
field=sum(B.’); % computes far field amplitude

intensity = abs(field)."2; % computes far field intensity

figure

plot(thevaldeg,intensity,’r-’);

xlabel(’observation angle (degrees)’);

ylabel(’intensity’);

title([’Plane wave at ’,num2str(thetadeg),’ degrees from grazing.’]);
legend(’intensity’);

A.30 TMnystromfill.m

This .m file fills the Nystrom matrix of (3.46). It is broken up into patches which
contain singularities and patches which don’t. The patches which contain singularities
use (3.47) and (3.48). The patches which don’t contain singularities use (3.40) and
(3.41).

% **x fills Nystrom matrix *x*x

% Bottom K outside
for j=1:(2+(patches+tpatches)) % looping through observation points
pv = 4*x(j-1);
for 1=1:patches % looping through the patches
pvl = 4*x(1-1);
offset = (1-1)*pl;
if(j==1) % if the observation point is on the patch,
% we need to use a quadrature which
% integrates over the green function
% (see numerical methods section 18.3)
for m=1:4 7, these different m’s correspond to observation pts
pvm = pv + m;
singpt = x(m);

WO = cartK(0,pl,singpt,0,sppbot,dppbot,offset,k0);
W1l = cartK(0,pl,singpt,1,sppbot,dppbot,offset,k0)./dx;
W2 = cartK(0,pl,singpt,2,sppbot,dppbot,offset,k0)./dx."2;

126

Chapter A Matlab Source Code

end
else
for

end
end
end
end

W3 = cartK(0,pl,singpt,3,sppbot,dppbot,offset,k0)./dx."3;
A(pvm,pv+1)=(13.125.%W0-17.75.*W1+7.5.*W2-W3) . /6;
A(pvm,pv+2)=(-4.375.%W0+11.75.%W1-6.5.%xW2+W3) . /2;
A(pvm,pv+3)=(2.625.*%W0-7.75.%W1+5.5.*%W2-W3) . /2;
A(pvm,pv+4)=(-1.875.*W0+5.75.*%W1-4.5.xW2+W3) . /6;
A(pvm,pvm)=A(pvm,pvm)+.5;

n=1:4 % now filling off diagonal blocks...

pvn = pv + n;

A(pvn,pvl+l)=i*Cl*sterm(pvl+1)*...
besselh(1,k0*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..

(y(pvn) -y (pvl+1)) .~ 2))*k0/sqrt ((x(pvn) -x(pvl+l)) . 2+. ..

(y(pvn) -y (pvl+1)) .~ 2) .*x((y(pvn) -y (pvl+l)) .*. ..
cos(atan(yp(pvl+1)))-(x(pvn) -x(pvl+l)) .*. ..
sin(atan(yp(pvl+1))));
A(pvn,pvl+2)=i*C2*sterm(pvl+2)*. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+2)) . 2+. ..

(y(pvn) -y (pvl+2)).72))*k0/sqrt ((x(pvn) -x(pvl+2)) . 2+. ..

(y(pvn) -y (pvl+2)) .~ 2) .x((y(pvn) -y (pvl+2)) .*. ..
cos(atan(yp(pvl+2)))-(x(pvn) -x(pvl+2)) .*. ..
sin(atan(yp(pvl+2))));
A(pvn,pvl+3)=i*xC2*sterm(pvl+3)*. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..

(y(pvn) -y (pvl+3))."2))*k0/sqrt ((x(pvn) -x(pvl+3)) . 2+. ..

(y(pvn) -y (pvl+3)) .~ 2) .x((y(pvn) -y (pvl1+3)) .*. ..
cos(atan(yp(pvl+3)))-(x(pvn)-x(pvl+3)) .*. ..
sin(atan(yp(pvl1+3))));
A(pvn,pvl+4)=i*Clxsterm(pvl+4)*. ..
besselh(1,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..

(y(pvn) -y (pvl+d)) . 2))*k0/sqrt ((x(pvn) -x(pvl+4)) . 2+. ..

(y(pvn) -y (pvl+d)) . 2) .x((y(pvn) -y (pvl+d)) .*. ..
cos(atan(yp(pvl+d)))-(x(pvn)-x(pvli+d)) .*. ..
sin(atan(yp(pvl+4))));

bp = 8*(patches+tpatches);

% Bottom K inside
for j=1:(2x(patches+tpatches))

A.30 TMnystromfill.m 127

pv = 4x(j-1);
for 1=1:patches
pvl = 4x(1-1);
offset = (1-1)*pl;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = x(m);

WO = cartK(0,pl,singpt,0,sppbot,dppbot,offset,k);

W1l = cartK(0,pl,singpt,1,sppbot,dppbot,offset,k)./dx;

W2 = cartK(0,pl,singpt,2,sppbot,dppbot,offset,k)./dx."2;
W3 = cartK(0,pl,singpt,3,sppbot,dppbot,offset,k)./dx."3;

A(pvm+bp, pv+1)=(13.125. ¥W0-17 .75 . ¥W1+7 . 5. W2-W3) . /6 ;
A(pvm+bp,pv+2)=(-4.375.%W0+11.75.%W1-6.5.xW2+W3) . /2;
A(pvm+bp,pv+3)=(2.625.*%W0-7.75.%W1+5.5.%W2-W3) . /2;
A(pvm+bp,pv+4)=(-1.875.*%W0+5.75.%W1-4.5.%W2+W3) . /6;
A (pvm+bp, pvm) =A (pvm+bp,pvm) -.5;

end

else

for n=1:4
pvnh = pv + n;
A(pvn+bp,pvl+l)=i*Cl*sterm(pvli+1)*. ..

besselh(1l,k*sqrt ((x(pvn)-x(pvl+l)) . 2+...

(y(pvn) -y (pvl+1))."2))*k/sqrt ((x(pvn) -x(pvl+l)) . 2+. ..

(y(pvn) -y (pvl+1)) .~ 2) .x((y(pvn) -y (pvl+l)) .*. ..
cos(atan(yp(pvl+1)))-(x(pvn) -x(pvl+l)) .*. ..
sin(atan(yp(pvl+1))));
A(pvn+bp,pvl+2)=i*C2*sterm(pvl+2)*. ..
besselh(1,k*sqrt ((x(pvn)-x(pvl+2)) . 2+. ..
(y(pvn) -y (pvl+2)) .~ 2))*k/sqrt ((x(pvn) -x(pvl+2)) . 2+. ..
(y(pvn) -y (pvl+2)) .~ 2) .x((y(pvn) -y (pvl+2)) .*. ..
cos(atan(yp(pvl+2)))-(x(pvn) -x(pvl+2)) .*. ..
sin(atan(yp(pvl+2))));
A(pvn+bp,pvl+3)=i*xC2*sterm(pvl+3)*. ..
besselh(1,k*sqrt ((x(pvn)-x(pvl+3)) . 2+...
(y(pvn) -y (pvl+3))."2))*xk/sqrt ((x(pvn) -x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3)) .~ 2) .x((y(pvn) -y (pvl1+3)) .*. ..
cos(atan(yp(pvl+3)))-(x(pvn)-x(pvl+3)) .*. ..
sin(atan(yp(pvl+3))));
A(pvn+bp,pvl+4)=i*xCl*sterm(pvl+4)*. ..
besselh(1l,k*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2))*xk/sqrt ((x(pvn) -x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2) .x((y(pvn) -y (pvl+d)) .*. ..

128

Chapter A Matlab Source Code

end
end
end

end

cos(atan(yp(pvl+d)))-(x(pvn) -x(pvl+d)) .*. ..
sin(atan(yp(pvl+4))));

% Bottom J Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=1:patches
pvl = 4x(1-1);

offs

if (j==1)

else

et

for

end

for

(1-1)*pl;

m=1:4
pvm = pv + m;
singpt = x(m);

WO = cartJ(0,pl,singpt,0,sppbot,dppbot,offset,k0);

W1l = cartJ(0,pl,singpt,1,sppbot,dppbot,offset,k0)./dx;

W2 = cartJ(0,pl,singpt,2,sppbot,dppbot,offset,k0)./dx."2;
W3 = cartJ(0,pl,singpt,3,sppbot,dppbot,offset,k0)./dx."3;

A(pvm,bp+pv+1)=kO*etalx*. ..
(13.125.%W0-17.75.*%W1+7.5.*W2-W3) . /6;
A(pvm,bp+pv+2)=kO*etal*. ..
(-4.375.%W0+11.75.%W1-6.5.*W2+W3) . /2;
A(pvm, bp+pv+3)=kO*etalx*. . .
(2.625.*%W0-7.75.*W1+5.5.%W2-W3) . /2;
A(pvm,bp+pv+4)=kO0*etalx. ..
(-1.875.%W0+5.75.*%W1-4.5.xW2+W3) . /6;

n=1:4

pvn = pv + n;

A(pvn,bp+pvl+1)=kO*etaO*Cl*sterm(pvli+1)*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(pvn,bp+pvl+2)=k0*etalO*C2*sterm(pvl+2)*. . .
besselh(0,k0*sqrt ((x(pvn)-x(pvl+2)) .7 2+. ..
(y(pvn) -y (pvl+2))."2));

A(pvn,bp+pvl+3)=k0*etal0*C2*sterm(pvl+3)*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pv1+3))."2));

A(pvn,bp+pvl+4)=kO*eta0*Cl*sterm(pvl+4)*. ..

A.30 TMnystromfill.m 129

besselh(0,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d))."~2));
end
end
end
end

% Bottom J Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=1:patches
pvl = 4x(1-1);
offset = (1-1)*pl;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = x(m);

WO = cartJ(0,pl,singpt,0,sppbot,dppbot,offset, k);

W1l = cartJ(0,pl,singpt,1,sppbot,dppbot,offset,k)./dx;

W2 = cartJ(0,pl,singpt,2,sppbot,dppbot,offset,k)./dx."2;
W3 = cartJ(0,pl,singpt,3,sppbot,dppbot,offset,k)./dx."3;

A (bp+pvm, bp+pv+1l)=k*etax*. ..
(13.125.%W0-17.75.*W1+7.5.*xW2-W3) ./6;

A(bp+pvm, bp+pv+2) =k*etax. ..
(-4.375.%W0+11.75.%W1-6.5.*W2+W3) . /2;

A(bp+pvm, bp+pv+3) =k*etax*. ..
(2.625.*%W0-7.75.*W1+5.5.%W2-W3) . /2;

A(bp+pvm, bp+pv+4)=k*etax. ..
(-1.875.%W0+5.75.*%W1-4.5.xW2+W3) . /6;

end
else
for n=1:4

pvh = pv + n;

A(bp+pvn,bp+pvl+l)=k*eta*Clxsterm(pvl+1)*. ..
besselh(0,k*sqrt ((x(pvn) -x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(bp+pvn,bp+pvl+2)=k*eta*xC2*sterm(pvl+2) *. ..
besselh(0,k*sqrt ((x(pvn) -x(pvl+2)) . 2+. ..
(y(pvn) -y (pvl+2))."2));

A(bp+pvn,bp+pvl+3)=k*eta*xC2xsterm(pvl+3)*. ..
besselh(0,k*sqrt ((x(pvn) -x(pvl+3)) . 2+. ..
(y(pvn) -y (pv1+3))."2));

A(bp+pvn, bp+pvl+d)=k*eta*Cl*sterm(pvl+4) *. ..

130 Chapter A Matlab Source Code

besselh(0,kxsqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d))."2));
end
end
end
end

% Right Semicircle K Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+1): (patches+tpatches)
pvl = 4x(1-1);
offset=(1-patches-1)*tl-pi/2;
if (3==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;

WO = polK(0,tl,singpt,0,offset,k0,r);

W1l = polK(0,tl,singpt,1,offset,k0,r)./dtheta;

W2 = polK(0,tl,singpt,2,0ffset,k0,r)./dtheta."2;
W3 = polK(0,tl,singpt,3,o0ffset,k0,r)./dtheta."3;

A(pvm,pv+1)=(13.125.%W0-17.75.%W1+7.5.%W2-W3) . /6;

A(pvm,pv+2)=(-4.375.%W0+11.75.%W1-6.5.*xW2+W3) . /2;

A(pvm,pv+3)=(2.625.*%W0-7.75.%W1+5.5.*W2-W3) . /2;

A(pvm,pv+4)=(-1.875.*W0+5.75.*W1-4.5.*W2+W3) . /6;

A(pvm,pvm)=A(pvm,pvm)+.5;

end
else
for n=1:4

pvh = pv + n;

A(pvn,pvl+1)=ixClt*besselh(1l,kO*sqrt. ..
((x(pvn) -x(pvl+1l)) . 2+ (y(pvn) -y (pvl+1))."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvli+l)) . 2) .*. ..
((y(pvn) -y (pvl+1)) .*cos(theta(pvl+l)+pi/2)-...
(x(pvn)-x(pvl+l)) .*sin(theta(pvl+1)+pi/2));

A(pvn,pvl+2)=ixC2t*besselh(1,kO*sqrt. ..
((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)) ."2)) *k0/. ..
sqrt ((x(pvn) -x (pvl+2)) . 2+ (y(pvn) -y (pvl+2)) .72) .*. ..
((y(pvn) -y (pvl+2)) .*cos(theta(pvl+2)+pi/2)-. ..
(x(pvn)-x(pvl+2)) .*sin(theta(pvl+2)+pi/2));

A(pvn,pvl+3)=ixC2t*besselh(1,kO*sqrt. ..
((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3)) .~ 2)) *k0/. ..
sqrt ((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3)) . 2) .*...

A.30 TMnystromfill.m 131

((y(pvn) -y (pv1+3)) .*cos(theta(pvl+3)+pi/2)-. ..
(x(pvn) -x(pv1+3)) . *sin(theta(pvl+3)+pi/2));
A(pvn,pvl+4)=ixClt*besselh(1l,kO*sqrt. ..
((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) . 2) .*. ..
((y(pvn) -y (pvl+4)) .xcos(theta(pvl+d)+pi/2)-. ..
(x(pvn) -x(pvl+4)) .*sin(theta(pvl+4)+pi/2));
end
end

% Right Semicircle K Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+1): (patches+tpatches)

pvl = 4*x(1-1);
offset=(1-patches-1)*tl-pi/2;
if (3==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;

WO = polK(0,tl,singpt,0,offset,k,r);

W1l = polK(0,tl,singpt,1,offset,k,r)./dtheta;

W2 = polK(0,tl,singpt,2,o0ffset,k,r)./dtheta."2;
W3 = polK(0,tl,singpt,3,offset,k,r)./dtheta."3;

A(pvm+bp,pv+1)=(13.125 . ¥W0-17.75. ¥W1+7 . 5. ¥W2-W3) . /6;
A(pvm+bp, pu+2)=(-4.375. +W0+11.75. ¥W1-6.5 . ¥W2+W3) . /2;
A(pvm+bp,pv+3)=(2.625.*%W0-7.75.*W1+5.5.%W2-W3) . /2;
A(pvm+bp,pv+4)=(-1.875.%W0+5.75.*%W1-4.5.xW2+W3) . /6;
A(pvm+bp , pvm) =A (pvm+bp,pvm) -.5;
end
else
for n=1:4
pvh = pv + n;
A(pvn+bp,pvl+1)=ixClt*besselh(1l,k*sqrt. ..
((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvli+1)) ."2))*k/. ..
sqrt ((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+l)) . 2) .*. ..
((y(pvn) -y (pvl+1)) .*cos(theta(pvl+1)+pi/2)-. ..
(x(pvn)-x(pvl+l)) .*sin(theta(pvl+1)+pi/2));
A(pvn+bp,pvl+2)=i*xC2t*besselh(1l,k*sqrt. ..
((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)) ."2)) *k/. ..
sqrt ((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2))."2) .*. ..

132 Chapter A Matlab Source Code

((y(pvn) -y (pv1+2)) .*cos(theta(pvl+2)+pi/2)-. ..
(x(pvn) -x (pvl+2)) . *sin(theta(pvl+2)+pi/2));

A(pvn+bp,pvl+3)=i*C2t*besselh(1l,k*sqrt. ..
((x(pvn) -x(pv1+3)) . 2+ (y(pvn) -y (pvl+3)) . 2)) *k/. ..
sqrt ((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3))."2) .*. ..
((y(pvn) -y (pv1+3)) .*cos(theta(pvl+3)+pi/2)-. ..
(x(pvn)-x(pvl+3)) .*sin(theta(pvl+3)+pi/2)) ;

A(pvn+bp,pvl+d)=i*xClt*besselh(l,k*sqrt. ..
((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvli+d)) . 2))*k/. ..
sqrt ((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) . 2) .*. ..
((y(pvn) -y (pvl+4)) .*cos(theta(pvl+d)+pi/2)-. ..
(x(pvn) -x(pvl+4)) .*sin(theta(pvl+d)+pi/2));

end
end
end
end

% Right Semicircle J Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+1): (patches+tpatches)
pvl = 4%(1-1);
offset=(1-patches-1)*tl-pi/2;
if (§==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polJ(0,tl,singpt,0,offset,k0,r);
Wl = polJ(0,tl,singpt,1,o0ffset,k0,r)./dtheta;
W2 = polJ(0,tl,singpt,2,0ffset,k0,r)./dtheta."2;
W3 = polJ(0,tl,singpt,3,0ffset,k0,r)./dtheta."3;
A(pvm,bp+pv+1)=kO*etalx*. ..
(13.125.%W0-17.75.*W1+7.5.*xW2-W3) ./6;
A(pvm,bp+pv+2)=kO*etalx*. ..
(-4.375.%W0+11.75.%W1-6.5.*W2+W3) . /2;
A(pvm,bp+pv+3)=k0*etal*. ..
(2.625.%W0-7.75.%W1+5.5.xW2-W3) . /2;
A(pvm, bp+pv+4)=kO*etalx*. . .
(-1.875.%W0+5.75.%W1-4.5.%W2+W3) . /6;

end
else
for n=1:4
pvnh = pv + n;

A.30 TMnystromfill.m

133

A(pvn,bp+pvl+1)=kO*etaO*Clt*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(pvn,bp+pvl+2)=k0*eta0*C2tx*. . .
besselh(0,k0*sqrt ((x(pvn)-x(pvl+2)) .7 2+. ..
(y(pvn) -y (pvl+2))."2));

A(pvn,bp+pvl+3)=kO*etalO*C2t*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+3)). 2+. ..
(y(pvn) -y (pvl+3))."2));

A(pvn,bp+pvl+4)=kO*eta0*Cltx*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2));

end
end
end
end

% Right Semicircle J Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+1): (patches+tpatches)
pvl = 4%(1-1);
offset=(1-patches-1)*tl-pi/2;
if (§==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polJ(0,tl,singpt,0,offset,k,r);
Wl = polJ(0,tl,singpt,1,offset,k,r)./dtheta;
W2 = polJ(0,tl,singpt,2,0ffset,k,r)./dtheta."2;
W3 = polJ(0,tl,singpt,3,o0ffset,k,r)./dtheta."3;
A(bp+pvm, bp+pv+1l)=k*etax*. ..
(13.125.%W0-17.75.*W1+7.5.*W2-W3) ./6;
A(bp+pvm, bp+pv+2) =k*etax. ..
(-4.375.%W0+11.75.%W1-6.5.*W2+W3) . /2;
A(bp+pvm, bp+pv+3)=k*etax. ..
(2.625.%W0-7.75.%W1+5.5.xW2-W3) . /2;
A (bp+pvm, bp+pv+4) =k*etax. ..
(-1.875.%W0+5.75.%W1-4.5.%W2+W3) . /6;

end
else
for n=1:4
pvnh = pv + n;

134

Chapter A Matlab Source Code

end
end
end

% Top K outs

end

ide

A(bp+pvn,bp+pvl+l)=k*eta*xCltx. ..

besselh(0,k*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(bp+pvn,bp+pvl+2)=k*eta*xC2tx*. ..

besselh(0,k*sqrt ((x(pvn) -x(pvl+2)) . 2+. ..
(y(pvn) -y (pvl+2))."2));

A(bp+pvn, bp+pvl+3)=k*eta*xC2tx*. ..

besselh(0,k*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3))."2));

A(bp+pvn, bp+pvl+4)=k*etaxClt*. ..

besselh(0,kxsqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d)) . 2));

for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+tpatches+1): (2*patches+tpatches)

pvl = 4%(1-1);

offs

et

if (j==1)
for m=1:4

pvm = pv + m;

singpt = x(5-m);

WO = cartK(0,pl,singpt,0,spptop,dpptop,offset,k0);

else

end

for

Wi
W2
W3

(2xpatches+tpatches-1)*pl;

cartK(0,pl,singpt,1,spptop,dpptop,offset,k0)./dx;
cartK(0,pl,singpt,2,spptop,dpptop,offset,k0)./dx."2;
cartK(0,pl,singpt,3,spptop,dpptop,offset,k0)./dx."3;

A(pvm,pv+1)=-(13.125.%W0-17.75.*xW1+7.5.%W2-W3) . /6;
A(pvm, pv+2)=-(~4.375.%W0+11.75. *W1-6.5. ¥W2+W3) . /2;
A(pvm,pv+3)=-(2.625.*xW0-7.75.%W1+5.5. xW2-W3) . /2;
A(pvm,pv+4)=-(-1.875.%W0+5.75.%W1-4.5.%xW2+W3) . /6;
A(pvm,pvm)=A(pvm,pvm)+.5;

n=1:4
pvh = pv + n;
A(pvn,pvl+1)=-i*Cl*sterm(pvl+1)*besselh(1l,kO*sqrt. ..

((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+1)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+1))."2) .*. ..

A.30 TMnystromfill.m 135

((y(pvn) -y (pvl+1)) .*cos(atan(yp(pvli+1)))-. ..
(x(pvn)-x(pvl+l)) .*sin(atan(yp(pvl+1))));

A(pvn,pvl+2)=-i*C2*xsterm(pv1l+2)*besselh(1l,kO*sqrt. ..
((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)) .~2)) *k0/. ..
sqrt ((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)).72) .*. ..
((y(pvn) -y (pv1l+2)) .*cos(atan(yp(pvl+2)))-. ..
(x(pvn)-x(pvl+2)) .*sin(atan(yp(pvl+2))));

A(pvn,pvl+3)=-i*C2*sterm(pv1+3) *besselh(1,kO*sqrt. ..
((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3))."2) .*. ..
((y(pvn) -y (pvl+3)) .*cos(atan(yp(pvl+3)))-...
(x(pvn)-x(pvl+3)) .*sin(atan(yp(pvl+3))));

A(pvn,pvl+4)=-i*Cl*sterm(pvl+4) *besselh(1,kO*sqrt. ..
((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) . 2) .*. ..
((y(pvn) -y (pvl+4)) .*cos(atan(yp(pvli+d)))-. ..
(x(pvn)-x(pvl+d)) .*sin(atan(yp(pvl+d))));

end
end
end
end

% Top K Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+tpatches+1): (2*patches+tpatches)
pvl = 4x(1-1);
offset = (2*patches+tpatches-1)x*pl;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = x(5-m);

WO = cartK(0,pl,singpt,0,spptop,dpptop,offset, k);

Wl = cartK(0,pl,singpt,1,spptop,dpptop,offset,k)./dx;

W2 = cartK(0,pl,singpt,2,spptop,dpptop,offset,k)./dx."2;
W3 = cartK(0,pl,singpt,3,spptop,dpptop,offset,k)./dx."3;

A(bp+pvm,pv+1)=-(13.125. ¥W0-17.75 . ¥W1+7.5. *W2-W3) . /6;
A(bp+pvm, pv+2) == (-4.375 . ¥W0+11.75 . ¥W1-6.5 . ¥W2+W3) . /2;
A(bp+pvm, pv+3)=-(2.625.*WO0-7.75.*W1+5.5. xW2-W3) . /2;
A(bp+pvm,pv+4)=-(-1.875.%W0+5.75.*W1-4.5 . %xW2+W3) . /6;
A(bp+pvm, pvm)=A (bp+pvm,pvm) -.5;
end
else

136 Chapter A Matlab Source Code

for n=1:4

pvh = pv + n;

A(bp+pvn,pvl+l)=-i*Cl*sterm(pvl+l)*besselh(1l,k*sqrt...
((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvli+1l)) . 2))*k/. ..
sqrt ((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+1l))."2) .*. ..
((y(pvn) -y (pvl+1)) .*cos(atan(yp(pvli+1)))-. ..
(x(pvn)-x(pvl+l)) .*sin(atan(yp(pvl+1))));

A(bp+pvn,pvl+2)=-i*C2*sterm(pv1+2) *besselh(1,k*sqrt. ..
((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)) .7 2)) *k/. ..
sqrt ((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2))."2) .*. ..
((y(pvn) -y (pv1l+2)) .*cos(atan(yp(pvli+2)))-. ..
(x(pvn) -x(pvl+2)) .*sin(atan(yp(pvl+2))));

A(bp+pvn,pvl+3)=-i*C2*sterm(pv1+3) *besselh(1,k*sqrt. ..
((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3)) ."2))*k/. ..
sqrt ((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3))."2) .*. ..
((y(pvn) -y (pv1+3)) .*cos(atan(yp(pvl+3)))-...
(x(pvn) -x (pv1+3)) .*sin(atan(yp(pvl+3))));

A(bp+pvn,pvl+d)=-i*Cl*sterm(pvl+4)*besselh(1,k*sqrt. ..
((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvli+d)) . 2))*k/. ..
sqrt ((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) . 2) .*. ..
((y(pvn) -y (pvl+4)) .*cos(atan(yp(pvli+d)))-. ..
(x(pvn)-x(pvl+d)) .*sin(atan(yp(pvl+d))));

end
end
end
end

% Top J Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+tpatches+1): (2*patches+tpatches)
pvl = 4x(1-1);
offset = (2xpatches+tpatches-1)*pl;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = x(5-m);

WO = cartJ(0,pl,singpt,0,spptop,dpptop,offset,k0);

Wl = cartJ(0,pl,singpt,1,spptop,dpptop,offset,k0)./dx;

W2 = cartJ(0,pl,singpt,2,spptop,dpptop,offset,k0)./dx."2;
W3 = cartJ(0,pl,singpt,3,spptop,dpptop,offset,k0)./dx."3;

A(pvm,bp+pv+1)=-kO*etal*. ..
(13.125.%W0-17.75.*%W1+7 .5 . %W2-W3) . /6;

A.30 TMnystromfill.m 137

A(pvm,bp+pv+2)=-kO*etalx*. . .
(-4.375.%W0+11.75.%W1-6.5.%W2+W3) . /2;
A(pvm,bp+pv+3)=-kO*etal*. ..
(2.625.%W0-7.75.%W1+5.5.xW2-W3) . /2;
A(pvm,bp+pv+4)=-kO*etal*. ..
(-1.875.%W0+5.75.%W1-4.5.xW2+W3) . /6;
end
else
for n=1:4
pvn = pv + n;
A(pvn,bp+pvl+1)=-kO*etaO*Cl*sterm(pvl+1)*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+1l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));
A(pvn,bp+pvl+2)=-k0*eta0*C2xsterm(pvl+2) *. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+2)) .7 2+. ..
(y(pvn) -y (pv1+2))."2));
A(pvn,bp+pvl+3)=-k0*etaO*C2*sterm(pvl+3) *. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pv1+3))."2));
A(pvn,bp+pvl+4)=-kO*etaO*Clxsterm(pvl+4) *. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d))."~2));
end
end
end
end

% Top J Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(patches+tpatches+1): (2*patches+tpatches)
pvl = 4x(1-1);
offset = (2xpatches+tpatches-1)*pl;
if (j==1)
for m=1:4
pvm = pv + m;
singpt = x(5-m);

WO = cartJ(0,pl,singpt,0,spptop,dpptop,offset, k);

Wl = cartJ(0,pl,singpt,1,spptop,dpptop,offset,k)./dx;

W2 = cartJ(0,pl,singpt,2,spptop,dpptop,offset,k)./dx."2;
W3 = cartJ(0,pl,singpt,3,spptop,dpptop,offset,k)./dx."3;

A(bp+pvm, bp+pv+l)=-k*etax. ..
(13.125.%W0-17.75.*%W1+7 .5 . %W2-W3) . /6;

138 Chapter A Matlab Source Code

A(bp+pvm, bp+pv+2)=-k*etax. ..
(-4.375.%W0+11.75.%W1-6.5.%W2+W3) . /2;

A(bp+pvm, bp+pv+3) =—k*etax. ..
(2.625.%W0-7.75.%W1+5.5.xW2-W3) . /2;

A(bp+pvm, bp+pv+4)=-k*etax. ..
(-1.875.%W0+5.75.*%W1-4.5.xW2+W3) . /6;

end
else
for n=1:4

pvn = pv + n;

A(bp+pvn, bp+pvl+l)=-k*eta*xClxsterm(pvl+1)*. ..
besselh(0,k*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(bp+pvn,bp+pvl+2)=-k*eta*xC2xsterm(pvl+2)*. ..
besselh(0,k*sqrt ((x(pvn) -x(pvl+2)) . 2+. ..
(y(pvn) -y (pv1+2))."2));

A(bp+pvn, bp+pvl+3)=-k*eta*xC2*xsterm(pvl+3)*. ..
besselh(0,k*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pvl+3))."2));

A(bp+pvn,bp+pvl+4d)=-k*eta*Cl*sterm(pvl+4)*. ..
besselh(0,k*sqrt ((x(pvn) -x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+4d))."~2));

end
end
end
end

% Left Semicircle K Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(2*patches+tpatches+1) :2x(patches+tpatches)
pvl = 4x(1-1);
offset=(1-2*patches-tpatches-1)*tl+pi/2;
if (3==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polK(0,tl,singpt,0,offset,k0,r);

W1l = polK(0,tl,singpt,1,o0ffset,k0,r)./dtheta;
W2 = polK(0,tl,singpt,2,0ffset,k0,r)./dtheta."2;
W3 = polK(0,tl,singpt,3,0ffset,k0,r)./dtheta."3;

A(pvm,pv+1)=(13.125.%W0-17.75.*%W1+7.5.%W2-W3) . /6;
A(pvm,pv+2)=(-4.375.%W0+11.75.%W1-6.5.*xW2+W3) . /2;

A.30 TMnystromfill.m 139

A(pvm,pv+3)=(2.625.%W0-7.75.¥W1+5.5.%W2-W3) . /2;
A(pvm, pv+4)=(-1.875 . ¥W0+5.75 . ¥W1-4.5 . ¥W2+W3) . /6;
A(pvm,pvm)=A(pvm,pvm)+.5;
end
else
for n=1:4
pvh = pv + n;
A(pvn,pvl+1)=i*Clt*besselh(1,k0*sqrt. ..
((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+1)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+l))."2) .*. ..
((y(pvn) -y (pvl+1)) .*cos(theta(pvl+l)+pi/2)-. ..
(x(pvn) -x(pvl+l)) .*sin(theta(pvl+l)+pi/2));
A(pvn,pvl+2)=i*C2t*besselh(1,k0*sqrt. ..
((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)) .~ 2)) *k0/. ..
sqrt ((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)).72) .*. ..
((y(pvn) -y (pv1+2)) .*cos(theta(pvl+2)+pi/2)-. ..
(x(pvn)-x(pvl+2)) .*sin(theta(pvl+2)+pi/2));
A(pvn,pvl+3)=i*C2t*besselh(1,k0*sqrt. ..
((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3)) ."2)) *k0/. ..
sqrt ((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3))."2) .*. ..
((y(pvn) -y (pv1+3)) .*cos(theta(pvl+3)+pi/2)-. ..
(x(pvn) -x (pv1+3)) . *sin(theta(pvl+3)+pi/2));
A(pvn,pvl+4)=ixClt*besselh(1l,kO*sqrt. ..
((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) ."2))*k0/. ..
sqrt ((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvl+d)) . 2) .*. ..
((y(pvn) -y (pvl+4)) .*xcos(theta(pvl+d)+pi/2)-. ..
(x(pvn)-x(pvl+4d)) .*sin(theta(pvl+4)+pi/2));
end
end
end
end

% Left Semicircle K Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(2*patches+tpatches+1) :2x(patches+tpatches)
pvl = 4x(1-1);
offset=(1-2*patches-tpatches-1)*tl+pi/2;
if (3==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polK(0,tl,singpt,0,offset,k,r);

140 Chapter A Matlab Source Code

W1l = polK(0,tl,singpt,l,offset,k,r)./dtheta;
W2 = polK(0,tl,singpt,2,0ffset,k,r)./dtheta."2;
W3 = polK(0,tl,singpt,3,offset,k,r)./dtheta."3;

A(bp+pvm,pv+1)=(13.125.%W0-17.75.%W1+7.5.%W2-W3) . /6;
A(bp+pvm, pv+2)=(-4.375 . %W0+11.75. *W1-6.5. ¥W2+W3) . /2;
A(bp+pvm, pv+3)=(2.625 . ¥W0-7 .75 . ¥W1+5.5 . ¥W2-W3) . /2;
A(bp+pvm,pv+4)=(-1.875.%W0+5.75.*W1-4.5.*W2+W3) . /6;
A (bp+pvm, pvm) =A (bp+pvm, pvm)-.5;
end
else
for n=1:4
pvh = pv + n;
A(bp+pvn,pvl+1)=i*xClt*besselh(l,k*sqrt. ..
((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvli+1l)) . 2))*k/. ..
sqrt ((x(pvn) -x(pvl+1)) . 2+ (y(pvn) -y (pvl+l))."2) .*. ..
((y(pvn) -y (pvl+1)) .*cos(theta(pvl+l)+pi/2)-. ..
(x(pvn)-x(pvl+l)) .*sin(theta(pvl+1)+pi/2));
A(bp+pvn,pvl+2)=i*xC2t*besselh(l,k*sqrt. ..
((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2)) .7 2)) *k/. ..
sqrt ((x(pvn) -x(pvl+2)) . 2+ (y(pvn) -y (pvl+2))."2) .*. ..
((y(pvn) -y (pv1+2)) .*cos(theta(pvl+2)+pi/2)-. ..
(x(pvn) -x(pvl+2)) .*sin(theta(pvl+2)+pi/2));
A(bp+pvn,pvl+3)=i*C2t*besselh(1l,k*sqrt. ..
((x(pvn) -x(pv1+3)) . 2+ (y(pvn) -y (pvl+3)) . 2))*k/. ..
sqrt ((x(pvn) -x(pvl+3)) . 2+ (y(pvn) -y (pvl+3))."2) .*. ..
((y(pvn) -y (pv1+3)) .*cos(theta(pvl+3)+pi/2)-. ..
(x(pvn) -x (pv1+3)) . *sin(theta(pvl+3)+pi/2));
A(bp+pvn,pvl+4)=i*Clt*besselh(1l,k*sqrt. ..
((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvli+d)) . 2))*k/. ..
sqrt ((x(pvn) -x(pvl+4)) . 2+ (y(pvn) -y (pvli+d))."2) .*. ..
((y(pvn) -y (pvl+4)) .*cos(theta(pvl+d)+pi/2)-. ..
(x(pvn)-x(pvl+4d)) .*sin(theta(pvl+4)+pi/2));
end
end
end
end

% Left Semicircle J Outside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(2*patches+tpatches+1) :2x(patches+tpatches)
pvl = 4x(1-1);
offset=(1-2*patches-tpatches-1)*tl+pi/2;

A.30 TMnystromfill.m

141

if (j==1)
for m=1:4
pvm = pv + m;
singpt = theta(4*patches+m)+pi/2;
WO = polJ(0,tl,singpt,0,o0ffset,k0,r);

Wl = polJ(0,tl,singpt,1,offset,k0,r)./dtheta;
W2 = polJ(0,tl,singpt,2,0ffset,k0,r)./dtheta."2;
W3 = polJ(0,tl,singpt,3,0ffset,k0,r)./dtheta."3;

A(pvm,bp+pv+1)=kO*etal*. ..
(13.125.#W0-17.75.*%W1+7.5.%W2-W3) . /6;

A(pvm,bp+pv+2)=kO*etalx*. ..
(-4.375.%W0+11.75.%W1-6.5.%W2+W3) . /2;

A(pvm,bp+pv+3)=k0*etalx*. ..
(2.625.%W0-7.75.%W1+5.5.xW2-W3) . /2;

A(pvm,bp+pv+4)=k0*etal*. ..
(-1.875.%W0+5.75.*%W1-4.5.xW2+W3) . /6;

end
else
for n=1:4

pvh = pv + n;

A(pvn,bp+pvl+l)=kO*etalO*Clt*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+l)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(pvn,bp+pvl+2)=k0O*eta0*C2tx*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+2)) .7 2+. ..
(y(pvn) -y (pvl+2))."2));

A(pvn,bp+pvl+3)=k0*eta0*C2tx*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+3)) . 2+. ..
(y(pvn) -y (pv1+3))."2));

A(pvn,bp+pvl+4)=kO*eta0*Cltx*. ..
besselh(0,k0*sqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y(pvn) -y (pvl+d))."2));

end
end
end
end

% Left Semicircle J Inside
for j=1:(2x(patches+tpatches))
pv = 4x(j-1);
for 1=(2*patches+tpatches+1) :2x(patches+tpatches)
pvl = 4x(1-1);
offset=(1-2*patches-tpatches-1)*tl+pi/2;

142 Chapter A Matlab Source Code

if (j==1)
for m=1:4

pvm = pv + m;

singpt = theta(4*patches+m)+pi/2;

WO = polJ(0,tl,singpt,0,offset,k,r);

Wl = polJ(0,tl,singpt,l,offset,k,r)./dtheta;

W2 = polJ(0,tl,singpt,2,0ffset,k,r)./dtheta."2;

W3 = polJ(0,tl,singpt,3,offset,k,r)./dtheta."3;

A(bp+pvm, bp+pv+1l)=k*etax. ..
(13.125.%W0-17.75.*%W1+7.5.*xW2-W3) . /6;

A(bp+pvm, bp+pv+2) =k*etax*. ..
(-4.375.%W0+11.75.*W1-6.5.*xW2+W3) . /2;

A(bp+pvm, bp+pv+3)=k*etax. ..
(2.625.%W0-7.75.*%W1+5.5.*xW2-W3) ./2;

A(bp+pvm, bp+pv+4)=k*etax. ..
(-1.875.*%W0+5.75.*%W1-4.5.*W2+W3) . /6;

end
else
for n=1:4

pVIl=pV+n;

A(bp+pvn,bp+pvl+l)=kketa*xCltx. . .
besselh(0,k*sqrt ((x(pvn)-x(pvl+1)) . 2+. ..
(y(pvn) -y (pvl+1))."2));

A(bp+pvn,bp+pvl+2) =k*eta*xC2t*. . .
besselh(0,k*sqrt ((x(pvn)-x(pvl+2)) . 2+. ..
(y(pvn) -y (pv1+2))."2));

A(bp+pvn, bp+pvl+3)=k*eta*C2tx. . .
besselh(0,kxsqrt ((x(pvn)-x(pvl+3)). 2+. ..
(y(pvn) -y (pvl+3))."2));

A(bp+pvn, bp+pvl+d) =kketa*xClt*. . .
besselh(0,kxsqrt ((x(pvn)-x(pvl+d)) . 2+. ..
(y (pvn) -y (pvl+4)) ."2));

end
end
end
end

A.31 TMphysoptcompare.m

This function calls TMphysoptics.m.

% **x compares plat solution to physical optics (TM) *x*x

A.32 TMphysoptics.m 143

[physang, physint] = TMphysoptics(len, thetar, thevalr);
reflect=max(intensity)/max(physint);

figure

plot(thevaldeg,intensity,’r-’,physang,physint,’g-’);

xlabel (’observation angle (degrees)’);

ylabel(’intensity’);

title([’Plane wave at ’,num2str(thetadeg),’ degrees from grazing.’]);
legend(’intensity’, ’phys optics TM plate conductor’);

A.32 TMphysoptics.m

This plots the TM physical optics solution given by 5.17).

% **x analytic physical optics approximation flat plate (TM) *x*x
function [angle intensity] = TMphysoptics(len, thetar, thevalr)
angle = thevalr*180/pi;

field = i*sqrt(i)*4*sin(thetar).*sin(pi*len.x*. ..

(cos(thetar)-cos(thevalr)))./(cos(thetar)-cos(thevalr));
intensity = abs(field)."2;

A.33 TMsolvematrix.m

This .m file solves (3.46).

% **x* solve matrix and define incident beam *x*x

rhs=exp (i*k0.*(cos(thetar) .*x-sin(thetar).*y)); % incident plane wave
%» the following comments section is the code for a tapered beam

% rhs = erf(20/len*((len/2-5E-8)-abs((y+t/2)/tan(thetar)+len/2-x)));
% for g=1:length(rhs)

b if rhs(g)< 0
yA rhs(g)=0;
% end

% end

% rhs=rhs.*exp(i*k0.*(cos(thetar).*x+sin(thetar).*y));

for j=1:bp % bottom half of incident block matrix is null
rhs (bp+j)=0;
end

144 Chapter A Matlab Source Code

KJ=A\rhs.’; % invert matrix and solve for surface currents
K=KJ(1:bp);
J=KJ (bp+1: 2%bp) ;

figure % plots surface current J and K magnitudes
plot(x,abs(J),’r-’,x,abs(K),’b-");

xlabel(’x7);

ylabel (’magnitude’);

title([’Plane wave at ’,num2str(thetadeg),’ degrees from grazing.’]);
legend(’abs(J)’,’abs(K)’);

A.34 userinputs.m

% **x parameters to be toggled by user **x

len = 50; % length of the straight sections of the scatterer

patches = 100; % num patches (4 pts each) for each straight section

t = 0.5; % thickness of the scatterer

tpatches = 10; % num patches (4 pts each) for each curved section

n = 1E10; % real part of complex index of refraction

beta = 0; % imaginary part of complex index of refraction

thetadeg = 90; % incident angle from grazing

rfreq = 2; % spacing per random surface point (units of wavelengths/point)
rheightbot = 0; % std dev of normal random number distribution (bot)
rheighttop = 0; % std dev of normal random number distribution (top)
fixsurfacebot = 1; % if 1, WON’T generate new random surface, else will
inpstatebot = 25; % random generator seed (when fixsurface = 1)
fixsurfacetop = 1; % if 1, WON’T generate new random surface, else will
inpstatetop = 5; % random generator seed (when fixsurface = 1)
correlatedroughness = 2; %if 1, surfaces ARE CORRELATED. If 2, not.
thrange = 20; % range of theta scan, centered around thetadeg in degrees
thsteps = 1000; % number of points to evaluate theta scan at

A.35 1lquadzw.txt

These are the quadrature points and weights of the linlog quadrature rule. The first
column contains the quadrature positions on the interval from 0 to 1. The second
column contains the weights.

0.36787944117144233 1.0
0.08829686513765302 0.29849989370552493

A.35 1llquadzw.txt

145

.6751864909098872 0.
.028811662530951833
.3040637296121377 0.
.8116692253440781 0.
.011802590997844918
.1428256799774837 0.
.4892015226545745 0.
.8786799740691837 0.
.0056522282050800975
.07343037174265227 0.
.28495740446255813 0.
.6194822640847784 O.
.9157580830046983 0.
.003025802137546259
.04097825415595061 0.
.1708632955268773 0.
.41325570884479323 0.
.7090951467906286 O.
.9382395903771671 0.
.0017596521184657743
.024469650712513367
.10674805685878895
.2758076412959174
.5178551421518337
.7718154853623849
.9528413405810906
.0010906939419218229
.01544065354637409
.06943486210070215
.18744324425543704
.373304421343093
.6004940136993973
.8168773397346666
.962839759269448
.110732887084292E-4
.010194533026254907
.04683386722112451 O.
.13036783136513153 0.
.27044725718891177 0.
.45831945709512795 0.
.6654446330703512 0.
.850116729849269 0.
.9699770448705807 O.

0
0
0.
0
0

O O O O OO OO NVNO OOOOO OO OODOODODODODODODODOOOOOOOOOOOO OO oo
O O O O O O O

7015001062944751
0.10333070796492864
4546365259700987
44203276606497266
0.043391028778414394
24045209765946068
42140345225977593
294753421302349
0.021046945791854628
1307055407444467
28970230167131417
3502203701203987
2083248416719858
0.01135133881727261
07524106995491653
18879004161541635
2858207218272273
2844864278914088
1543103998937584
0.006632666319025705
0.04579970797847534

.1238402080713182
.21210192602381192

2613906456720077

.23163618029090938
.11859866564445172

0.004124301185198343

.029270379674687295
.08311406745317
.15372167034228773
.21349760952226085
.23187027244357505
.19053623904036773
.09386546033845297

0.0026948911490209727

0.019498064752635148
05727368794913122
11155101434875819
1671748768632406
20369711869471113
20338245316419987
15865527983010627
07607261324819661

146

Chapter A Matlab Source Code

O O O O O OO OO, OO OO ODOODOODOONOODODODODODODOIOOWOOOO OO O O O

.829617106896295E-4
.006988629214315765
.03261139659467763 0.
.09282575738916596 0.
.1983272568954038
.3488801429793532
.5304405557879561
.7167646485116551
.8752345575062336
.9752456986843929
.3932415013438556E-4
.00494463807238221 0.
.023346589135108006
.06757652642306404
.14759528165052643
.26692816830234756
.41984102340899343
.5909773692263063
.757700134502519
.8946267613136245
.9792436163211115
.452842649772222E-4
.0035936980202136916
.017122925951596143
.0560205612323188195
.11152358555736257
.20600300290512397
.3324626975136065
.48260670096593195
.6416794701239928
.7907090871833554
.9098838287655626
.9823479377157619
.8165420441651812E-4
.002672848790349611
.012826941530277098
.03799312075154549
.08552172002897618
.1606063564168977
.26444144362260075
.3931134303360546
.5374984949295463
.6842354027020987

O O O O O

0.

O O O O O O oo

0
0
0
0
0
0
0
0

O O O O O O O

0.001833400073789845

0.013453122345991789
040497194316958335
0818223696589036

.12919234277013755
.16954531954725874
.1891002165329956
.17796575396147055
.1337247706154615

06286551017703246
0.0012897363421949574

009564701864401512
0.02932398914942156

.06087210046049704
.09980233008453562
.13791440941591387
.16563115850838504

.17310985679474128
.15600833092113442
.11400004591177339
.056280291397153589

9.331998830671429E-4
0.006977495915143716
0.021694689021998535
0.04597069439559112

.07752703869583179
.1112525181837396

.14027310600858334
.15751713008682963
.15740834222364897
.13728383271778585
.09819669547418951
.04496525739359079

6.91641401275959E-4
0.005204839576802011
0.016362516262130273

.03523203708791365
.060722504576943524
.08966498999672999
.11735480146848429
.1384519468445716
.14805886310048344
.14275543615167516

A.35 1llquadzw.txt

147

.8176214868732855 0.
.9220884082406747 O.
.984805887437127 0.
.3736861500404895E-4
.002028188140373322
.009789363220505977
.029232593990232005
.06650290968077247 0.
.12654623966481734 0.
.21170110252714167 0.
.3206896875245348
.4482154478386415
.5852679227476645
.7201097110240036
.839797854076572
.9319950782450486
.9867849013246821 0.
.05678454845862939E-4
.0015662438361678174
.007595218903207093
.022831067393986233
.056238863015682001
.10075868520121296
.1707407688499433
.2625912061189931
.37353650518455805
.49774635841453346
.6267890313923734
.7505161034614076
.8582553352078606
.9401412912123458
.9884015959863418
.277309234714502E-5
.0012283757008173626
.0059798715382018705
.018073696699772948
.0417672109064258
.08103861272100588
.1387787920651679
.21609636938067214
.31184282304458977
.4224350419037976
.54201190563274876

O O O O O O

O O O O OO OO OO VMO O OO ODODODODODODOODOOFHFH OOODODODODODODOOOOOEH OOoOOoO

O O O O O O O

12137759295266985
08537824790248698
03874458267783327
5.233455038223549E-4
0.003958788126865641
0.012555495593581581
0.02738139830137573
0480077023917984
07248603484128054
09761767696993331

.11947159388777363
.13406137156047615
.13806138726285247
.12943411529068025
.10785514448265467
.0748594992983696

03372644648853567
4.0321772464846156E-4
0.0030629784347870025
0.009784212118766145
0.02155875222558126

.03832306737088916
.056889819902630038
.08111702993925952
.10212210197206864
.1187890590304013
.12821031644669392
.1281633274170932
.11748946588849166
.09632301856959041
.06613453983189342
.029620714003535515

3.1563510123328075E-4
0.0024060271597610428
0.0077311486995085
0.01717968538296474

.030884140854647815
.04815232117974444
.06752091080786918
.08692587041361871
.10396721868051911
.1162322159076941
.12163241491114929

148

O OO OO O OO OO OO OOOOOOONUITOOODODOODOOOOOOOO O WOHHO OO OoOOo

.6629152260330544
. 7764400251249938
.8737610371066735
.9469174698312383
.9897391882007426
.568899591380737E-5
.767296947584137E-4
.004770213811772724
.014483378596946176
.03366846568173805 0.
.06580382970117091 0.
.1136797763609382 0
.17884094206560217 0
.2611609472708127 O
.3586093877225763 O
.4672478745480024 O
.5814636731877431 0.
0
0
0
0
0

O O O O O

.6944200042692705

.7986749243362264

.8868993430301315

.9526123374696345

.9908583352563146

.279174605173557E-5
.862427879699046E-4
.003850381597898164
.011735527485174807
.027416783911094433
.056391531339051689 0.
.09382888936436151 0.
.14888764448116143 0.
.2195887631010483 0
.3049556004234778 O
.40245324539033106 0
.5080753662724753 O
.6165981885890037 0.
.7219787660623742 O
.8178584094586451 O
.89812011475565163 O
.9574428883656851 O
.9918040867027748 O
.2908722143159395E-5
.399412468571565E-4
.003141196425123936

.11870766643887921
.10685433735889731
.08644529923711167
.05882560951438403
.026219498352017572
2.505751920292486E-4
0.0019156446286214377
0.006185767294481286
0.013842606285452683

025117728612661108
0396275282685842

.056638903969171848
.07391620129934323
.09038549529736682
.10385104268102938
.11248285338012624

11479879714106866

.10986137432079289
.09741449492093224
.07794283737137313
.05264724880336799
.02337076481105095
2.0143620079126075E-4
0.0015437564620981766
0.005005598717650643

0.011267981518477735

0.020606018212952788

032831537629343106
047290168614680925
06291429809565553

.07832660836044944
.09198312367908176
.1023401559882098

.10802672394946217

10800324833769989

.10168869527476027
.08904171811697714
.07058647416878219
.04738116764423372
.02096128902869345
1.6376626336989358E-4
0.0012576852207736755
0.00409240535186896

Chapter A Matlab Source Code

A.35 1llquadzw.txt

149

.009605331610612182
.022535293549746142
.04454764347164635
.07801122192897776
.12469388145940183
.18545563981132124
.26002231379497626
.3468658977314563
.4432074269523883
.545145865365175
.6479038981239168
.746169668402419
.8345036726013908
.9077732648074391
.9615746157343289
.9926104619879788
.523304530334011E-5

.002587519540581395

.018682888137445623
.03709767336975037
.06531248867402127
.10504850471155062
.15735969181900195
.22243006276745467
.2994437656540999
.38654244694388196
.4808764538267896
.5787479322055069
.6758354758400374
.7674824608725643
.84902525397032
.9161337032416644
.9651354279002556
.9933035364569542
.9198869642679487E-5
.36443370253067E-4 8
.0021502879959421823
.006609722908765695
.015612416716619101
.031120646748728466
.0565042321981125235

O OO OO P NOOODODODODODODODODODIODOODOODOOU WOOOOOOOOOOOO OO oo
O O O OO OO OO OO o oo

.26093982517407E-4 0.

.00793447194838037 0.

0.

0.00925861935019232
0.0170435140893301
.027381973208816104
.0398450224190629
.05366746933818868
.06781238201563217
.08106625922465209
.092155657770315286
.09987316079136845
.10320172675452165
.10142215672587788
.09419546019374829
.081609984056397668
.0641889491274348
.04285851482015456
.018905373347877945
1.3449967646775757E-4
0010347769229506144
0.0033772636772332024
0076735561935946444
0.01420549628554197
.022984438463208613
.03373636055771364
.04591476307345218
.058740479942804
.071265013161102
.08245180897758317
.09126820151638737
.09677971590916136
.09823814334008972
.09515530305402967
.0873556504104574
.07500277721227173
.0568597295808233696
.038947250549611435
01713720526810586
1.1148510786015597E-4
.590435637852216E-4
0.002811037685952878
0.006410719227402426
0.011925410826761842
0.019412825297658448
0.028705568024102703

150

Chapter A Matlab Source Code

O O O OO WNOOODODOODODODODODODIODODODODODODODOOWNOOODOOOOOOO OO oo

.08900640515086539
.1341527191510696
.19095511908468396
.25909440044489024
.3373933103178151
.42382096097702643
.5155682314581671
.6091898551232197
.7008033182707466
.7863299013823843
.8617595877784768
.9234194878883017
.9682253921920038
.9939035659323987 0.
.4402521399573383E-5
.6507944429259006E-4
.0018013902301466142
.005548943408984983
.013142593595173398
.026285511885560955
.04667674970885309 0
.07583118022660221 0
.11490643276584327 0
.1645510428434398 0
.22478654700703865 0
.2949337703271305 O
.3735902709329145 0
.4586620676893956 O
.5474486738626697 0.
.6367764021950574 O
.7231712035678026 O
.8030592357508834 O
.87298117155689184 0
.9298051527431974 O
.9709236690882349 0
.9944264772852992 O
.0551505076564973E-5
.077079974427594E-4
.0015203030019569552
.0046917489033226414
.011138890110293766
.02234353420472049 0.
.039815645679923135

O O O O O OO OO OO oo

03941555546842202
0509581964531954

06259450344943483
07348778073743406
08277029065832578
08961443188115334

.09330254759644417
.09328955264231968
.0892531227282597
.08112718381475857
.06911580568275878
.0563686305684134114
.03554305697770823

015605576492127649
9.318692630869644E-5
.190169831866503E-4
.0023581777966596414
.0056395282384452488
.010078787241052649
0.016493260809598013

O O O N

.024544612428883075
.033959748365955056
.04430083577368803
.054993219153106135
.06536497682666716
.07469519836217622
.082267376636311583
.087423892942487

0896174624275711

.08845560949871825
.08373474461901895
.07546117992967818
.06385740460171091
.049356313810311771
.03256272225300607
.014270165936646451

7.849188995113796E-5
6.063482983550677E-4
0.0019926116661367677
0.004571749719998125
0.008571805046734143
014091587272414559
0.021087216042145633

A.35 1llquadzw.txt

O N O OOOODOODODODODOODODODODODOODOODOONEFEF OOODOOOOOOOOO OO oo

.06494830227465159
.09887519856277688
.14234140501622397
.1955972541283589
.25832368634835906
.329595256321869065
.40788439061292214
.4911077203374904
.5767122118260433 0.
.6617962409911 0.0837984455957582
.74325811568310259 0.
.8179626721513269 O
.8829152220427237 0.
0
0

.9354315904479398
.9732935211577413
.9948849321987526 0.
.7430855208890156E-5
.6116539584667943E-4
.0012918438382756683
.003993200278433083

.009500373326025564

.019106106170368717

.03415141921374505 0.
.0565908183063666815

.08546162071519225 0.
.1236008471359436
.1707251037176106
.2267723931765664
.291175827553381

.36285125641375177
.4402177554391799
.5212504542905049
.6035631015380272
.6845158372490904
.7613419948433096
.8312864907782004
.8917475710767295
.9404134509575381

.9753859815525255
.9952890981970386 0.
.4880520564672535E-5
.2309115957696828E-4
.0011046436490558193

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0.
0
0
0
0

.029369224044565847
.038610535568793372
.048364858571851944

05809428838573062

.06720426525837617
.07508349755234922
.08114609956101425
.084873019256356212

08584986165088726

0785998503881924

.0703072873258274

059147839451851404

.045512966265512635
.029939271424517307

013098879746334065

6.658148594493893E-5
.148764046936282E-4
.001694975431462046
.003898505876634727
.00733313740514584

0.012103808129234147

SO O O U

018200774206819818

0.025495466765698947

033744506600532666

.042601688682000635
.056163722772410114
.060363079872193685
.06826275441702777
.0748237291954233
.0795704034874551
.08209547456859137
.08208771199994334
.07935432201613525
.07383642972000128
.06561663975718274
.054918148116936176
.042095495334097024
.027618344074969492

01206591872777494
5.684606602517E-5

4.3999758576933795E-4
0.001450718904759958

152

Chapter A Matlab Source Code

O O O O O O O OO OO ODOODODODOODOVOKFHF FHFHF OOODODODODODODODODIODIODODOODOOOOOOO

.0034194694688859215
.00815052929503389 0
.016428937494797746
.02944598355986496 0
.048357569707933624
.07418709391973236 0
.1077329558835264
.14948663825808736
.19956673095928773
.25767335583132533
.3230662664067205
.3945685120691865
.4705960495534081
.5492121464331801
.6282039422434296
.7051772010693157
.7776641844158139
.8432387621385732
.8996324161061799
.9448447334057146
.9772425752266931
.9956472154564406
.277990502112353E-5
.9170336510757313E-4
.500925875734715E-4
.0029448206126847687
.007030788372688508
.014200696263368381
.025513771712971107
.042017594016869324
.0646675823368833
.09424888355050776
.1313053020728959
.17607955943706774
.22846857633414125
.2879966662326581
.35380856138343675
.42468311188288105
.4990673656711279
.5751296140526366
.6508289353325925
.7239978465131847
.792433930956133

O O O O OO OO OO OO OO oo

O O O OO OO OO OO oo

0.0033440187381737836

.006308099547359186

0.010448872310353418

.015779503663136192

0.02221579084737619

.029577702414101157
.03759704560718378
.04593085159498192
.0541797236657
.06191009152230725
.06867907489284757
.07406049616510227
.0776705045127631
.0791912877674548
.07839145250881502
.07514184161385325
.06942582121576334
.06134339190482064
.05110885129800288
.03904218956400919
.0255554713626328
.011150354726707824

4

O O O O O Ww

.882611712282679E-5
.782320213653593E-4
.0012487899305349283
.0028841618355420155
.005454421567072764
.009063246013396312
.01373885468562794
0.

019429339475101854

.026002689786322773
.03325155125950687
.04090249161832604
.048629294616392926
.05606957634515007
.06284382980996468
.06857586410909634
.07291352152786823
.0755485340615198
.07623442162994834
.07480143545947288
.07116770644247822
.06534596163723708

A.35 1llquadzw.txt

153

.8539957907440346
.9066984099774426
.9488030513266553
.9788973614378855
.9959660189202048
.103713551352541E-5
.656422417964755E-4
.216020415021419E-4
.0025494796682884553
.006095904770325674
.012334777002751235
.022209158531864254
.036666991657632465
.0566594127368088484
.0827483203197991 O
.1156978250002815 O
.1557680181484857 O
.20299908429874483 0
.25711725407828756 0
.3175214062954865 O
.3832860693360594 0
.45318102438344593 0
.5257068649530954 O
.5991450474842351 0.
0
0
0
0
0
0
0
0

O O O O O

.6716202182254626
.7411719608883939
.8058326107457122
.8637074507970288
.9130534659849433
.9523529147278067
.9803784836831633
.9962510564210735
.581504540294826E-6
.43859730972342E-4 2.
.140810418985653E-4
.0022181124051196626
.005310623349551285
.010763282863543742
.01941709664552334 0.
.03212928039570467 0.
.04971735113505941 0.
.07290327583815621 0.
.10226053605612309 0.

O OO O OO OO N ©OOOODODODODODODODODODODODIODODODODODODODODODOO VWK EFEHOOOOOo

.056744541288463155
.04766869427099276
.036304065578360405
.02371400879458207
.010335068522384952

4.217146793863346E-5
.269212624093412E-4
.0010807084457197438
.0025003046963233046
.004739171432038364
.007896829806912422
.012011048604997274
.017053368291382928
0.022928227196037255

O O O O O O Ww

.029475764709293927
.036478185329406325
.043669382101920916
.05074734775687771
.05738875540187234
.06326497549488891
.06805871794109461
.07148045157960195
.07328375999578278

073278842259786

.07134345742516422
.06743073798782853
.061573453965540766
.056388448929429862
.044553493780651626
.03383993365602405
.022063551998144925
.009605948118062533

3.6612548401125436E-5
8401420203780887E-4
9.399065298739146E-4
0.0021779359871614895
0.0041364975218919535
0.006909881006477732
010541554467408827
015020003587664315
020277354552636222
026190869079152104
03258726143914562

154 Chapter A Matlab Source Code
0.13816684818777977 0.039249650541058674
0.18076502709328449 0.0459268320477723
0.22993410759763303 0.0523444421975684
0.2852723616537579 0.05821749187755426
0.3460932910462451 0.06326368104720421
0.4114350629380239 0.06721686312534288
0.4800832173648081 0.06984001841328775
0.5506058423079049 0.07093711558630479
0.6213998134008274 0.07036328985729079
0.690746160233329 0.06803284332190654
0.7568721752752096 0.06392467371306317
0.818017546303043 0.05808485789633293
0.8725015859898183 0.05062625156229036
0.9187885672794224 0.04172511689981153
0.9555482769476675 0.03161499219387206
0.9817093578807328 0.020578711781648277
0.9965069310786334 0.008951277015839957
8.358077509026045E-6 3.1939873035105296E-5
1.2554048888479551E-4 2.479137244802797E-4
6.235601768550263E-4 8.212524499953166E-4
0.001938724421546737 0.0019056604571111278
0.004647250066169768 0.0036259591906748503
0.009432588534094975 0.006070685456033144
0.017046103765818593 0.009286323199827869
0.028262948282374228 0.013273509464399598
0.04383521630338818 0.017985406000957865
0.06444459322880657 0.02332832701324242
0.09065676039683991 0.029164611502398678
0.12287975151077384 0.03531762714177794
0.16132829512679062 0.041578695929541984
0.20599592315026294 0.047715644349988956
0.256636289558867 0.0534826063313559
0.31275474135296133 0.058630649252800406
0.3736107328053689 0.06291875423514844
0.4382311944183664 0.06612466371556447
0.5054344808808607 0.06805511270134333
0.5738640494069412 0.06855498501014845
0.6420305821915061 0.06751498117035128
0.7083608838863567 0.06487744852011802
0.7712515741745153 0.06064010368525596
0.8291253708925305 0.05485746982062305
0.8804876317530744 0.04763995291815405
0.9239808022776038 0.03915059474494858

A.35 1llquadzw.txt

155

O O O O O OO I OO OO ODODODIODODODODODODODODIODODODODODODODODODOOOOOO U NOOO

.9584345268713504 0.
.9829095919025649 0.
.9967374878834097 0.
.323797442726057E-6
.1004470045777488E-4
.469183261839674E-4
.0017018575191016412
.0040838636097143746
.00830004117688234 0.
.015022978156079995
.02495392361575455
.03878338617106294
.05715089848117639
.08060574147265517
.10957039423451795
.14430837300150082
.18489794942753196
.2312130015482552
.28291196019720777
.33943548119085265
.4000131131094502
.46367885693930627
.5292951427410363
.595584395325645
.6611670403969152
.7246045281760328
.7844457347349415
.839274951478663
.8877595976173431
.9286957959632276
.9610500591874097
.983995703521289
.9969459586797631
.44463908909534E-6
.686621774891527E-5
.816819582518684E-4
.0014999965889179307
.0036029866934082482
.007331487526183152
.013288790937388884
.02210977445477698 0.
.03442763716738958 0.
.0560839623425424335

N O O OO OO OO OO OO OO OO OO0OOoOOoO o oo

029599700389502312
019238158990629358
008361262760591268
2.798921543095474E-5
2.1736552650254156E-4
7.207035865343896E-4
0.0016744609650549897
0.0031912824064114654
005353788313529335
0.008209621368081956

.011768029213084813
.015998143504891402
.020829041093624295
.026151597661309315
.03182206826945638
.03766725599980672
.0434910622632234
.04908215322840304
.05422242866126262
.058695944290976916
.06229791811493648
.06484344570723305
.06617555985125438
.06617229527720048
.06475245892292092
.06187985834995464
.056756580366344204
.056186976919246568
.04489817849556722
.03680136250036949
.02776887037741359
.018023873784160743
.007827670195496758
.4630773027179577E-5

1.9137662273558862E-4
.350507043469919E-4
.001477150434040435
.0028194250315611673
.004738642849324728
0.007282334606375033
010465740311830184
014270093541274297
0.018642321184494808

SO O OO,

156 Chapter A Matlab Source Code
.07187316553209268 0.02349618057236937
.09795386996515765 0.028714798829564063
.12937670842642685 0.034154523525701135
.16628165755792673 0.039649941386525764
.20863486398623857 0.045019875028788243
.25621620091483305 0.050074128236226916
.3086138369326747 0.0546207197521741
.36522616658480095 0.058473325133734516
.4252711661093298 0.061458636706516925
.4878029477403128 0.0634233534654301
.5517350034300943 0.06424052583346931
.6158693648089452 0.06381500402639148
.6789306710234296 0.06208777247066567
.7396039390316426 0.05903899500849397
.7965746798072114 0.05468964493437383
.848569904905668 0.04910164859116934
.8943985257099043 0.042376530257259334
.9329896675388936 0.034652612463584274
.963427521027151 0.026100932902171414
.9849816856202325 0.0169205511250949
.9971350758159141 0.007343533691284935

.693507553617974E-6
.560159573353658E-5
.258762287233882E-4
.00132712765917052 0.
.0031905900860272943
.006499405687857923

2.1761164055045618E-5
1.6915499261886826E-4
5.61727684501124E-4
0013079612243402968
0.0024998693909955893
0.004208572973776043

O O O O OO OO OO OOOOOOOOO WU OOOOOOOOOOOOOOO OO OO oo

.011795827238539608 0.006480636971386528
.019655221294758576 0.00933535740654361
.03065788112328044 0.012763108992411112
.04535974839690379 0.016724823114855496
.06426319118538036 0.02115262339348098
.08778899146107959 0.025951602901735246
.11625065798021576 0.03100268446615335
.14983210129530916 0.03616646488949099
.18856958964372547 0.0412879069464199
.23233875181548602 0.046201710948873466
.28084721138506386 0.05073817175613247
.33363323252701743 0.05472930827349748
.3900705384885743 0.058015041444713075
.4493792376890749 0.06044919391374767
.5106425676490226 0.06190509002704642
.5728289517763088 0.06228054847920882

A.35 1llquadzw.txt

157

O O O O O OO OO OO ODOD OO ODODODODOODODODODODOODOOOWANUIOOOOOO OO OoOOo

.63481866637155612
.695434242349751
.7534735845173743
.8077446861041707
.8571007517459341
.9004745214141074
.9369106149155023
.9655948084867538
.9858794546214816
.9973071619647179
.048671225530156E-6
.592696444468548E-5
.7791346241676326E-4
.0011784055984128848
.0028353397690508535
.00578148310299468
.0105052367158275
.0175286495906909
.02738344639395215
.04058594875834076
.056761181455802881
.07887153221800249
.10468758668630647
.13527416100979434
.1707201542655499
.21097618574336136
.25584612054364847
.3049834977757TT27
.3578930746118391
.41393752335865586
.47234914053418436
.5322462528324465
.5926538408606599
.6525277533213859
.7107817570461654
.7663165664167193
.8180499228546598
.8649467539730966
.9060484348228406
.9405002037372857
.9675758684112931
.986699208859247
.9974642016568276

O O O O O OO O oo

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.06150208118747326

.056952814015136212

.0566351288112238974
.05199920760257677

.046534505296957185
.0400563313906039494
.032682745583628214
.024577340675839082
.015915126617754603
.006902929510146736

1.9297457666551922E-5
1.5006445217311603E-4
4.986686581544643E-4
0.001162234866824391
0.0022240829455816833

.003749972268157451
.005784944764260339
.008350921956018357
.011445148512244447
.01503954315240933
.01908098582077551
.023492537167566538
.0281755656358251664
.03301262945615323
.03787126909017844
.042608164756552866
.04707393571733511
.0561118166320363916
.054594570163980935
.057366102169505585
.05930984139960413
.06032147458829721
.060319223367216575
.0569247076643813706
.05707721288726724
.05381152442969862
.04948218642062711
.04415124596242478
.03790924201808314
.03087290746358595
.023182081392524697
.014996395777839542
.006500794370598407

158

Chapter A Matlab Source Code

.010980937010523E-6
.034964939613452E-5
.006164317823871E-4
.384132431425842E-4
.0022611095400135563
.00461861900484087 0.
.008409605067284434
.014065562778553399
.022033294995912316

1.5332397234438866E-5
1.1931492593617741E-4
3.9695672760045017E-4
9.267197421896937E-4
0.0017772227746893745
0030045066022608246
0.004649674798059875
0.006737018509498977
0.009272689375873869

4.492582250114292E-6 1.7172679304899794E-5
6.758059575572542E-5 1.3359060384817906E-4
3.3650888809959485E-4 4.4419980374195845E-4
0.0010499021353660143 0.0010361857468708133
0.002528023320435537 0.001985104225513129
0.005159526268716118 0.0033516821742054104
0.009385217676274153 0.0051790914708461176
0.015679386318356966 0.007490825055190534
0.02452934266645772 0.010289252380423388
0.036413876595788465 0.013554906946019076
0.05178138156178547 0.017246534361831555
0.07102840952273803 0.021301904199598883
0.09447941145287024 0.02563936355540312
0.12236838379790164 0.030160085596936913
0.15482308276190737 0.03475094320851927
0.1918523877533697 0.03928791693340649
0.23333729525727967 0.04363992843320197
0.2790259080769515 0.04767297622908651
0.3285326560770279 0.05125444003568264
0.38134184744374316 0.054257413892054684
0.4368155085220992 0.05656492674060197
0.4942053300856662 0.05807391216022255
0.5526684030184446 0.05869879653191566
0.6112863012478005 0.05837458676305215
0.6690869584611931 0.057059354442929484
0.7250686913244835 0.054736032445896546
0.7782256487003623 0.05141346193984086
0.82757391621568773 0.047126651847918026
0.8721774802963752 0.04193623848569642
0.9111732569795943 0.03592716041210877
0.9437944212805213 0.029206596081483273
0.969391347490734 0.02190127843922232
0.9874497169493747 0.014154706370706323
0.9976078986595814 0.006132779806720094

4

6

3

9

0

0

0

0

0

A.35 1llquadzw.txt

O O O O OO OO OO OO OOMNIU WOO OO OO OO ODODOOOOOOOOOOOO OO OO OoOo

.03275635525132841
.04665606589350032
.06411273725125864
.08544771113246052
.11090682999411454
.14064589224618732
.1747185956171352
.21306739609436043
.25551762193067923
.30177508327446023
.35142731117230114
.4039484482916271
.4587077011448546
.5149811533355105
.5719666347923079
.6288012463411473
.6845810552492498
.7383824081635055
.7892842553283274
.8363908458024856
.8788541388474076
.9158952828215542
.9468245423000019
.9710591208350612
.9881385513295243
.9977397223132375
.5922101619651165E-6
.406001459928744E-5
.6937940675786E-4 3.
.413107806345918E-4
.0020284079291637675
.004146468278634052
.007556766009472711
.012652429214120192
.01984338042479044 0.
.02954030576611134 0.
.04213814986781696 0.
.0567999650819164236
.07743943135708277 0.
.10070914907829896 0.
.12798418012139726 0.
.15935226828463847 O.
.19480451615015862 0.

O O O O O O OO O OO OOODOOOOOOOOOOoOOoOOo oo

.012243966032232172
.015619141021227308
.019348035517579257
.023363129600666766
.02758127649152916
.03190595079768488
.03622996395123618
.04043856520513074
.04441283422919665
.04803326190503012
.056118340965187706
.0637563563472157103
.05564406947289345
.056768846661298424
.05705797013951586
.056460240836605585
.056494506115149926
.0562503756563515094
.04915027086621056
.04492121049117853
.03987523352541093
.034091800463071815
.027669330040016784
.020722862042010938
.013381708290320484
.005795134478147276

1.3732108891794563E-5
1.0689489750098045E-4
558208922532232E-4
8.312940284225005E-4
0.0015957301491226373
0.0027008309644590083
0.004185537950438294
0.006074377251209505
008376249172915429
011083701267245666
01417270963432014
0.01760297802293338
021318748957966288
02525010592337761
02931473101863138
033420068914478684
03746583575917197

160

.23422902807460846
.27740743881254554
.32401447827047725
.37362063486703984
.4256978897607274
.4796284044303055
.5347159573745233
.5901998445712299
.6452708851764309
.6990891108983395
.7508026664090912
.7995674105808424
.8445666854181124
.8850307121526595
.9202550828887067
.9496178437251875
.9725947248110737
.9887722785483385
.9978609451874788

O O O O O OO OO OO OOO OO o oo

.226686457573206E-6
.856846483460022E-5
.4209236129432013E-4
.564273981732722E-4
.0018248035783040375
.0037328925541173907
.006808730931906212
.011411019240858909
.01791613780358366 0.

.041346801285878976
.044955764052191434
.04818663374863231
.05093753102273438
.05311381438350015
.056463094550681008
.0554171086077809
.055415506358023135
.054586263909582745
.05290788368346951
.0560378206374442715
.04701484776216947
.042855096046912816
.03795527030005922
.032389557570530275
.026248367723604223
.019636297231851126
.012670149050627267
.00548460846796077

Chapter A Matlab Source Code

1.
9.604863746104893E-5
3.1987034393523916E-4
7.
0
0
0

2335224180663856E-5

478079625638684E-4

.00143672498324935

.0024343215700164734
.0037773559183020733
0.

00549018318278394

007583656813751746

.026704259511674152
.038144967371106696

0.010054425686042047
0.01288464925126189

O O O O OO OO OO OODOOODOOOOONNBPBPBWOOOOOOOOOOOOOOOOOoOOoOOo

.056258280108487706
.07032316143181556
.09161899364155222
.1166586515486491

.14555531355510146
.17833828017559233
.21494643231180102
.2552240707893379

.2989192927047948

.34568499056051055
.39508248792942063
.44658775248622856
.49960005567948124

O O O OO OO OO OO oo

.0160421412109823
.019480940172855267
.023142293741918948
.026956030848005148
.030842286140396913
.034713530297428644
.038476851379244704
.04203642513933591
.04529610670615138
.04816207240433957
.05054543880893071
.05236478646371404
.056354851804026866

A.35 1llquadzw.txt 161
0.553452880082619 0.05403698500426674
0.6074268124420659 0.053784322974890726
0.6607641043869704 0.05275994374549067
0.712684535239432 0.05094964116820868
0.7624021736971873 0.048356278544815536
0.8091426084236563 0.045000036540351424
0.8521602025742459 0.040918212684588604
0.8907549245945378 0.036164576100614985
0.9242883178858846 0.0308082946070695
0.9521981972744588 0.02493246919618202
0.9740117133643122 0.018632357847543392
0.9893566152067715 0.012013705660225
0.9979726738672983 0.005198374998632167
2.9064889999183383E-6 1.1111498020814642E-5
4 .3756555187085526E-5 8.654294758211389E-5
2.181713507684719E-4 2.8834125901866986E-4
6.819666388585224E-4 6.745175994636655E-4
0.001646049417416248 0.0012969594683643958
0.0033694191725911838 0.0021996871941245932
0.006150506259632302 0.0034173041840497888
0.010317086394059708 0.004973706399681155
0.016215050305720364 0.006881088664859645
0.024196340364669933 0.009139276349461293
0.0346063902196419 0.011735402262553579
0.047771418759439216 0.014643939392870741
0.06398593561749387 0.017827090650581124
0.08350081182350523 0.02123552723740389
0.10651225614558955 0.02480945795227101
0.13315201549217368 0.02848000287227122
0.16347908702545033 0.03217083666729067
0.19747319117339482 0.03580005952746861
0.2350302095155078 0.039282247497665006
0.2759597407374179 0.04253062908633532
0.3199848728276893 0.0454593314783604
0.36674421186597206 0.047985637626957824
0.41579614863955794 0.05003219498442467
0.4666252854755458 0.051529117670423626
0.5186508886331845 0.05241592644438983
0.5712371778649886 0.05264327487993322
0.6237052157405819 0.052174415530143306
0.6753461163269572 0.05098636648452949
0.7254352569711802 0.04907074638115896
0.7732471491921629 0.046434254457355204

162 Chapter A Matlab Source Code
0.818070605810994 0.04309878139267165
0.8592238319863987 0.03910114632866111
0.8960690681770235 0.034492465463456454
0.9280264237498098 0.029337168468064296
0.9545865629965556 0.023711693964504958
0.9753219528347452 0.017702938002118817
0.989896556448008 0.011406845694533636
0.9980758742640766 0.004933966036975236
2.6250380049060306E-6 1.0035803672763636E-5
3.952584288194972E-5 7.818394206024305E-5
1.9713061908584883E-4 2.6059773706434814E-4
6.164322644568964E-4 6.099683057997869E-4
0.001488602407152558 0.0011737177499974122
0.0030489656799804646 0.0019924890020021325
0.005569527805236629 0.0030987923460615717
0.00935025335166042 0.004515864554034832
0.014709322438596299 0.0062567722601403215
0.02197262337704276 0.008323783969298953
0.03146275924687664 0.010708028253918334
0.04348786037097826 0.01338944844877953
0.05833050121680304 0.016337056645075194
0.07623701926160918 0.01950948219633557
0.09740752481387079 0.02285580247012381
0.12198687489377129 0.026316636397053096
0.15005686142734578 0.029825474662758533
0.18162983476345546 0.033310214327070375
0.21664394860243608 0.03669486038992738
0.2549601726946185 0.03990135248790202
0.2963611761116979 0.042851471607851035
0.3405521375964034 0.04546877952859435
0.3871634916079997 0.04768054270318155
0.4357555703956822 0.04941959249943179
0.4858250549530007 0.050626075121258635
0.5368131022194043 0.051249047104168
0.5881149735369208 0.05124787595258945
0.6390909512014589 0.05059341017435854
0.6890782969271264 0.04926888855385195
0.7374039790003694 0.04727056485385428
0.783397874526041 0.044608031095245575
0.8264061399911663 0.04130422997546781
0.8658044377747142 0.03739515471431906
0.9010107084983299 0.03292924263209471
0.931497189691723 0.02796647754976951

A.35 1llquadzw.txt

163

.9568014020396931
.976535867057191
.9903964823751481
.9981713925366468
.376841438791435E-6
.5794119865953565E-5
.7856419152485403E-4
.585723523572761E-4
.0013494936126551916
.002765586187887195

O O O O

.008493328161829778

.019995795834284628

.039665557957306426
.06327299439566269
.06972553012579277
.08922414836933326
.11192249194361464
.13791955651040663
.1672535538992926
.19989711362906382
.2357539596251301
.2746571646162645
.31636904760570544
.3605827410273972
.40692541463682524
.45496310378579513
.5042070514270982
.554121436898801
.6041323311128448
.65363768801575
.7020181568119037
.748648479051785
.7929092197838029
.8341985729238538
.8719439780738345
.9056132894254163
.9347252475155071
.9588590232728008
.9776626420648422
.9908602466200785

O O O O O OO OO OO ODODODODODODODODOODODODODODODODODODODODOOOOUT I WNOOOO

O O O O O OO OO OO OOOODOOOO0OOOOOOoOo oo

.00505522381417743 O.

.01337289057267608 0.

.02866317888553044 0.

.022577228847915024
.01684089416657822

.010844711927275194
.004689219043119115

9.087166484795518E-6
.080965702766152E-5
.361079242496758E-4
.52941324982586E-4
.0010647190766918551
0.0018089882755908076
00281624906827513
0.004108945006397529
005700655250238588
0.007595509475343502
009787840935178711
0.012262087395473313

oS o NN

.014992943683671163
.01794576352818758
.02107720234078324
.02433608676462221
.027664491309405653
.030998997354574984
.034272105634230175
.03741376721044341
.04035300312219564
.04301956440574828
.04534560337566032
.04726731039834552
.0487264791953468
.04967196293601935
.050060986119925356
.04986028053168121
.04904701759057694
.04760951411983075
.04554769381702903
.042873292399205315
.039609800403023025
.035792143845247024
.03146610940093139
.02668752792915317
.021521241144567268
.016039912381280514
.010323026080510124

164

Chapter A Matlab Source Code

O OO O OO OO OO OO OO OO ODODODODODODODODODODODODODODODOODOOOO U WN O

.026164108774468106
.036247305768803896
.04874096765935924
.06387761628347004
.08185680970236266
.10283756502684768
.12693156333985806
.15419730844217597
.18463539025057193
.21818497926401015
.2547216511319526
.29405661062529
.33593735289506877
.3800497675156456
.4260216581791441
.473427618773648
.5217951756678397
.5706120770376905
.6193345836662097
.6673965924243118
.7142194041296029
.7592219321277744
.8018311371054893
.8414924675881453
.8776800844821679
.9099066520432526
.9377324871519848
.9607738754999374
.9787103978021419
.991291250400277
.9983422699889635

8.
6.428418613566664E-5
2.144250288537577E-4
5.024111649828837E-4
9.
0
0
0

.9982599724712418 0.004462232713798836
.157294294967718E-6
.249242492341324E-5
.6213125702082334E-4
.073348171894436E-4
.0012262245702609825
.0025142684157429956
.0045986639271920916
.007731752222114276
.012183619308440531
.01823406169532701 0

247998064669447E-6

680402542894589E-4

.0016460238429515082
.0025649477663168556
.003746377524778571

0.

005204131180138624

.006943737612674629

0.
0.

00896209369114927
011247329342493178

O O O O O OO OO OO ODOODOODODODOODOOOOOOOOOOoOOo

.013778884736250585
.016527798925958622
.019457204425379484
.022562301745216903
.025674809052852143
.02885683813354116
.03200922365594455
.0350692300035839
.037972636852987865
.04065516286000546
.04305391113875743
.0451088039009851
.04676397375119811
.04796907999595092
.04868051990506759
.04886250712378974
.04848799232739538
.047539404669456824
.04600919652477553
.043900178381311154
.04122563539905801
.03800922203646386
.03428463617907871
.030095079426688518
.0256492516100898983
.020536753082482755
.015294396174353337
.009838008165234459
.004251330025551719

	Brigham Young University
	BYU ScholarsArchive
	2006-12-01

	Computationally Modeling the Effects of Surface Roughness on Soft X-Ray Multilayer Reflectors
	Jedediah Edward Jensen Johnson
	BYU ScholarsArchive Citation

	Title Page
	Copyright
	Graduate Committee Aproval
	Acceptance Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 EUV Mirrors
	1.2 Multilayer Reflection Theory
	1.2.1 Index of Refraction
	1.2.2 Polarization and Fresnel Coefficients

	1.3 Roughness
	1.3.1 Types of Roughness
	1.3.2 Correcting for Roughness

	1.4 Previous Research
	1.5 Project Scope and Applications

	2 Derivations
	2.1 Helmholtz Equation
	2.2 Green's Function
	2.3 Source Field Relations
	2.4 Surface Equivalence Principle
	2.5 Electric Field Integral Equation (EFIE)
	2.6 Magnetic Field Integral Equation (MFIE)

	3 Problem Setup and Solution Techniques
	3.1 Numerical Quadrature
	3.1.1 Basics
	3.1.2 Regular Integrals
	3.1.3 Singular Integrals

	3.2 Path Integrals
	3.3 Nystrom Method
	3.3.1 General Technique
	3.3.2 Singular Patches
	3.3.3 Incident Field

	3.4 Far Field Scattered Intensity
	3.4.1 Green's Function Expansion
	3.4.2 Scattered Wave

	3.5 Geometry of the Scatterer
	3.5.1 General Description
	3.5.2 Modeling the Rough Sections

	3.6 Program Methods and Structure
	3.6.1 Overview
	3.6.2 The Scatterer
	3.6.3 Nystrom Matrix Fill
	3.6.4 Far Field Calculation
	3.6.5 Extras

	4 Numerical Issues
	4.1 Convergence
	4.2 Run Time

	5 Validation
	5.1 Physical Optics Flat Plate (TM)
	5.1.1 Derivation
	5.1.2 Comparison

	5.2 Perfectly Conducting Cylinder
	5.3 Dielectric Cylinder
	5.4 Fresnel Coefficients

	6 Results
	7 Conclusions
	Bibliography
	A Matlab Source Code
	A.1 Sample Run
	A.2 cartJ.m
	A.3 cartJfunc.m
	A.4 cartK.m
	A.5 cartKfunc.m
	A.6 constants.m
	A.7 dsurface.m
	A.8 FFTsurf.m
	A.9 lin_log_weights.m
	A.10 linlogOrder.m
	A.11 llquad.m
	A.12 llquadr.m
	A.13 makesurface.m
	A.14 nystromconstants.m
	A.15 polJ.m
	A.16 polJfunc.m
	A.17 polK.m
	A.18 polKfunc.m
	A.19 storedata.m
	A.20 surfacesetup.m
	A.21 TE.m
	A.22 TEcylcon.m
	A.23 TEfarfield.m
	A.24 TEnystromfill.m
	A.25 TEsolvematrix.m
	A.26 timeinfo.m
	A.27 TM.m
	A.28 TMcylcon.m
	A.29 TMfarfield.m
	A.30 TMnystromfill.m
	A.31 TMphysoptcompare.m
	A.32 TMphysoptics.m
	A.33 TMsolvematrix.m
	A.34 userinputs.m
	A.35 llquadzw.txt

