
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2006-03-14

The Violation of Bell's Inequality in a Deterministic
but Nonlocal Model
Stephanie Allred Magleby
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Magleby, Stephanie Allred, "The Violation of Bell's Inequality in a Deterministic but Nonlocal Model" (2006). All Theses and
Dissertations. 364.
https://scholarsarchive.byu.edu/etd/364

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=scholarsarchive.byu.edu%2Fetd%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarsarchive.byu.edu%2Fetd%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/364?utm_source=scholarsarchive.byu.edu%2Fetd%2F364&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


 

THE VIOLATION OF BELL’S INEQUALITY 

 

IN A DETERMINISTIC BUT NONLOCAL MODEL 

 

 

 

 

 

by 

Stephanie Allred Magleby 

 

 

 

 

A thesis submitted to the faculty of 

Brigham Young University 

in partial fulfillment of the requirements for the degree of 

 

Master of Science 

 

 

 

Department of Physics and Astronomy 

Brigham Young University 

April 2006





 

Copyright © 2006 Stephanie A. Magleby 

All Rights Reserved





 

BRIGHAM YOUNG UNIVERSITY 

 

 

GRADUATE COMMITTEE APPROVAL 

 

 

 

 

 

of a thesis submitted by 

 

Stephanie Allred Magleby 

 

This thesis has been read by each member of the following graduate committee and by 

majority vote has been found to be satisfactory. 

 

 

 

 

Date  William E. Evenson, Chair 

Date  H. Dennis Tolley 

Date  Jean-François S. Van Huele 





 

BRIGHAM YOUNG UNIVERSITY 

 

 

 

As chair of the candidate’s graduate committee, I have read the thesis of Stephanie A. 

Magleby in its final form and have found that (1) its format, citations, and bibliographical 

style are consistent and acceptable and fulfill university and department style 

requirements; (2) its illustrative materials including figures, tables, and charts are in 

place; and (3) the final manuscript is satisfactory to the graduate committee and is ready 

for submission to the university library. 

 

 

 

 

 

Date  William E. Evenson, Chair 

 

Accepted for the Department 

  Ross L. Spencer 

Graduate Coordinator 

Department of Physical and Mathematical 

Sciences 

 

Accepted for the College 

  Tom W. Sederberg 

Associate Dean, College of Physical and 

Mathematical Sciences 





 

ABSTRACT 

 

 

 

THE VIOLATION OF BELL’S INEQUALITY 

 

IN A DETERMINISTIC BUT NONLOCAL MODEL 

 

 

 

Stephanie Allred Magleby 

Department of Physics and Astronomy 

Master of Science 

 

 

 

This thesis investigates the violation of Bell’s Inequality through the use of 

nonlocal measurement schemes as encapsulated in a quasi-deterministic toy model.  This 

toy model, called the Q Box, is reminiscent of Mermin’s Box in that it describes a system 

that appears to be deterministic yet produces the statistics of a quantum type system.
1
 [1]   

The workings of the Q Box are detailed both as a thought experiment and as a computer 

simulation.  Nonlocal measurement protocols similar to those which generate a violation 

of Bell’s Inequality in the Q Box are also applied to Mermin’s Box, with comparable 

results.  

 

                                                 
1
 N.D. Mermin, “Bringing home the atomic world:  Quantum mysteries for 

anybody,” Am. J. Phys. 49: 940-943 (1981).  N. David Mermin, Am. J. Phys. 58:731-734 

(1990). 
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the screen.  The ĉ  measurement will be (-1). ................................................................61 

Figure 5-6  Two of four possible nonlocal measurements.  If the values of the 

polarizations match, there will either be an X shape on the screen (for the case where 

the flashlight color also differs from the polarization values) or nothing at all (for the 

case where the flashlight color matches the polarization values. ..................................61 

Figure 5-7  A Classical System:  measurement values before application of The Rules. .....64 

Figure 5-8   A Quantum System:  measurement values after application of the Q Box 

Rules. .............................................................................................................................66 

Figure 5-9  The measurements and correlation values for one possible Q Box 

configuration. .................................................................................................................68 
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Chapter 1 

Background 

The term “entanglement” was first coined by Erwin Schrödinger in 1935.  

Entanglement is, as he put it, “not one but rather the characteristic trait of quantum 

mechanics [1].”   We wish to investigate entanglement and nonlocality, which is closely 

related, by encapsulating them in a model that is deterministic yet produces the statistical 

signature of a  quantum system. 

1.1 Entanglement  

Entanglement is like knowing two twins who are so completely identical in looks, 

disposition, mannerisms, opinions, etc. that one can never be sure which is which.  But if 

you meet them at a party and find that the twin by the punch bowl is Bob, then the one 

next to the fireplace is definitely Ted.  This example is an oversimplification of 

entanglement which will be explored more fully later in this chapter. 

A classic example of an entangled system is that of a photon that has been down-

converted.  The original experimenters in the field were Leonard Mandel and R. Ghosh of 

the University of Rochester.  In the down-conversion process they pioneered, a ‘mother’ 

photon passes through a nonlinear crystal and is divided into two ‘daughter’ photons 

which each have one-half the energy of their progenitor.  The daughter photons go off in 

two different predictable directions, but each carries with it a trait that is linked 
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inexorably to its twin.  For example, if one of the pair is right circular polarized upon 

exiting the crystal, then the other is guaranteed to be found upon measurement to be left 

circular polarized, and vice versa. [2] Hence we refer to the polarization as being 

correlated between the twin pair. Other measurable characteristics show such 

correlations.   For example, one can have particles which are entangled spin-up/spin-

down, right/left polarized, in their angular momentums, etc. In all of these cases of 

entanglement it is the correlation between the two particles that is makes it unique.   

One of the most popular examples of entangled systems in the physics literature is 

that of spin-½ particles and was first conceived by David Bohm. [3] Written as a 

superposition of amplitudes, this correlated state is that of a singlet: 

 

( ) ( ) ( ) ( )[ ]
2121

2

1
↑↓−↓↑=ψ  

 

Mathematically, Eq. (1.1) describes a system of two entangled particles in which either 

the first one is spin-up and the second one is spin-down ( ( ) ( )21 ↓↑ ) or the first one is spin-

down and the second spin-up ( ( ) ( )21 ↑↓ ).  In terms of our earlier twin analogy, one could 

say that either the twin at the punchbowl is Bob and therefore the man at the fireplace is 

Ted, which would be expressed mathematically as ( ) ( )21 TB , or the twin at the punchbowl 

is Ted and the other one Bob, written ( ) ( )21 BT ; but we can’t be sure because they are so 

much alike, making the likelihood of finding Bob at the first location (the punchbowl) 

and Ted at the second location (the fireplace) in the absence of any further information 

about their respective proclivities: 

(1.1) 



 3 

 

( ) ( ) ( ) ( )[ ]2

2121
2

1
BTTB −=ΨΨ ∗  

 

Of course, this is a very simplistic example and assumes we know nothing about each 

man’s drinking habits or personal punch preferences or whether or not they enjoy 

standing by fireplaces.  

1.2 The Copenhagen Interpretation 

There is an important difference between the standard quantum interpretation 

(also known as the Copenhagen
2
 or Orthodox

3
 Interpretation) of two entangled particles 

in quantum mechanics and the previous illustration of two indistinguishable twins at a 

party.  In the Copenhagen Interpretation, the two entangled particles are considered to be 

in a superposition of the state of spin-up and the state of spin-down until measurement, as 

described mathematically in Eq. (1.1).  The meaning of Eq. (1.1) is a matter of personal 

interpretation.  Is Eq. (1.1) a complete description of the state of nature or a mathematical 

representation of the probability of a particular outcome given a measurement?   

 Before measurement, a physicist with a Copenhagen bent assumes that the 

particle has not yet been ‘realized.’  In other words, until forced by measurement to make 

a decision, a Copenhagener particle exists in a fuzzy probabilistic state of potentialities; a 

nebulous state of either/or.  This is a different case than the two twins at the party.  Bob 

                                                 
2
 So called because the main champion of this interpretation was Niels Bohr, a Danish physicist who lived 

and worked in Copenhagen.  Other scientists, including Werner Heisenberg and Max Born, also 

contributed. 
3
 The religious allusion is apropos.  Quantum mechanics works mathematically and experimentally, but the 

philosophical implications assigned to the experiments are more a matter of taste and inclination. 

(1.2) 
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knows (assuming he hasn’t had too much to drink) that he is standing by the punchbowl 

and that his name is and always has been Bob.  Ted also had, has and ever will have an 

identity separate from his twin. The confusion about the identity of Bob and Ted arises 

from the lack of discriminating characteristics, not any inherent question of  ‘Bobness’ or 

‘Tedness’. 

By comparison, under the Copenhagen interpretation, the two entangled particles 

do not know whether they are spin-up or spin-down until a measurement is made on 

either of the particles.  According to the strictest Canon of Quantum Orthodoxy, before 

measurement the particles can not even be said to be in a state of ‘either/or,’ they are 

considered to be in a state of ‘both.’  To add to the weirdness, immediately upon the 

measurement (and subsequent realization) of one particle, the spin state of the second 

particle also manifests its spin; like two fuzzy pictures pulled instantly into focus at the 

same moment in time, wherever they are in space.  In the physics literature this 

measurement-induced state is called “the collapse of the wave function,” and it happens 

even if the two are separated light-years across the galaxy. This is nonlocality, or what 

Einstein called “spooky action at a distance.” [4]    

1.3 The Debate  

These features of entanglement and nonlocality, combined with the concepts of 

uncertainty, wave/particle duality and the central role of the observer, combine to make 

the philosophical implications of the Copenhagen Interpretation unsettling.
4
 Einstein 

                                                 
4
 Provocative, tantalizing, astounding, unearthly, bizarre, uncanny, strange—these are all words used by 

prominent physicists to describe the counter-intuitive results of quantum mechanics.  It is hard to avoid 

flamboyant words when even wikipedia uses verbage such as: This effect is now known . . . colloquially as 

"quantum weirdness".   [5]    
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found it to be particularly hard to swallow and set about thinking up scenarios and 

Gedanken experiments to refute the Copenhagen model.  His most well-known argument 

was embodied in the 1935 paper entitled “Can a Quantum-Mechanical Description of 

Physical Reality Be Considered Complete.” [6]   Over time this paper has become known 

as “the EPR Paper” for its three authors: Albert Einstein, Boris Podolsky and Nathan 

Rosen.  The first entangled system was introduced in the EPR paper, although the authors 

never used that term. 

Einstein, Podolsky and Rosen argued in their EPR paper that every complete 

theory should have three components: 

   

1)  It should be deterministic, even if one must resort to using probability due 

to too little or too much information.   

2)  It should describe “elements of reality.”  Attributes of a system can be 

measured with certainty.  

3) It should be local.  Nonlocality was unpalatable to Einstein. 

 

If these three attributes were not all present, Einstein considered the theory to be 

“incomplete”—and quantum mechanics definitely fit into that category in Einstein’s 

opinion.  He had this to say about the reservations the Copenhagen Interpretation fostered 

in him [7]: 

 

One wants to be able to take a realistic view of the world, to talk about the 

world as if it is really there, even when it is not being observed.  I certainly 

believe in a world that was here before me, and will be here after me, and I 

believe that you are part of it!  And I believe that most physicists take this 

point of view when they are being pushed into a corner by philosophers. 

 

The source of one of the most famous quotations attributed to Einstein was a 

letter to Max Born in 1926 where Einstein said: 

 



 6 

Quantum mechanics is certainly imposing.  But an inner voice tells me it is 

not yet the real thing.  The theory says a lot, but does not really bring us any 

closer to the secret of the Old One.  I, at any rate, am convinced that He does 

not throw dice.[8] 

 

 

Born replied, “Stop telling God what He must do!” [8] 

 

The debate between Einstein and Bohr lasted their entire lifetimes.  While taking 

the opportunity to thank Bohr for sending him 70
th

 birthday wishes, Einstein took the 

opportunity to gently needle his friend and opponent.  He wrote, "This is one of the 

occasions, which is not dependent on the disquieting question if God throws the dice or if 

we should hold on to the available physical description of realities...."  Here is a photo of 

Bohr’s reply, followed by its translation [9]: 

 

Dear Einstein, 

Many thanks for your kind letter. 

For all of us it was a great pleasure to 

express our sentiments on the occasion 

of your birthday. To continue in the same 

jocular tone, I have no choice but to say 

on this painful issue that it really doesn't 

matter, in my opinion, whether or not we 

should hold on to the physical 

description of accessible realities or 

further pursue the path you have shown 

and recognize the logical assumptions 

for the description of realities. In my 

impertinent way I would suggest that 

nobody—not even God himself—would 

know what a phrase like playing dice 

would mean in that context. 

 

With friendly regards 

Your 

Niels Bohr 

 

 Figure 1-1  Letter from Bohr to Einstein 
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1.4 Bell’s Theorem:  An Alternative to Arguing  

In the 1960’s, John Bell published two papers:  “On the Einstein-Podolsky-Rosen 

paradox,” [10] and “On the problem of hidden variables in quantum mechanics.” [11] If 

not for John Bell and the excellent theorem he presented in these papers, the debate might 

still be raging.  Bell realized that Einstein had defined succinctly the essence of the 

quantum paradox; one must either assume that quantum theory is incomplete, or be 

willing to give up either realism or locality. [12] [13] [14] Instead of assuming that 

quantum mechanics is incomplete, Bell chose instead to test for locality.  He formulated 

an inequality based on three binary measurements made on a system that has local, 

hidden variables and combinations of these measurements are compared. These hidden 

variables are the kind that Einstein would have approved of; embodying local reality.
5
  

The violation of Bell’s Inequality, therefore, is proof of nonlocal behavior such as 

that demonstrated in some cases by quantum systems, specific examples of which will be 

given in Section 3.4 of this thesis. It could be argued that violation of Bell’s Inequality 

could conceivably follow from an assumption other than locality upon which Bell’s 

Theorem is based, i.e. realism or determinism.  Henry P. Stapp [8] describes the 

implications of Bell’s Theorem to quantum mechanics and then systematically identifies 

each hypothesis implicit in the derivation of Bell’s Theorem.  He then shows that for 

every assumption except nonlocality, the Inequality can still be violated.  

                                                 
5
 There are those who disagree with this characterization of Einstein’s thought processes as represented in 

the EPR paper and other writings.  Max Jammer, in his book The Philosophy of Quantum Mechanics, states 

“One of the sources of erroneously listing Einstein among the proponents of hidden variables was probably 

J.S. Bell’s widely read paper: On the Einstein-Podolsky-Rosen Paradox. . . Einstein’s remarks . . . are 

certainly no confession of the belief in the necessity of hidden variables. ” We disagree with Jammer.  A 

more complete discussion is available. [15], [16], [17] 
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Bell’s Theorem takes the question of whether quantum mechanics is incomplete 

or simply statistically extraordinary out of the debate forums and into the lab, where the 

question can be made an experimental rather than a philosophical one.   Here is Bell’s 

Inequality:   

 

( ) ( ) ( )cbEcaEbaE HVHVHV
ˆ,ˆ1ˆ,ˆˆ,ˆ +≤−  

 

In Bell’s inequality, ( )baEHV
ˆ,ˆ , ( )caEHV

ˆ,ˆ  and ( )cbEHV
ˆ,ˆ  represent the results of 

three combinations of measurements done on particles emitted as pairs in different 

directions using, for example, spontaneous parametric down-conversion.  These particles 

are assumed to have local hidden variables.  Each particle is caught and measured in an 

analyzer.  ( )caEHV
ˆ,ˆ  is the expectation value of a joint measurement on the pair of 

particles.  This measurement is made with one analyzer oriented in the â direction and 

the other oriented in the ĉ direction, and so on.  For some orientations of â , b̂  and ĉ the 

measurements expected from a system with local hidden variables match those from a 

quantum system.  For other orientations, though, the inequality is violated, leading Bell to 

conclude that there are no possible local hidden variables that can exist to explain the 

contradiction.  Something else is at work.  The “something else” is nonlocality, Einstein’s 

bugaboo.  

(1.3) 
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1.5 Overview 

The focus of this research is to construct an entangled yet classical system with 

nonlocal attributes.
6
  Our system, which we have named the Q Box, is modeled after 

Mermin’s Box.  Mermin’s Box is a pedagogical example designed by N. David Mermin 

to illustrate the more unintuitive aspects of quantum systems.  Mermin actually published 

at least three different versions of his box [10], but we will focus on his first one in 

Chapter 2. Chapter 3 of this thesis will focus on Bell’s Theorem and the role it plays in 

identifying quantum systems.  This chapter will also include a description of hidden 

variables.   We will take a short side trip into the world of cellular automata and examine 

the measurement protocols in the Game of Life in Chapter 4.  Following this, a 

description of the design of the Q Box will be given in Chapter 5, along with a discussion 

of nonlocality and how it is embedded into the Q Box system. In Chapter 6 we will return 

to our analysis of Mermin’s Box, using the techniques developed for our Q Box.  Chapter 

7 is our ‘reality check’.  The presentation of a computer model of the Q Box, along with a 

look at how marginalization changes the probability outcomes in quantum structures will 

be contained in Chapter 8.  A comparison of our nonlocal, hidden variable theory with 

Bohmian Mechanics and the Copenhagen Interpretation will be contained in Chapter 9.  

Conclusions come finally in Chapter 10. 

 

 

                                                 
6
 We realize that the term ‘classical nonlocal system’ could be considered an oxymoron and beg patience 

from the reader. 
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Chapter 2 

Mermin’s Black Box 

In 1981 N. David Mermin [13] described in the American Journal of Physics an 

imaginary black box device.   Mermin intended his Box to be a sort of mental logic game 

that, when played, would serve to introduce the physics layman to what Mermin called 

“the metaphysical implications of the Einstein-Podolsky-Rosen conundrum,” as 

manifested in the uncanny, seemingly inexplicable correlations discussed in Chap. 1 of 

this thesis.  The object of the game is to mentally manipulate his box, observe its 

behavior, and deduce the contents of the box and the mechanism by which it works.  In 

the beginning, Mermin tells his reader that his device models “the known behavior of 

matter on the atomic level,” although the title of his article, “Bringing home the atomic 

world:  Quantum mysteries for anybody” should be sufficient warning even to the layman 

to expect the unexpected. 

Mermin's Gedanken device is ingeniously designed.  The “matter on the atomic 

level” it specifically models is the behavior of spin-½ particles in the singlet state. Bohm 

and Aharonov [3] were the first to use spin-½ particles in an alternative rendition of the 

Einstein-Podolsky-Rosen Gedanken experiment. In their version of EPR, they use spin-

up and spin-down particles as produced in a Stern-Gerlach experiment instead of the 

momentum and position variables of the original.   The Bohm version of EPR has 

become so popular in the literature that his name often gets tacked onto the end, as in “the 



 12 

Einstein-Podolsky-Rosen-Bohm Gedanken experiment [13],” even though Bohm 

conceived of his spin version of EPR twenty-two years after Einstein, Podolsky and 

Rosen published their paper in 1935. 

Mermin [13] says of his hypothetical box: 

Although this device has not been built, there is no reason in principle why 

it could not be, and probably no insurmountable practical difficulties.  

 

In principle, this is true, as manifested in quantum optics labs all over the world.  But 

Mermin initially describes his box as if it were a mechanical object, full of sensors and 

relays acting deterministically.   It is not until the end of the game that he lets us peek 

inside the black box to find that the “mechanism” is strictly quantum, and not a 

deterministic system.  Is it possible to combine these two versions of Mermin’s Box; the 

naively mechanical version and the quantum object?  In other words, is it possible to 

build a box displaying quantum statistics with classically deterministic and mechanical 

inner workings?   

We think so.  To be successful, we must replicate the entanglement features of 

spin-½ particles without resorting to quantum processes such as down-conversion.  Since 

we believe that nonlocality plays a fundamental role in quantum entanglement, we must 

also find a way to add nonlocal effects to our buildable box.   

Before we build our box, we must understand the model we are trying to 

duplicate.  Let’s start by looking closely at Mermin’s imaginary device. 

2.1 An overview of Mermin’s Gedanken Gadget 

Mermin imagined a simple system comprised of three components: two detectors 

and one source.  The detectors are completely isolated from each other, and are in no 
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perceivable way connected.  This means that there are no electrical wires running 

between them, no way to produce or receive sound signals from each other, no means of 

transmitting or detecting vibrations along the surface upon which they both rest.  In short, 

the detectors’ only input is a particle from the source.  The only output from the detectors 

is the flashing of a red or green light in response to the arrival of the particle from the 

source.  An outside subjective observer is necessary to interact with the system by noting 

the color of the flashing light and the setting of the detectors.  No other information can 

be exchanged in any way 

2.2 The General Layout of Mermin’s Box 

 

      

 

Figure 2-1  The general layout of Mermin’s Box 

As shown above, the source sits between the two detectors and, when triggered, 

produces two particles instantaneously, one to each source.  This requirement of 

“instantaneousness” assures that there can be no transmission of information from a 

newly birthed particle back to the source; no way to send one particle scouting ahead to 

see what conditions are like so that the second particle can be designed appropriately.  

These perfect twins burst into existence simultaneously and immediately part ways, each 

eventually going to its ultimate fate of measurement in its assigned detector.   

Detector A Detector B Source 
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There are no spatial or geometrical requirements for the positioning of the detectors 

and the source.  They can be placed any arbitrary distance apart and need not be 

equidistant from each other.  In principle, it is possible to leave one detector in the same 

room as the source while placing the second detector on the other side of the galaxy.  

This makes it possible for one detector to trigger before the other detector has received its 

particle.   

 

 

Figure 2-2  In principle, one detector can be any arbitrary distance from the other. 

 It is also perfectly acceptable to change the respective distances of the detectors to the 

source between data events, allowing first one detector to be closer to the source and then 

the other in some random pattern within the same data collection run.  We wish to 

emphasize that although the particles are created at exactly the same moment in time, the 

distance each travels and therefore the defining moment of measurement for each can be 

very different.   

2.3 The Detectors 

Now that we have described Mermin’s source box, the production of the particles 

and the general layout of the Gedankenexperiment, it is time to examine the detectors 

more closely.   Besides the green  and red lights  that serve to announce the arrival of the 

Source 
Detector A Detector B 

1   2    
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particle, there is on the top of each detector a switch that can be turned to one of three 

possible settings.   

 

                                  

Figure 2-3  Each detector has three possible settings and can signal either red or green. 

Just as the detectors can be moved random distances relative to each other and the 

source, the settings on the detectors can also be changed between individual detection 

events.  The detector settings can even be changed after the source has emitted the 

particles while the particles are in flight.  If the respective distances between each 

detector and the source are different, it is also acceptable to change the setting on one 

detector after the other detector has already fired its response to the source but before a 

signal could be transmitted from the already fired detector to the untriggered one.  The  

 

 

Figure 2-4  The settings of one detector can be changed even after the other detector has fired. 

  1      2     3 

Source Detector A 

1   2   3 

Detector B 
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only requirement in this case is that the difference in the distances, detector to source, be 

such that there is time to mechanically change the switch while awaiting the arrival of the 

later particle.  These constraints should be sufficient to ensure that there is no way to 

cheat the system; no possible way to exchange information between the two particles.   

It is not clear at this point in our examination of Mermin’s Box what exactly the 

detector settings do.  It seems reasonable to expect that the settings change the 

measurement process in some way, but how exactly remains to be seen.  In the beginning 

we have no way of knowing what exactly the source particle is.  We also have no 

information about the mechanism by which the detector decides which color to flash.  

Our goal is to analyze the patterns of the flashing lights, compare the data to the detector 

settings and then figure out how the box works.    

Since there are three possible settings on each of two detectors, there are nine 

possible setting combinations between the two detectors:  11, 12, 13, 21, 22, 23, 31, 32, 

and 33.  For example, the combination 13 means that detector A is set to position 1 and 

detector B is set to position 3, like so:  

 

 

Figure 2-5  One possible setting configuration. 

Detector A Detector B Source 

1   2   3 1   2   3 
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2.4 The Data 

Each time the source is triggered, the detector settings and responses are recorded.  

In Mermin's 1981 American Journal of Physics article [13] he provides an illustration of 

possible data from his device.  Remember, Mermin is making this up!  His data is a 

fabrication; but it is constructed such that it matches the data expected from entangled 

spin-½ particles.  Mermin himself tells us so. 

 

                   

 

Figure 2-6  A Gedanken data set for a Gedankenexperiment.  Reprinted from Am. J. Phys., (49), 942, 

(October 1981).   
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The table from Figure 2-6 is taken directly from Mermin’s paper. [13]  The notation 

11GG (bottom right-hand corner) corresponds to the data event where both detectors 

were turned to position 1 and both responded by flashing green, whereas 23GR (upper 

left-hand corner) signifies that detector A was set to position 2, detector B was set to 

position 3, and their respective response flashes were green and red.  The setting on 

detector A is always listed first (23GR) and the setting on detector B second (23GR), 

even if their flashes did not appear in that order in time.  The same is true for the listing 

of the colored responses; the color immediately following the detector setting numbers 

(23GR) is the feedback from detector A, while the last letter in the series (23GR) 

designates the output from detector B. 

Mermin’s table is a small, hypothetical sampling (remember, this is a 

Gedankenexperiment!) of a much larger collection of data.  The only way to access the 

mystery of the box is to observe the output and then examine the statistical behavior of 

the system.  Reliable statistics require sufficient data, and we will assume in our 

exploration of this imaginary data set that it is not only of sufficient size to render a 

viable stochastic model, but that it is perfectly collected and recorded, without human 

error.  We wish to stress that although the data set Mermin conjured up is contrived, it 

statistically matches both the predictions made by quantum theory and the vast amounts 

of data collected by experimentalists doing photon polarization experiments like those of 

Aspect and co-workers [19].   

The fictional data accumulated from Mermin's imaginary machine appears at first to 

be statistically random, but close examination reveals two rules of behavior.  When the 

detectors are set to the same numbered settings, i.e. 11, 22 or 33, the detectors always 
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flash the same color.  However, which color, red or green, is left unspecified.  During one 

data event a joint setting of 11 might produce flashes of red-red while the same joint 

setting of 11 in the next data event might produce flashes of green-green.        

 The second rule of behavior relates to what happens when the detectors are set 

differently.  When the settings don’t match, as in the possible choices 12, 13, 21, 23, 31 

and 32, Mermin tells us that the detectors flash the same color about 25% of the time, and 

flash different colors about 75% of the time.  Following is a table summing up the results 

from Mermin’s small sample set. 

 

 

 

RR GG 

Identical 

 Flashes 

RG GR 

Different  

Flashes 

Totals 

Identical 

Settings 

25 27 

52/52 

Or  

100% 

0 0 0 52 

Different 

Settings 

14 12 

26/108 

Or 

24.01% 

44 38 

82/108 

Or 

75.99% 

108 

Figure 2-7 An overview of the behaviors exhibited by Mermin’s Box 

 

We will use the two behaviors extracted from the data to try to glean some 

information about the inner workings of the box. These two behaviors can be condensed 

thus: 

Rule One:   Every time the detectors are identically set they flash the same color, 

although which color is impossible to predict. 
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Rule Two:   When the detectors are turned to different settings, they flash the 

same  color about 25% of the time. 

 

Rule One, matching colors for matching settings, suggests that the particles are 

created equally, and that they carry within them, encoded from their birth, a set of 

instructions on how to behave upon meeting a detector. But since there are three possible 

settings the particles can encounter, the instruction set must be a triplet, and both particles 

must carry the same three bit information set.  This seems to be the only logical 

explanation for why the detectors flash the same color when set identically. 

2.5 The Mechanism 

 For further help in understanding what might be going on in Mermin’s Box, we 

would like to call on Maxwell's demon.  James Clerk Maxwell, father of 

electromagnetism, originally conjured up his demon as a device to help understand 

entropy in thermodynamic systems. Maxwell imagined a little impish figure, nimble, 

intelligent and the size of a gas particle.  Maxwell inserted his demon into various 

thermodynamic scenarios and used him to mentally manipulate the system in ways that 

an experimenter could not.  Maxwell’s demon, then, is also a Gedanken gadget.  We will 

use Maxwell’s Gedanken gadget to explore Mermin’s Gedanken gadget by imagining our 

demon sitting inside the source box, perhaps holding a clipboard and wearing a whistle 

like a 7th grade gym teacher. As each new pair prepares to exit he barks out orders: 

"All right, you two!   You are Red-Red-Green!  That means that when you get to 

the detector, if it is set to one, flash red!  Two means red also.  But if it's set to three you'd 

better flash green! Now, move out!" 
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While Maxwell’s demon makes for a flamboyant illustration, there is no such 

creature to place in Mermin’s Box.  A more realistic flashing mechanism could be 

provided by assuming that the particles are identical three-sided objects, like some sort of 

atomic sized space ships.  (Visualize a juice can with a pointed top and a rounded bottom, 

as illustrated in Figure 2-8.)  In this example, having the characteristics of Red-Red-

Green means that the pointed top is red, the rounded bottom is red, and the cylindrical 

body is green. 

 

                         

Figure 2-8  The atomic spaceship:  one possible way to imagine the hidden variables carried by the 

particles. 

In this second scheme, each detector has three docking ports available.  Docking 

port number one is a cone shaped receptacle.  Docking port number two is a half-sphere 

receptacle.  Docking port three consists of a flat space upon which to roll the cylinder. 

When the detector is set to number one, the doors to docking ports two and three are 

closed, and only the conical receptacle is available for docking.  The particle plugs into 

that port, and the color of the pointed top is identified and signaled with a flash.  If the 

detector is set to number two, the only open available port is shaped to receive a half 

sphere. Somehow, the particle maneuvers itself to dock appropriately, the color of the 

bottom is determined, and that color is communicated with the flashing light.  If the 
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detector is set at number three, the only option the particle has is to be rolled along a 

scanner which notes the color of the side and activates the appropriate colored flash. 

2.6 Hidden Variables 

In both scenarios, using either Maxwell’s demonic gym teacher or the atomic 

world space port, the salient feature is that the particles carry the information needed to 

trigger the appropriate response within themselves.  Each pair of particles has matching 

intrinsic characteristics; innate encoded instruction sets that must be obeyed. That these 

built-in traits exist seems to be the straightforward, obvious conclusion based on Rule 

One: matching colors for matching detector settings. These innate characteristics are 

called hidden variables and were Einstein’s explanation of choice for the workings of the 

quantum world.  (See footnote, page 7.) 

 Let's examine the hidden variables we assume each particle carries.  Following is 

a table enumerating the possible codes carried by the particles and the results each code 

set would produce given the possible detector settings.  Again, we stress that since there 

are three possible detector settings that can be encountered by the particles, there must be 

a minimum of three bits of information carried by the particles.  Since both detectors 

flash identical colors when set to identical settings, the three bits of information carried 

by each of the particles must be the same.  
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Encoded Instruction Sets

GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGRGRRGRGRRRR21

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRDet #2Det #1

Identical settings yield identical flashes 100% of the time

25% of the timeDifferent settings yield identical flashes

 

Figure 2-9  The results of each possible hidden variable set, given the settings of the detectors 

For example, we see that if the detectors are both set to number one, as illustrated 

in the first row of the table, hidden variables RRR, RRG, RGR, and RGG all yield dual 

flashes of RR from the two detectors, since a detector setting of 1 triggers the reading of 

the first bit of information in the set, while the second and third information bits are 

superfluous.  On the other hand, instruction sets GRR, GRG, GGR and GGG all produce 

matching green flashes from both detectors, since green is the color in the first position. 
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Encoded Instruction Sets

GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGRGRRGRGRRRR21

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRDet #2Det #1

Identical settings yield identical flashes 100% of the time

25% of the timeDifferent settings yield identical flashes

 

Figure 2-10   A detailed example of the results of measurement given that Detector #1 is set to 2, and 

Detector #2 is set to 1. 

For a more complicated example, look at the results from the highlighted row in 

the table above (Figure 2-10).  If Detector #1 is set to position two and Detector #2 is set 

to position one, an instruction set of RRG yields RR (the first two colors), or makes both 

detectors flash red,  while GGR makes detector #1 flash green while detector #2 flashes 

red, and so on.    

By looking at the three rows enumerating the results for detectors set the same 

(11, 22 and 33) we see that so far, our hidden variable system is working admirably; 

identical settings always result in identical responses.  We have deduced the least amount 

of information to be carried by each particle to make our detectors always follow Rule 

One. 
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Encoded Instruction Sets

GGRRGGRRGGRRGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGRGRRGRGRRRR21

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRDet #2Det #1

Identical settings yield identical flashes 100% of the time

 

Figure 2-11 Identical settings always yield identical signals from the detectors 

But wait!  What about Rule Two?  Rule Two states:  When the detectors are 

turned to different settings, they flash the same color 25% of the time.  Do our hidden 

variables produce these results?  After all, they worked so elegantly to provide the first 

expected behavior.  Are there more insights to be gained?    

Consider what happens when the detector switches are set differently.  Recall that 

it is totally acceptable to start with the detectors set the same and then switch one (or 

both) so that the settings are different after the particles have been sent on their way.  

This is important to keep in mind, because it suggests that once the particles have exited 

the source, there is no way to change their hidden variables.  Using the hidden variables 

necessary to produce behavior one, let’s see if we get the second observed behavior. 
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2.7 The Conundrum 

 

Encoded Instruction Sets

GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGRGRRGRGRRRR21

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRDet#2Det#1

25% of the timeDifferent settings yield identical flashes

RR = 1/6            GG = 1/6 Total = 1/3
 

Figure 2-12  Our hidden variables do not give the expected values for identical flashed given that the 

detectors are set differently. 

Herein lies the conundrum.  We assumed, based on Rule One that the particles 

carry with them their instructions governing how to behave upon detection.  Although it 

was not clear whether the hidden variables were intrinsic; hard coded into their very 

essence like some kind of particle DNA (as illustrated by our three sided particle 

searching for a place to dock) or whether it was somehow assigned; given to the particles 

at birth like a manifest destiny tattoo on the forehead (as portrayed by our demonic 7
th

 

grade particle gym teacher), the existence of these encoded instructions seemed to be 

undeniable and absolutely necessary to overcome the logistical problem of not knowing 

what the detector setting was until arrival.  But the logical conclusion based on Rule One 

is contradicted by Rule Two.   

Our hidden variables embodied the minimal instruction sets necessary to force the 

system to obey Rule One, matching flashes given matching settings.  This minimalist set 
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of instructions did not work to produce Rule Two.   Perhaps we need another hidden 

variable in our instruction set. Perhaps a third Rule will do the trick.  Somehow, we must 

either modify the probability space such that it matches both the expectation values for 

Rule One and for Rule Two, or the hidden variables themselves must change to provide 

the expected quantum statistical results.  

2.8 Inside Mermin’s Box 

We have already divulged the quantum secret of Mermin’s box.  Here are the 

details.  Inside the source is an emitter of spin-½ particles in the singlet state, while the 

detectors are actually Stern-Gerlach magnets which set up a magnetic field.  The magnets 

can be oriented vertically in the plane perpendicular to the flight path, or at o180±  from 

the vertical, with the angle θ denoting the difference between the two orientations. The 

detectors measure whether the spin of the particle is in the direction of the field or 

opposite the field. There is a catch.  The magnets are oriented the same (θ = 0) when the 

detector settings are the same. But since one particle is spin up and the other spin down, 

this would result in one red flash and one green flash.  The trick is that the detectors have 

opposite signaling protocols.  One detector is set to flash red if the particle’s spin is found 

to be in the direction of the field and green if its spin is in the opposite direction.  The 

second detector must flash green if the particle’s spin is in the direction of the field and 

red if oriented opposite the field.   

As for the case where the magnets (detector settings) are different, Mermin [13] 

states:  

 

“It is a well-known elementary result that when the orientations of 

the magnets differ by an angle θ , then the probability of spin  
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measurements of each particle yielding opposite values is ( )2cos 2 θ .  

This probability is unity when 0=θ   and 1/4 when °±= 120θ .” 

 

 

 Now that we understand Mermin’s Box, inside and out, there is one more 

necessary ingredient to be identified before we can build our own mechanical and 

deterministic, yet quantum box.  We must have some way to test whether or not our 

object is behaving in a quantum manner.  For that we turn to Bell’s Theorem.
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Chapter 3 

Bell’s Theorem 

As discussed in Chap. 1, Bell’s Theorem shows that if one has a system with local 

hidden variables, joint measurements across three of those variables will always obey 

Bell’s Inequality.  Conversely, Bell’s Inequality will be violated for some values of these 

same joint measurements if the system is nonlocal.  Since quantum systems also exhibit 

nonlocal tendencies, this property makes Bell’s Inequality an ideal test equation for both 

quantum attributes in general and nonlocality specifically. 

3.1 Bell’s Inequality 

  Here is Bell’s Inequality [10]: 

 

( ) ( ) ( )cbEcaEbaE HVHVHV
ˆ,ˆ1ˆ,ˆˆ,ˆ +≤− . 

 

It states specifically that for a system with local hidden variables, upon which three 

binary measurements can be made, the absolute value of the difference in expectation 

values for the product of the first measurement with each of two other measurements 

must be less than or equal to unity plus the expectation value of the product of the second 

and third measurements together.     

(3.1) 
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In other words, Bell’s Inequality is a comparison of the correlations between three 

different measurements on the same system.  These three measurements are binary.   A 

binary measurement is one that returns only one of two possible results;  +1 or -1, red or 

green, black or white, etc.  In this case, the only possible values are +1 or -1, and 

therefore the only conceivable values for their correlations
7
  are the products +1 or -1.  A 

three-way comparison is made; the first measurement â with the second measurement b̂  

yields the correlation ba ˆˆ , b̂  with ĉ  returns cb ˆˆ  and the only other possible combination, 

â  and ĉ , produces ca ˆˆ . 

For Bell’s Theorem to be useful in the reality of the working experimental lab, 

another option must be added to the binary 1± :  the null reading.  We will see in section   

3.5 that the tacit acknowledgement that experimental apparatus don’t always function 

perfectly results in the softening of the equality to an inequality. 

3.2 Proof of Bell’s Inequality 

George Greenstein and Arthur Zajonc, in their book The Quantum Challenge 

[19], provide the following proof that any local hidden variable theory will obey Bell’s 

inequality: 

 In this proof we will use the two distinct observers, Alice and Bob, and call the 

results of their measurements respectively A and B. If a theory has hidden variables ( λ ) 

                                                 
7
 In The Quantum Challenge, the authors use the term “expectation value” when discussing the 

joint correlation between two measurements used by Bell in his inequality.  Ballentine uses the word 

“correlation” and Bell calls the same quantity a “probability”.  In all three cases, the intended meaning is 

the joint behavior of the measured variables. We have used the term “expectation value” in our discussion 

of both Bell’s Inequalities and we have changed the author’s original notation in the two Bell’s Inequality 

proofs so that the same convention is used consistently throughout this thesis. We will continue with this 

usage while discussing the measurements in our Q Box of Chap. 4 and the computer simulation described 

in Chap. 5.   
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and is local (the two givens in Bell’s Theorem), then the measurement A can only depend 

on the angle θ  between the hidden variable λ  and â ,  the angle at which Alice’s 

analyzer is set.  More specifically, the measurement A cannot have any correlation with 

B, nor can Bob in any way influence what is measured by Alice.  The variable λ  is 

assumed to be a sort of local catchall of all of the unknowns in the system. 

Mathematically, we can say that A is a function of  λ  and â , and that B is a function of  

λ  and b̂ , with no cross correlations: 

 

).,ˆ,ˆ(),ˆ(

),ˆ,ˆ(),ˆ(

λλ

λλ

baBnotbBB

baAnotaAA

=

=
 

 

The expectation value of AB is the average of AB over all possible values of the hidden 

variable λ .  This is a general statement, valid for any hidden variable theory: 

 

( ) ∫= .ˆ,ˆ λABdbaEHV  

 

The assumption that we have enumerated all possible values of λ leads to 

 

∫ = .1λd  

 

If the particles are entangled such that they have opposite values, then having Alice and 

Bob set their analyzers parallel to each other they will also yield opposite values: 

 

(3.2) 

(3.3) 

(3.4) 
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( ) ( ).,ˆ,ˆ λλ aBaA −=  

 

Inserting these expressions into Bell’s Inequality, we see that  

 

( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] .,ˆ,ˆ,ˆ,ˆ

,ˆ,ˆ,ˆ,ˆˆ,ˆˆ,ˆ

λλλλλ

λλλλλ

dcAaAbAaA

dcBaAbBaAcaEbaE HVHV

∫

∫
−−=

−=−
 

 

Since A and B must be either one or negative one, it follows that 

 

( )[ ] ,1,ˆ 2 =λbA  

 

and therefore  

 

( ) ( )caEbaE HVHV
ˆ,ˆˆ,ˆ − ( ) ( ) ( ) ( )( ) .,ˆ,ˆ1,ˆ,ˆ λλλλλ dcAbAbAaA∫ −−=  

 

By the same argument, ( ) ( )λλ ,ˆ,ˆ bAaA  also equals 1± , and must be less than or equal to 

+1.  Eliminating this term from Equation (3.8) and taking the absolute value gives us: 

 

( ) ( ) ( ) ( )( ) λλλ dcAbAcaEbaE HVHV ∫ −≤− ,ˆ,ˆ1ˆ,ˆˆ,ˆ  

 

which can be rewritten as 

 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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( ) ( ) ( ) ( )

( ).ˆ,ˆ1

,ˆ,ˆ1ˆ,ˆˆ,ˆ

cbE

dcBbAcaEbaE

HV

HVHV

+≤

+≤− ∫ λλλ
 

 

This is the version of Bell’s Theorem that we will be using to evaluate our deterministic 

Q Box in Chap. 5.   

3.3 Bell’s Inequality in the Lab 

  In quantum optics or quantum spin experiments, the three measurements are 

made on either two entangled photons or two entangled spin-½ particles. The 

experimenters can be arbitrary distances from each other and from the source.  

Traditionally, the two scientists making the measurements are named Alice and Bob.  

To start the measurement process, Alice sets her analyzer at some angle â  to her 

beam of light or particle trajectory. Bob, meanwhile, rotates his analyzer to some other 

angle b̂ relative to his light beam or particle flight path.  Each of them makes some kind 

of binary measurement; yes or no, up or down, parallel or perpendicular to the axis.  The 

results are recorded.  Next Bob changes the setting on his analyzer to a new orientation, 

ĉ .  Alice leaves her analyzer in the original â  position and again they each make a 

record of what they see.  For the third measurement set, Alice changes her analyzer to the 

b̂  orientation Bob used in the first measurement, while this time Bob leaves his analyzer 

untouched and again measures ĉ .  

The measurement and recording process is repeated over and over.  When enough 

data has been gathered to make the data collection statistically viable, the expectation 

(3.10) 
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values of each of the three aggregate measurements are calculated and compared in Bell’s 

Inequality.   

 For example, the experimental value of ( )baE ˆ,ˆexp  is found by checking the data 

recording sheets and compiling the results of all of the paired detection events for which 

Alice’s detector was set at â  and Bob’s was set at b̂ , as follows: 

 

( )
N

NNNN
baE +−−+−−++ −−+

=ˆ,ˆexp . 

 

++N  is the number of data events where Alice’s detector was set at â , Bob’s was set at 

b̂ , and  both detectors fired +1,  −−N  is the number of data events where both detectors 

fired -1, −+N  denotes detector 1 (Alice) measuring +1 and detector 2 (Bob) measuring -1, 

and finally, +−N  represents the situation where Alice encounters -1 and Bob gets a 

reading of +1.  N represents the total number of pairs emitted from the source while Alice 

and Bob were set to â  and b̂ , respectively, and includes all of the misfires: 0+N , 0−N , 

+0N , −0N and 00N .  It is impossible to determine the exact number of pairs emitted where 

both escaped detection (the  00N  case), but making the assumption that the particles that 

were detected are a valid statistical sample of the whole, we can say that  

 

( )
+−−+−−++

+−−+−−++

+++

−−+
=

NNNN

NNNN
baE ˆ,ˆexp . 

 

(3.11) 

(3.12) 
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It must be emphasized that for some possible settings on the analyzers, the 

theoretical predictions of quantum mechanics conform to Bell’s Inequality; in other 

words, some analyzer configurations produce results consistent with both classical and 

quantum statistics.  However, for other combinations of settings, Bell’s Inequality is 

violated, and the system is manifestly nonlocal.   

Let’s examine more closely one way in which the actual measurements are made, 

and which experimental situations produce classical outcomes and which give quantum 

outcomes in one of the most popular types of Bell’s Inequality experiments:  a Stern-

Gerlach experiment with spin-½ particles.  

3.4 EPR Stern-Gerlach Experiments with spin-½ particles 

In an EPR Stern-Gerlach experiment, a source emits two entangled particles in 

different directions and with opposite spins.  Each particle is sent between two magnets 

which are producing a nonuniform magnetic field.  The magnets act to sort the particles 

based on their spin by deflecting them to different positions on a screen.  A measurement 

is made of the spin component along the arbitrary axis chosen by the scientist.  The axes 

chosen become the â , b̂  and ĉ  measurement protocols, with spin up having the value of 

(+1) and spin down having the value of (-1) along the corresponding axis.  
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Figure 3-1  An illustration of an EPR Stern-Gerlach experimental setup.  Note that Alice’s and Bob’s 

analyzers are oriented in the â   and b̂   directions. [Reprinted from  The Quantum Challenge. p. 117] 

Quantum mechanics predicts that for an EPR Stern-Gerlach experimental 

arrangement, the expectation value of a joint measurement between Alice’s â  and Bob’s 

b̂  is 

 

( ) θcosˆˆˆˆ −=⋅−= babaEQM , 

 

with θ  as the angle between the â   and b̂  settings.   

On the other hand, for a hidden variable theory, the expectation value based on θ  

is  

 

( ) .1
2ˆˆ −= θ
π

baEHV  

 

(3.13) 

(3.14) 
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Both equations yield the same results for some values of θ .  Following is an 

illustration showing where the two equations are and are not equivalent.  Figure 3-2 

shows that for ππθ and,2,0= , the predictions based on a hidden variable theory 

match those expected from quantum mechanics, while an orientation of °5.22  between 

analyzers produces a strong violation of Bell’s Inequality [20].   

 

 

Figure 3-2  Predictions for the expectation values of quantum mechanical and hidden variable 

systems.  [Reprinted from The Quantum Challenge. p. 121] 

3.5 An Alternative Bell’s Inequality, BI2 

 In 1971, Bell put forth a second inequality [21]:  

 

( ) ( ) ( ) ( ) .2ˆ,ˆˆ,ˆˆ,ˆˆ,ˆ ≤′+′′+′− baEbaEbaEbaE HVHVHVHV  

 

This inequality, which we will call Bell’s Second Inequality, or BI2 for short, was 

actually first derived by Clauser, Holt, Horne and Shimony [22] in 1969, in an attempt to 

find a Bell’s- type inequality that could be tested experimentally.  BI2 was designed 

specifically for experiments using spin-½ particles but can be generalized to any system 

having two binary components measured by two devices.  It allows for a different 

(3.15) 
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experimental configuration than the original Bell’s Inequality that we previously 

discussed and will be useful for analyzing Mermin’s Box, so we will provide a short 

discussion and proof.  

In this second incarnation of Bell’s Inequality, (or BI2), each measuring device is 

assumed to have a range of possible orientations corresponding to the possible 

configurations in a Stern-Gerlach apparatus.  The correlations between four combinations 

of settings made from two possible settings on each detector are compared.  The first 

detector contributes â and a ′ˆ , and the second detector provides measurements b̂ and b′ˆ .  

This differs from Bell’s first Inequality from his 1964 paper (and discussed in Sec. 3.2) 

where there are three sets of measurements taken:   

 

( )baEHV
ˆ,ˆ , ( )caEHV

ˆ,ˆ  and ( )cbEHV
ˆ,ˆ . 

 

The following proof is from Quantum Mechanics, by Leslie Ballentine [23].  The 

derivation follows very closely that of the original Bell’s Inequality proof provided in 

Sec. 3.2.  Like its predecessor, BI2 demonstrates that any local hidden variable theory 

will obey an inequality: 

 

( ) ( ) ( ) ( ) .2ˆ,ˆˆ,ˆˆ,ˆˆ,ˆ ≤′+′′+′− baEbaEbaEbaE HVHVHVHV  

 

For BI2, the first device (Alice’s) is initially set at â , and Bob’s device starts with 

a b̂  orientation.  The only controllable factors in the measurements are assumed to be the 

(3.16) 

(3.17) 
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detector settings, and all other uncontrollable factors are lumped together and labeled λ . 

Therefore, the two measurement outcomes can be described mathematically as:  

 

A( â , λ ) = 1±  

B( b̂ , λ ) = 1±  

 

In order to accommodate null measurements when either one or both of the 

detectors fail, the binary measurement restrictions Eq. (3.18) are loosened to inequalities:  

 

( )
( ) 1,

1,

≤

≤

λ

λ

bB

aA
 

 

As in Eq. (3.2), the locality assumption disallows any cross-correlations and 

makes the two measurements independent of each other.   The catchall parameter λ  is 

also manifestly local, with the assumption that these uncontrollable parameters follow 

some probability distribution ( )λρ  where ( ) 0≥λρ  and ( ) .1=∫ λλρ d   The expectation 

value (or correlation, or probability) of a joint measurement across the two detectors is  

 

( ) ( ) ( ) ( ) .,ˆ,ˆˆ,ˆ λλρλλ dbBaAbaEHV ∫=  

 

We examine the correlation results using the four possible settings:  â and a ′ˆ  (Alice) on 

the first detector and b̂ and b′ˆ  on the second detector (Bob).  Using Eq. (3.20), we find: 

(3.18) 

(3.19) 

(3.20) 
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( ) ( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( )( )[ ] ( )

( ) ( ) ( ) ( )( )[ ] ( ) .,ˆ,ˆ1,ˆ,ˆ

,ˆ,ˆ1,ˆ,ˆ

,ˆ,ˆ,ˆ,ˆˆ,ˆˆ,ˆ

λλρλλλλ

λλρλλλλ

λλρλλλλ

dbBaAbBaA

dbBaAbBaA

dbBaAbBaAbaEbaE HVHV

∫

∫

∫

′±′−

′′±=

′−=′−

 

 

 Now, by using the inequalities from Eq. (3.19), we obtain the relationship: 

 

( ) ( ) ( ) ( )[ ] ( )

( ) ( )[ ] ( )

( ) ( )[ ]baEbaE

dbBaA

dbBaAbaEbaE

HVHV

HVHV

ˆ,ˆˆ,ˆ2

,ˆ,ˆ1

,ˆ,ˆ1ˆ,ˆˆ,ˆ

′−′′±=

′±+

′′±≤′−

∫

∫
λλρλλ

λλρλλ

 

 

which implies Bell’s second Inequality, or BI2: 

 

( ) ( ) ( ) ( ) .2ˆ,ˆˆ,ˆˆ,ˆˆ,ˆ ≤′+′′+′− baEbaEbaEbaE HVHVHVHV  

 

 To show how this inequality is violated for a quantum system, we will compare 

Eq. (3.23) with the quantum mechanical correlation for the spin-½ system.  If aa
ˆˆ •≡ σσ  

and  bb
ˆˆ •≡ σσ  represent the Pauli spin operator components in the directions of the unit 

vectors â  and b̂ , then a measurement of the spin of particle 1 along the direction â will 

be correlated with a measurement of the spin of the second particle along b̂ .  The degree 

of quantum correlation is a function of the angle between â  and b̂ : 

 

( ).cos00 abba θσσ −=Ψ⊗Ψ  

(3.21) 

(3.22) 

(3.23) 

(3.24) 



 41 

 

In other words, the quantum expectation value as a function of the angle between the two 

settings is: 

 

( ) ( ),cos θθ −=QME  

 

whereas the BI2 expectation value as a function of the angle  θ  between the two settings 

is: 

 

( ) ( ).ˆ,ˆ 22 abBIBI EbaE θ=  

 

We will compare these two predictive results for the experimental setup shown below...  

 

 

Figure 3-3  Detector settings to test BI2 against the predictions of quantum mechanics.  [Reproduced 

from Ballentine’s Quantum Mechanics. p. 443] 

In the above configuration we have assumed that the instrument settings are 

coplanar, and that the angle θ  between a
r

 and a′
r

is the same as the angle between 

b
r

andb ′
r

.   For this particular experimental arrangement, the prediction for BI2 becomes 

θ

ab ′= ˆˆ

b′̂

â

(3.25) 

(3.26) 
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( ) ( ) ( ) ( ) .202 2222 ≤−+− BIBIBIBI EEEE θθθ  

 

By inserting the quantum expectation values (Eq. 3.25) into the inequality above, we 

obtain 

 

( ) ( ) 12coscos2 ≤− θθ , 

 

which is violated for many values of θ .  For example, 3/π , the angle of maximum 

violation gives: 

 

( ) ( ) .2/33/2cos3/cos2 =− ππ  

 

Since 3/2 is certainly not less than or equal to one, the quantum expectation values violate 

BI2.  As Ballentine states [23], “Therefore quantum mechanics is in conflict with at least 

one of the assumptions that were used in the derivation of Bell’s Inequality.”  Again, 

these assumptions are locality, hidden variables and realism.
8
 

Note that in BI2, the two assumptions were hidden variables, the attributes 

unknown but measurable by their instruments, and locality, in that the measurements 

made by Alice can in no way effect the measurements made by Bob.  All other possible 

                                                 
8
 Both Ballantyne and Stapp dismiss reality issues as unproductive lines of inquiry.  Stapp because one 

need not make assumptions about the nature of reality in the derivation of Bell’s theorem  and Ballantyne 

because it is a “philosophical view. . . It is not clear what the critics of realism and objectivism would offer 

as alternatives (“idealism” and subjectivism”?), nor how that would be useful in understanding quantum 

mechanics. [23] [18] 

(3.27) 

(3.28) 

(3.29) 
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effects are contained in λ , which is also expressly local.  Therefore BI2 is a test for 

nonlocality in systems with hidden variables.   

As an illustration of how Bell’s Inequality works to highlight quantum-like 

statistical inconsistencies, we will use BI2 to analyze Mermin’s Box.   

3.6 A Bell’s Inequality Analysis of Mermin’s Box 

Recall from chapter 2 that Mermin’s Box has one source box emitting two 

particles.  One particle goes to one detector while the other particle ends up at the second 

detector.  The detectors can be set to one of three distinct settings.  These detectors 

exhibit two behaviors which we enumerate as follows: 

Rule One:   Every time the detectors are identically set they flash the same color, 

although which color is not specified. 

 

Rule Two:   When the detectors are turned to different settings, they flash the 

same       color about 25% of the time. 

 

The detectors always flash the same color, either red or green, if the detectors are tuned to 

the same setting, and the detectors can be arbitrarily far apart and their settings changed 

after the particles are in flight.  Therefore,  it is assumed that the particles must carry 

from the time of their inception three item information sets (hidden variables) that either 

‘tells’ the particles how to respond to each of the three detector settings, or that are 

recognizable in some way by the detector so that it can make a decision on how to 

respond.    
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Encoded Instruction Sets

GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGRGRRGRGRRRR21

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRDet #2Det #1

Identical settings yield identical flashes 100% of the time

25% of the timeDifferent settings yield identical flashes

 

Figure 3-4  The results of each possible hidden variable set, given the settings of the detectors. 

Above is a table summarizing the possible detector settings, possible hidden 

variables and the resulting detector responses.  In order to use BI2 

 

( ) ( ) ( ) ( ) 2ˆ,ˆˆ,ˆˆ,ˆˆ,ˆ ≤′+′′+′− baEbaEbaEbaE HVHVHVHV  

 

 to analyze the system we will need to decide which detector settings will serve as â , a ′ˆ , 

b̂ and b′ˆ .  In Sec. 3.5 we found that the inequality is most strongly violated when b̂ = a ′ˆ  

and the angles between â and a ′ˆ  on the first detector and b̂ and b′ˆ  on the second detector 

are the same.  Since Mermin’s is a ‘black’ box where we are not supposed to know what 

is inside, or how the inner workings might correspond to polarization angles, we will use 

our best judgment in deciding how to model this angular requirement.  To be consistent 

with the description above we will use â =1,  b̂ =2, a ′ˆ =2 and b′ˆ =3 as our first settings, 

although these are completely arbitrary and have no connection to any known 

(3.30) 
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measurement.  Given these values for our detector settings we use the highlighted rows of 

our table to calculate the expectation values for BI2.  

 

GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGRGRRGRGRRRR21

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRBobAlice

GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGRGRRGRGRRRR21

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRBobAlice

 

Figure 3-5  The results of each possible hidden variable set, given the settings of the detectors.   The 

light blue row shows the results of ( â , b̂ ), the pink row is ( â ,b′ˆ ), the yellow row ( a ′ˆ , b̂ ) and the 

green row ( a ′ˆ , b′ˆ ) 

The light blue row corresponds to the joint measurement ( â , b̂ ), the pink row 

details ( â ,b′ˆ ), the yellow row tabulates ( a ′ˆ , b̂ ) and the green row represents ( a ′ˆ ,b′ˆ ).   

Mermin doesn’t give us any information about the efficiency of his Gedankendetectors, 

so we will assume that they work with “Gedankenperfection”.  The measurement values 

must be binary, so we will assign the value of (+1) to red and the value of (-1) to green.   

Because of the inherent symmetry in the system, the row itemizing the results for the 

( â , b̂ ) measurement results has an expectation value of zero. 
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GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRBobAlice

GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRBobAlice

GGGGGRGRRGRGRRRR21 GGGGGRGRRGRGRRRR21 GGGGGRGRRGRGRRRR21 GGGGGRGRRGRGRRRR21

21 (-1)(-1)=1 (-1)(-1)=1 (-1)(+1)=-1 (-1)(+1)=-1 (+1)(-1)=-1 (-1)(+1)=-1 (+1)(+1)=1

21 1 1 1 1-1 -1 -1 -1

0
8

11111111
=

++−−−−+
=MerE

GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRBobAlice

GGRRGGRRGGGGGGRR33

GGRGGRRRGGRGGRRR23

GGRGGGRGGRRRGRRR13

GGGRRGRRGGGRRGRR32

GGGGRRRRGGGGRRRR22

GGGGGRRGGRGRRRRR12

GGGRGGGRRGRRRGRR31

GGGGGGGGRRRRRRRR11

GGGGGRGRGGRRRGGRGRRRGRRRBobAlice

GGGGGRGRRGRGRRRR21 GGGGGRGRRGRGRRRR21 GGGGGRGRRGRGRRRR21 GGGGGRGRRGRGRRRR21

21 (-1)(-1)=1 (-1)(-1)=1 (-1)(+1)=-1 (-1)(+1)=-1 (+1)(-1)=-1 (-1)(+1)=-1 (+1)(+1)=121 21 (-1)(-1)=1 (-1)(-1)=1 (-1)(+1)=-1 (-1)(+1)=-1 (+1)(-1)=-1 (-1)(+1)=-1 (+1)(+1)=1

21 21 1 1 1 1-1 -1 -1 -1

0
8

11111111
=

++−−−−+
=MerE

 

Figure 3-6  The calculation of the expectation values for the  ( â , b̂ ) measurement of Mermin’s Box. 

The values for the other three expectation value are determined in the same way. 

 

( ) 0ˆ,ˆ =′baEMer  

( ) 1ˆ,ˆ =′ baEMer  

( ) 0ˆ,ˆ =′′ baEMer  

 

Inserting these expectation values into BI2 we find that the inequality is satisfied for this 

combination of measurement values.  

 

(3.31) 

(+1)(+1)
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21000 ≤++−  

 

There are several combinations of expectation values that work to violate BI2.  

For example, if ( ) )1(ˆ,ˆ −=baEMer  and ( ) ( ) ( ) ,1ˆ,ˆˆ,ˆ'ˆ,ˆ =′=′′= baEbaEbaE MerMerMer  BI2 yields 

4111)1( =++−− .  Unfortunately, symmetry limits the expectation values from 

Mermin’s Box to either +1 or zero; an expectation value of (-1) is not possible.  Under 

these constraints, a close examination of BI2 shows that to violate the inequality one 

must have the conditions ( ) ( ) ( ) 1ˆ,ˆˆ,ˆˆ,ˆ =′=′′= baEbaEbaE MerMerMer  and ( ) .0ˆ,ˆ =′baEMer  Upon 

further investigation, it can be seen from Fig. 3.5 that the only combinations of detector 

settings that contribute +1 to the inequality are those from identical settings; (1, 1), (2, 2) 

and (3, 3).  All other setting combinations yield 0 because of the symmetry of the system.  

With only two possible settings for Alice to use: â and a ′ˆ , and two measurement options 

for  Bob, b̂ and b′ˆ , there is no way to construct the three identical pairs required for BI2 

violation.    Careful study of the table shows that BI2 can never be violated, even if we 

drop our initial assumption that b̂ = a ′ˆ .   

 What about the original Bell’s inequality?  After all, it had three variables to 

choose from:  

 

( ) ( ) ( )cbEcaEbaE HVHVHV
ˆ,ˆ1ˆ,ˆˆ,ˆ +≤−  

 

A similar analysis to that offered above for BI2 shows that even with three variables from 

which to construct the expectation values, this inequality can also never be violated.  In 

(3.32) 

(3.33) 
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the case of the original Bell’s Inequality, it would require one or more of the expectation 

values to be negative. Again, the symmetry of the system only generates two expectation 

values: +1 for the cases of matching detector settings or zero for all other combinations.  

Therefore, both versions of Bell’s Inequality require some sort of measurement 

mechanism to break the symmetry in the system. 

It must be noted that Bell’s Inequality is quite general.  It proves that it is 

impossible for the joint expectation values from any system with local hidden variables to 

match the joint expectation values from any nonlocal system for all values of â , b̂  and ĉ .  

It can be reformulated for other configurations and numbers of variables, as evidenced 

with BI2 by Clauser, Holte, Horne and Shimony. [10] The proof is independent of the 

particular hidden variable theory.  In short, it shows that the statistics for any local hidden 

variable theory will not match those expected from a quantum system.  Bell’s Theorem 

was long thought  to rule out the possibility of hidden variables, but instead it provides a 

loophole:  hidden variables may be present if they are nonlocal. 

 In Chap. 5 we will address these issues and show that a deterministic system with 

hidden variables can be constructed for which it is possible to violate Bell’s Inequality; 

but it will take a nonlocal measurement scheme to break the symmetry and produce 

quantum correlations.  Before we tackle a nonlocal measurement though, we would like 

to investigate in Chap. 4 the local measurement strategies used in the Game of Life.  

Understanding the manner in which individual time steps are evaluated in the Game of 

Life will be helpful later when we address similar measurement issues in our Q Box. 
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Chapter 4 

The Game of Life 

 Before continuing with our Q Box measurement scheme, it will be helpful to take 

a short side trip into the world of cellular automata. [24]   Cellular automata, like the 

Game of Life which we will be discussing, are composed of a grid system of dark and 

light colored squares which “evolve” according to the application of simple iterative 

rules.  Scientists and mathematicians study the Game of Life and other cellular automata 

to gain insights into simple, rule-obeying systems that occur in nature; such as human and 

computer viruses, insect behavior, traffic flow and biological mutations. For example, 

John von Neumann, one of the pioneers of automaton modeling, used a cellular system in 

the design of his universal constructor, a theoretical self-replicating machine. [25]  

The Game of Life was invented in 1970 by the mathematician John Conway. [24] 

It is played on a grid like a board for checkers or Go.  Each space in the grid is a cell that 

is either alive (has a marker in it) or dead (empty).  The cells live or die based on the state 

of their eight nearest neighbors: the four cells that share boundary walls with it on each 

side, and the four cells that touch it at the four corners.  One starts the game by laying out 

some pattern of markers on the grid.  The cells are born, remain alive or die based on how 

many living or dead immediate neighbors they have.  The rules for living and dying are: 

1)   Birth:  If a dead cell has exactly three live neighbors it becomes alive. 
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2)  Survival:  A living cell with either two or three living neighbors remains alive. 

3)   Death from loneliness:  A living cell with zero or one living neighbor dies. 

4)   Death from overcrowding:  A living cell with more than three live neighbors 

dies. 

 

 

 

 

Figure 4-1 Results in the Game of Life Measurement [24] 

Above in Figure 4-1 is an example of the evolution of a simple automaton system 

from its beginning to its stable end.  It starts as shown in (1) with four living cells all in a 

row in the center of a neighborhood consisting of forty cells.   Each cell is analyzed 

separately to ascertain how many adjacent living cells there are surrounding it, as shown 

in illustrations (2), (4) and (6).  Then, if a living cell has either two or three neighbors, it 

survives in the next time step, as do the two center living cells in (2).   If a living cell has 

more than three living neighbors it dies in the next time step. This happens in (4) to the 
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cells at the center.  If a living cell has zero or one living neighbors, it dies in the next time 

step, as shown by the cells at each end in (2).  If a dead cell has exactly three living 

neighbors it becomes live in the next time step, as illustrated in both (2) and (4).  

Otherwise, the cells remain dead.   

Based on just these simple rules, the patterns in the Game of Life can grow, 

stabilize or completely die out.  Depending on the initial conditions, successive 

generations of cells living and dying form patterns that can oscillate, pulse, glide across 

the board, dance like a queen bee, form puffs that grow until they hit a border, or become 

guns that destroy everything in front of them.  They can even replicate themselves. 

Here is another simple automaton, made up of five living cells, called a “glider”.  

The five cells from which a glider is constructed mutate through four different repeating 

patterns.  With every cycle the glider moves up the grid.   
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Figure 4-2  A Game of Life glider “moving”. [24] 

Game of Life simulations are relevant to our research because of the order that the 

measurement process follows. For each time step a state is decided.  Everything stops 

while cells are measured and those that are to be changed are identified. Every cell is 

considered separately, and the future of each cell depends only on a joint measurement of 

its immediate neighbors in the current time step only.  For example, if a dead cell in time 

step 1 has three living neighbors, the cell will be alive in time step 2, even if the those 

neighboring cells that helped the cell to meet the requirement for birth themselves die in 

time step 2. Although Game of Life Simulations appear to move with rippling effects 
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across the grid, as if one change triggers another, in actuality the life or death decisions 

are all based on the end state of the previous time step. Each time step is discrete.
9
  

Our measurement process will follow this same pattern. In the Game of Life the 

cells live or die in the next time step based on a joint measurement of their immediate 

neighbors in the current time step.  We will also make a joint measurement which will 

determine the future state of the variables of our Q Box.  There is a distinct difference, 

however, in how one plays the Game of Life and how one plays with the Q Box; in our Q 

Box the joint measurement is nonlocal. 

 

                                                 
9

 For an excellent tutorial and fascinating examples, we highly recommend 

http://www.math.com/students/wonders/life/life.html, March 2, 2006. [26] 
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Chapter 5 

A Mechanically Classical, Yet Statistically Quantum Box 

Having investigated the inherent peculiarities of quantum systems as illustrated by 

David Mermin’s Box and having examined Bell’s Theorem and its role in identifying 

those systems which are nonlocal, we now describe the buildable, deterministic quantum 

box that is the focus of this thesis: the Q Box. 

5.1 The Design of the Q Box 

The Q Box is a 3x3x3 master cube made up of 27 smaller cubes, with one extra 

small cube on the side.  The 27 cubes are set within a framework that allows them to be 

manipulated from all sides; push the extra cube in at any of the 9 possible positions on 

any of the 6 possible faces, and another cube pops out of the opposite side.  

 

extra

 

Figure 5-1  The Q Box 
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Two of the smaller cubes in the Q Box are special; they each carry polarization 

characteristics.   The rest of the smaller cubes that make up the Q Box are identical and 

unmarked.  These unmarked cubes will act as placeholders later as we shuffle the 

polarized cubes around. 

There are four possible polarizations on the special cubes:  up, down, left and 

right.  Each of the two special cubes will have one vertical and one horizontal 

polarization each.  Of the 1624 =  possible combinations of these polarizations on the 

two cubes, only four of them are correlated such that the two cubes carry opposite 

polarizations in both the horizontal and vertical directions.  We will limit the polarization 

possibilities to these four special correlated cases in order to match the entangled pair 

properties we encountered in Mermin’s Box. 

Here is one possible configuration for the polarized cubes: 

 

 

Figure 5-2  Two of the small cubes that make up the Q Box carry hidden variables. 

The cube on the left is vertically polarized down (negative) and horizontally 

polarized to the right (positive).  The cube on the right carries polarization properties that 

are opposite those of its partner.  Again, we have no way of knowing where in the Q Box  

these special polarized cubes are located, nor do we know what their horizontal and 

vertical values are, but we do know that they are strictly correlated with each other.  If 
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one of the marked cubes carries the attributes of up-right, the other cube is without any 

doubt down-left.  These polarizations are local hidden variables. 
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Cube #1
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Cube #2
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Figure 5-3   Table of the four possible correlated states for the two special cubes. 

This table enumerates the four possible strictly correlated configurations for the 

two cubes.  As explained, these are the only four permutations out of the 16 possible that 

satisfy our entanglement model. The colors of the arrows characterizing the polarizations 

correspond to whether they are in the positive (red) direction or the negative (green) 

direction.  As previously stated, up is the positive vertical direction and to the right is the 

positive horizontal direction.  This convention will be used in later calculations.   

The two labeled cubes are blindly loaded into the Q Box in random positions.  It 

is important that the labeled cubes are loaded into the Q Box in a way that is 

unpredictable.  It makes the correlation between the two cubes the only information that 

we have.  This is the essence of our model of entanglement.  In Fig. 4.1, the two unique 

cubes are loaded in opposite corners of the Q Box, but the initial positions of the two 

special, polarized cubes can be anywhere within the Q Box. 
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5.2 Deterministic Manipulation of the Q Box 

Now we begin to manipulate the Q Box.  We push the extra, outside cube in at 

one of the 54 possible entry sites and catch the one that comes out of the opposite side.  

This becomes the new pusher.  Without changing the orientation of the outside cube, 

(since that could change the vertical-horizontal convention), we push it back into the Q 

Box at another randomly selected site.  The blind loading of the Q Box and shuffling are 

together the equivalent of taking the entangled pairs to ‘opposite sides of the galaxy’ as 

per Mermin’s Box.  We continue to shuffle the Q Box in this manner until one of the 

special cubes pops out.  At this point, alarms go off and the system stops.  The position of 

the other special cube that is still inside the Q Box is identified, and three Bell’s 

Inequality type measurements are made.   

5.3 Measurement of the Q Box 

Here is Bell’s Inequality again: 

 

( ) ( ) ( )cbEcaEbaE HVHVHV
ˆ,ˆ1ˆ,ˆˆ,ˆ +≤− .   

 

To use Bell’s Inequality as a test for the quantum vs. classical behavior of the Q Box, we 

need to make three binary measurements: â , b̂ and ĉ .  Then we must calculate the 

expectation values of the joint measurements ba ˆˆ , cb ˆˆ and ca ˆˆ , put them into the equation, 

and see if a violation results. 

  Our â  measurement will be the vertical polarization of the outside cube, i.e. the 

special cube that popped out and started the measurement process.  Up (red) will be +1; 

(5.1) 



 59 

while down (green) is -1.  The b̂  measurement is the horizontal polarization of the inside 

cube, i.e. the special cube that is still in the Q Box.  Both â  and b̂  are local 

measurements. We assume that making the â  and b̂  measurements wipes that 

information from the polarized cubes.   We will discuss the reasons for this later in the 

next section. 

The third measurement, ĉ , is the nonclassical element of the Q Box.   It is 

nonlocal by design.  If nonlocality is the quantum ingredient, as we believe, it must act to 

change the hidden variables such that they can be described by a new probability space; a 

quantum probability space. In other words, the realization of a nonlocal measurement 

must change the realization of some of the other measurements of the system.  The  result 

of the nonlocal ĉ  measurement affects the result of the other two joint measurements in 

the system. 

Our nonlocal measurement, ĉ , is a joint measurement of the horizontal value for 

the outside cube (cube #1)  and the vertical value of the inside cube, (cube #2).  These are 

the values left on each cube after the first two measurements are made and that 

information subsequently erased.  Because we consider both values at once, and the two 

cubes could be, in principle, far away from each other, this is a nonlocal measurement.  

But it is a measurement that could be made by some stretch of the imagination as follows: 

Assume that the cubes are made of a transparent material, with the polarizations 

drawn as lines in red and green.  Once the first two measurements are made, we are left 

with only a horizontal polarization on the outside cube and a vertical polarization on the 

inside cube, as shown below. 
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Figure 5-4  Only half of the original Information is left on the special cubes after measurement 

Now we shine a flashlight through the two cubes.  The flashlight has two bulbs, 

one red and one green.  The flashlight selects from the two colors randomly at every 

measurement.  The red or green light passes through both cubes, travels through a 

quarter-wave plate and then projects onto a screen.  We only have access to the projection 

on the screen.  We do not know what color is shining from the flashlight. The quarter-

wave plate acts to rotate the arrows 45 degrees, making it so that if you see only one 

diagonal image, it is impossible to know which of the two cubes produced that image.  

The three possible images are:  a diagonal cross (if both polarizations have the same 

value, and that value is the opposite color of the flashlight), a diagonal slash (if one 

polarization is positive and the other negative), or no image at all (if both polarizations 

are the same value as the flashlight). 
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Figure 5-5  Two of four possible nonlocal measurements.  If the values of the polarizations do not 

match, either color of flashlight will reveal ½ of an X shape on the screen.  The ĉ  measurement will 

be (-1). 

 

Figure 5-6  Two of four possible nonlocal measurements.  If the values of the polarizations match, 

there will either be an X shape on the screen (for the case where the flashlight color also differs from 

the polarization values) or nothing at all (for the case where the flashlight color matches the 

polarization values. 

In the case that the cubes are either both positive or both negative, either an X will 

show up on the screen, or the screen will be blank and one can know that the cubes had 

matching values.  This is a ĉ  measurement of +1. On the other hand, if only one diagonal 
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slash shows up on the screen, the experimenter knows that the values of the two cubes 

did not match, and the ĉ  measurement is -1.  

5.4 The Necessity of Measurement Induced Information Loss 

That the polarization traits are destroyed upon measurement is actually a subtle, 

tricky requirement for our deterministic Q Box.  In the lab, the scientist does not have the 

luxury of putting a particle or photon in some kind of stasis box where it can be measured 

repeatedly over and over. Instead it passes through the measurement apparatus, gives up 

its information and is either destroyed or changed beyond recognition and continues on 

its way, with no way of catching that particular particle or photon
10

 again. In contrast, our 

two special cubes each get measured twice; once with an individual measurement and 

once as part of a joint measurement. If the information does not disappear after 

measuring â  and b̂   there is too much information left on the cube, and the 

ĉ measurement need not be nonlocal; it can be calculated just by looking at either of the 

cubes and remembering that the other is correlated opposite to it.  We would be back to 

ordinary, classical correlation instead of entanglement.  So the question becomes, “How 

can we destroy the attributes upon measurement? What deterministic processes might 

work like this?”   

Here are some ideas.  We could use a paint that disappears when subjected to light 

of a certain wavelength, in which case the horizontal and vertical polarizations would 

need to be inked with paints with different “destruction coefficients” so that the 

measurement of â  doesn’t destroy the information needed later for  ĉ . Or we could use a 

low-tech solution like peel-off stickers.  Both of these solutions would require a third 

                                                 
10

 What is a photon, anyway? 
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entity to make the nonlocal ĉ  measurement, someone that had no knowledge of the value 

of the previous measurement.  Or, since we are just brainstorming here, why not give 

Alice and bob mind-wipe serums after each â  and b̂  measurement? 

Another option would be to use a paint that is only visible when illuminated with 

a certain frequency of light, say ultraviolet or infrared.  Then the vertical polarization 

could be painted on the cubes with paint sensitive to ultraviolet and the horizontal 

polarization could be marked with paint that only glows under infrared.  The   â  

measurer would have an ultraviolet light wand and the b̂  measurer an infrared light 

source.  The person who makes the nonlocal measurement would need both.  

5.5 The Q Box Rules  

To have a quantum probability space that violates Bell’s Inequality, the result of 

our nonlocal measurement must somehow change the outcome of another measurement.  

Therefore, part of our nonlocal measurement process is the application of three rules, 

which we elevate in importance by capitalizing them: the Q Box Rules.   They are:  

1. If â  and b̂  are being measured jointly, their values remain unchanged. 

2. If â  is being measured with ĉ , its spin value is forced to match that of ĉ . 

3. If  b̂  is being measured with ĉ ,  its spin value is forced to be opposite that 

of ĉ . 

 

The Q Box Rules are reminiscent of the type of rules encountered in Game of Life 

simulations:  they are simple, they are binary (Q Box results are 1±  whereas Game of 
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Life results are alive/dead), they are enforced through a joint measurement and the results 

of measurement happen simultaneously at the end of each time step. 

Following is a tabulation of the results of the three measurements given the four 

possible states of the two entangled Q Box cubes, both before and after application of 

The Q Box Rules.   
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Figure 5-7  A Classical System:  measurement values before application of The Rules. 

Before the application of the Q Box Rules, our system is classical, and Figure 5-7 

shows what one would expect from a deterministic, local, classical system.  The 

measurements â , b̂  and  ĉ  are independent of each other and the joint measurements 

reflect this.  Recall from our discussion of Bell’s Theorem in Chap. 2 that the expectation 

value of ( ba ˆˆ ) is the sum of all the joint measurements of ( ba ˆˆ ) divided by the number of 

measurements.   If we assume that each of the four possible spin configurations are 

equally likely then the expectation values for ( ba ˆˆ ),  ( cb ˆˆ ) and ( ca ˆˆ ) are all identically 
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equal to zero since in each case there are two values of +1 and two values of -1; this is 

due to the high degree of symmetry in the system.  (See Fig. 5.7) 
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4
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When these expectation values are placed into Bell’s Inequality, the inequality is 

satisfied, as indeed it should be for any well-behaved classical system: 

 

( ) ( ) ( )cbEcaEbaE HVHVHV
ˆ,ˆ1ˆ,ˆˆ,ˆ +≤−  

10

0100

≤

+≤−
 

 

Now observe what happens when we apply the Q Box Rules.  These rules work 

under the assumption that the correlation is the most fundamentally ‘real’ attribute of our 

Q Box, not the specific hidden variables themselves.  In other words, the correlations, or 

expectation values, change (guide, command, influence, control) the realizations of the 

hidden variables.   

 

(5.2) 

(5.3) 
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Figure 5-8   A Quantum System:  measurement values after application of the Q Box Rules. 

Notice in Figure 5-8 that the hidden variables â  and b̂ change based on their 

correlation with the nonlocal ĉ .   â  must match the polarization value of ĉ and b̂  must 

be the opposite polarization value from ĉ , as stated in the Q Box Rules.  In all the Rules 

change only four of the twelve correlation values (shown in red) from those in the 

classical system in Fig. 5.7, but this is enough to transform this version of the Q Box 

from classically deterministic to quantum.  

At this point we should admit that the deterministic system as advertised in the 

beginning of this thesis would best be called quasi-deterministic.  The Q Box starts out 

appearing quite normal, classical, well-behaved and deterministic.  However, the 

application of the Rules which change the probability space require part of the 

mechanism itself to be outside of the system.  Consider the archetypal deterministic 
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system:  clockworks.  Once a clock is wound, it ticks away until friction within the 

system causes it to wind down, each click of the toothed gear leading to the next in a 

perfectly predictable way. On the other hand, the Q Box clockworks require a 

measurement and an adjustment at every tick along the way.  This will be discussed in 

greater detail in Chap. 6 and 7. 

After application of the Q Box Rules the expectation values become: 

 

( )

( )

( ) 1
4

1111
ˆ,ˆ

1
4

1111
ˆ,ˆ

0
4

1111ˆ,ˆ

+=
++++

=

−=
−−−−

=

=
−++−

=

caE

cbE

baE

HV

HV

HV

 

 

When evaluated in Bell’s Inequality, these new expectation values yield: 

 

( ) ( ) ( )cbEcaEbaE HVHVHV
ˆ,ˆ1ˆ,ˆˆ,ˆ +≤−  
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which is a clear violation of Bell’s Inequality.  Our Q Box is now behaving in a quantum 

manner.  The four changes based on the Q Box Rules were just enough to break the high 

level of symmetry in our system. 

 

 

(5.4) 

(5.5) 
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5.6 Q Box Discussion 

Our nonlocal measurement and the accompanying Q Box Rules are completely ad 

hoc and at first glance seem rather arbitrary.  In the previous section we stated that the 

correlations change the realizations.  Does this mean our hidden variables were not 

‘real’?  After all, we brainstormed several ways of painting the polarizations onto the 

cubes in Sec. 5.4.  What we once considered to be hard-coded initial conditions for the 

hidden variable polarizations now appear to be more like initial preferences which are 

subject to change based on the nonlocal requirements of the system.   
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Figure 5-9  The measurements and correlation values for one possible Q Box configuration. 

Take for example the configuration state shown in the first column of Figure 5-9, 

our tabulation from after the Q Box Rules were applied.  We have reproduced just the 

first column in Figure 5-9 above.    The vertical polarization of cube #1, ( â ) starts out as 

+1 or ‘up’.  It remains so if compared or measured jointly with ( b̂ ), the other classical 
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entity in the Q Box system.   But if one asks a question about â ’s quantum nature by 

evaluating it jointly with the nonlocal ĉ , it is forced to flip ‘down’ to (-1)  to match ĉ . 

In other words, in our Q Box the question “What is your polarization state” will 

always receive the same classical answer if the question is asked of â by b̂  (as in a joint 

measurement ba ˆˆ .)  On the other hand, if the question is posed by ĉ  in the joint 

measurement ( ca ˆˆ ), then â will return its classical value only if matches that of ĉ , (which 

it will 50% of the time) as if ĉ  wields some sort of creepy quantum peer pressure!   

This is a little bit reminiscent of the Copenhagen interpretation, in which a state is 

not determinable until it collapses upon measurement.  The two special cubes in our Q 

Box do have hidden variables attached to them which are predetermined.  These can be 

thought of as “classical preferences”.  But these inclinations are subject to change upon 

quantum notice.  If all one can see is the end result of the final measurement though, the 

two systems, Copenhagen Quantum and Q Box, look the same, and the experimenter has 

no way of knowing whether the particle was originally predisposed one way or the other 

or was completely undecided until measurement; particles in “a state of superposition,” 

using the quantum vernacular, would manifest themselves at this level in a way that is 

indistinguishable from our predisposed but easily influenced Q Box particles.   

The three hidden variables, â , the vertical polarization of the outside cube, b̂ , the 

horizontal polarization of the inside cube,  and ĉ  , our joint nonlocal measurement, with 

which we chose to measure our Q Box, together comprise only one of several sets of â , 

b̂  and ĉ  measurements which we identified during the course of this research, all of 

which worked effectively together to violate Bell’s Inequality.  The measurement set of 
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â , b̂  and ĉ  used throughout this thesis had the advantage of being the easiest to 

describe, illustrate and program into our computer simulation .  But we would like to 

stress that possible measurement schemes appear to be limited only by the imagination.  

We identified measurement schemes that involved Left-Hand-Rule constraints, 

projections onto the complex plane, odd/even considerations, etc.  In every case the 

measurement sets were a combination of two classical measurements (like â  and b̂ ) 

combined with one nonlocal measurement ( ĉ  ) that acted to break the symmetry of the 

system and violate the inequality.  We are left to wonder what type of measurement 

scheme Nature might prefer. 

5.7 An Important Theorem by Suppes and Zanotti 

It appears that nonlocal constraints used to force a quantum probability space like 

those described in the last section are not wholly unexpected.  Patrick Suppes and Mario 

Zanotti have provided us with an important theorem with an accompanying corollary on 

hidden variables that is pertinent to this research.  Their corollary suggests that not only is 

a nonlocal measurement/connection/control mechanism to be expected in quantum 

systems with hidden variables, it is crucial.   

 In their paper “When are Probabilistic Explanations Possible?” [27] Suppes and 

Zanotti discuss causal variables and the necessity that such variables yield conditionally 

independent data.  Here is what Suppes and Zanotti have to say about hidden variables in 

quantum mechanics and how Bell’s Inequality works as a “necessary but not sufficient 

condition for conditional independence.” 

. . . [T]he search for common causes in quantum mechanics is the 

search for hidden variables.  A hidden variable that satisfies the common 
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cause criterion provides a satisfactory explanation “in classical terms” of 

the quantum phenomenon.  Much of the earlier discussion of hidden 

variables in quantum mechanics has centered around the search for 

deterministic underlying processes, but for some time now the literature 

has also been concerned with the existence of probabilistic hidden 

variables.  It is a striking and important fact that even probabilistic hidden 

variables do not always exist when certain intuitive criteria are imposed.  

One of the simplest examples was given by Bell in 1971, who extended his 

earlier deterministic work to construct an inequality that is a consequence 

of assuming that two pairs of values of experimental settings in spin-1/2 

experiments must violate a necessary consequence of the common cause 

criterion, that is, the requirement that a hidden variable render the data 

conditionally independent.  It is easy to show that Bell’s inequality is a 

necessary but not sufficient condition for conditional independence. 

 

 The implication of the theorems and corollary derived by Suppes and Zanotti is 

that there exists some irreducible nonlocal connection between the variables.  Because 

quantum mechanical systems that violate Bell’s Inequality also precisely violate the 

conditions of the Suppes and Zanotti theorems, the results of this thesis can provide 

insight into details of the probability structure of measurements on quantum mechanical 

systems. 

Now, to show that our nonlocal measurement protocol works in a general way, we 

would like to revisit Mermin’s Box.  We will demonstrate that, using BI2 and another 

measurement scheme that combines classical and nonlocal elements with the application 

of two rules reminiscent of the measurement protocol we used on the Q Box, we can 

obtain Mermin’s quantum statistics from his beginning deterministic hidden variable 

system. 
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Chapter 6 

Mermin’s Box Revisited 

In Chap.3 of this thesis, we described Mermin’s Box as a pedagogical structure 

intended to showcase the impossibility of obtaining quantum results from a classical 

system with hidden variables.  In Chap. 5 we described how our classical Q Box with 

hidden variables becomes a quantum system by applying nonlocal rules.  In this chapter 

we would like to pose a question.  Can the same technique be used on Mermin’s Box?  Is 

there a nonlocal measurement and rule combination that produces the unexpected 

quantum results of Mermin’s Box?  Will the technique work even if we start with the 

deterministic system Mermin implies is inside his box in the beginning, instead of the 

spin-1/2 particles he unveils later?  

Recall that in Chap. 2 we investigated two different formulations of Bell’s 

Theorem.  In Chap. 5, we used the original inequality proposed by Bell, 

 

( ) ( ) ( )cbEcaEbaE HVHVHV
ˆ,ˆ1ˆ,ˆˆ,ˆ +≤−   

 

as a means to evaluate the quantum character of the Q Box by using three measurements:  

the classical measurements  â  and b̂ and the nonlocal measurement ĉ . To do this we 

needed three measurement devices:  a vertical analyzer to measure â , a horizontal 

(6.1) 
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analyzer to measure b̂ and the nonlocal flashlight used to make the joint measurement ĉ .  

The value of the nonlocal measurement ĉ  acted to change the values of the classical â  

and b̂  measurements according to these three rules: 

1) If â  and b̂  are being measured jointly together, their values remain unchanged. 

2) If â  is being measured with ĉ , its spin value is forced to match that of ĉ . 

3) If  b̂  is being measured with ĉ ,  its spin value is forced to be opposite that of ĉ . 
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Figure 6-1  Table showing how the ĉ  measurement controls the realization of â  and b̂ . 

For the nonlocal measurement of the Q Box, we were able to identify a joint 

measurement over two previously unused hidden variables; the horizontal polarization of 

cube #1 and the vertical polarization of cube #2.  In other words, we made three 
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measurements over four hidden variables.  Bell’s original Inequality, with its three 

measurement possibilities was just what we needed to evaluate our Q Box. 

 

 

Figure 6-2  Mermin’s Box 

In the case of Mermin’s Box, though, the situation is different.  Mermin’s Box 

contains two detectors, and each detector has three possible settings.  In Chap. 2 we 

discussed the fact that the particles emitted from the two sources in Mermin’s 

Gedankenexperiment are assumed to each carry matching three-bit sets of information. 

The existence of these twin three-bit information sets was inferred from the fact that there 

are three possible settings on the two detectors, and the particles trigger matching flashes 

100% of the time when the detectors are set the same.  Since these hidden variable sets 

are assumed to be equivalent, there is no way to make a meaningful nonlocal joint 

measurement over both of them; any attempt to compare the ‘leftover’ hidden variables 

as we did in the Q Box will always yield trivial equivalent answers and no new 

information.   

So, we need a new nonlocal measurement scheme and some version of Bell’s 

Inequality that utilizes the hidden variables available to us in the system of Mermin’s 

Box.  Instead of taking three measurements over four hidden variables, as in our Q Box, 

for our Mermin’s Box measurement scheme we will take four measurements over three 

Detector A Detector B Source 

1   2   3 1   2   3 
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hidden variables; two measurements from each detector.  We’ll call the measurements 

from detector #1 â  and  a′ˆ ,  and those measurements taken on detector #2, b̂  and b′ˆ .  

As for which version of Bell’s Inequality to use, we have already discussed in Chap. 3 

Bell’s second Inequality, or BI2: 

 

( ) ( ) ( ) ( ) .2ˆ,ˆˆ,ˆˆ,ˆˆ,ˆ ≤′+′′+′− baEbaEbaEbaE HVHVHVHV  

 

BI2 is a comparison of the correlations between four hidden variables:  â , a′ˆ , b̂  and b′ˆ , 

and meets our requirements. 

The nonlocal measurement, though, will take a little more thought.  As discussed 

previously, the hidden variable sets are equivalent.  Making meaningful nonlocal joint 

measurements over pairs of them is impossible.  Therefore, we are forced to incorporate 

our measurement devices in our nonlocal measurement scheme.  

Is this acceptable?   In the realm of quantum science, yes, it is acceptable.  The 

seemingly necessary inclusion of measurement devices in the quantum state function is 

part of what makes quantum mechanics so unsettling for many scientists.  In Griffiths’ 

Introduction to Quantum Mechanics, he says: 

The measurement process plays a mischievous role in quantum 

mechanics:  It is here that indeterminacy, nonlocality, the collapse of the wave 

function, and all the attendant conceptual difficulties arise.  Absent measurement, 

the wave function evolves in a leisurely and deterministic way, according to the 

Schrodinger equation and quantum mechanics looks like a rather ordinary field 

theory. . . It is the bizarre role of the measurement process that gives quantum 

mechanics its extraordinary richness and subtlety.” [28] 

 

(6.2) 
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Another favorite quote is from The Quantum Challenge,  

“In an evocative phrase, Bohm has described a quantum state as a 

“set of potentialities.”  Following up on this point of view, Shimony and 

others advocate thinking of measurements as actualizing one of these 

potentialities.”  [20] 

 

“Actualizing a potentiality” is precisely what we did with our nonlocal flashlight 

measurement in the Q Box, as shown in Fig. 6.1.  We will do the same with Mermin’s 

Box.  We will make a measurement which will actualize a potentiality.  But, in the 

Mermin’s Box measurement scheme the rules will include the measurement device in an 

even more fundamental way than in the Q Box.   
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Figure 6-3  The measurement results of Mermin’s Box assuming a strictly local mechanism. 

Here again is the table showing all of the possible detector settings, hidden 

variable combinations and the results given a strictly deterministic mechanism inside.  In 
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Chap. 2 we discussed how such a deterministic mechanism can never produce the 

observed output of the box: 

Observation 1:   Every time the detectors are identically set they flash the 

same color, although which color is impossible to predict. 

 

Observation 2:   When the detectors are turned to different settings, they 

flash the same color about 25% of the time. 

 

 

As can be seen in Fig. 6.3 above, and as was addressed in Chap. 2, the realization 

of Observation 1 requires matched 3-bit hidden variable sets.  The same 3-bit sets 

requisite for producing these results conflict with Observation 2; instead of generating 

same colored flashes when the detectors are turned to different settings the required 25% 

of the time, they yield matching colors 50% of the time.  As with the Q Box, we must 

find a nonlocal measurement that will affect the realizations of these hidden variables; 

measurement must actualize the potentialities.  

Here is the background for our Mermin’s Box Rules: 

Given that Red is ‘odd’ and Green is ‘even’, each of the three bits of information 

carried by the particles is ‘odd’ or ‘even’.  These are local variables, since in principle 

they are carried along with the particles.  In the same way, the results of measurement, 

the flashing colored signal from the detectors, can also be considered odd or even.  If one 

detector flashes red and the other green, that is an odd data event.  If both detectors flash 

either red or green, that is an even data event, since odd + odd always is even and even + 

even is also always even. 

For our nonlocal measurement, we will take the sum of the values, even or odd, of 

the two detectors.  If detector #1 is set at one and detector #2 is set at three, the sum of 
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the two, ‘odd’ + ‘odd’ supplies a nonlocal measurement of ‘even’.  Here is a new table 

reflecting these conventions: 
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Figure 6-4:  Even and odd conventions for Mermin’s Box. 

Following are the Mermin’s Box Rules that act to change the realizations of the 

hidden variables.  They are in the form of one rule and one exception: 

Rule:  If the sum of the joint detector settings is odd, the sum of the two 

detector flashes must also be odd. 

Exception:   If all three hidden variables are even, the sum of the two detector 

flashes will also be even, no matter what the detectors are set at. 

 

After application of the rules, the results will be those shown in the table below.  

The figures in blue denote those hidden variables that change based on the nonlocal 

measurement across the two detectors.  Now the data matches the original 

specifications of Mermin’s Box; i.e., when the detectors are set the same, the 

flashes match.  When the detectors are set differently, the detectors flash the same 

color only 25% of the time. 
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Figure 6-5  Mermin’s Box data after application of the rules. 

At the beginning of this chapter we posed some questions:  “Can the same 

technique used on the Q Box to make it behave in a nonclassical manner be used on 

Mermin’s Box?  Is there a nonlocal measurement and rule combination that produces the 

unexpected quantum results of Mermin’s Box, even if we start with the deterministic 

system Mermin implies is inside his box in the beginning, instead of the spin-1/2 particles 

he unveils later?”  

Again, as is the case with the Q Box, the answer appears to be, “Yes!  If . . .”   If a 

nonlocal measurement can be identified that produces the right statistics and can serve as 

some kind of trigger or sorter or enforcer of the hidden variables.  Just how that 

mechanism might actually work is unclear.  In our reworking of Mermin’s Box, it is as if 

there is some sort of implicit Affirmative Action Program for the Advancement of 

Oddness going on inside the box.  Only the triplet of Even-Even-Even is immune.  It 
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should be noted that this is the only one of the possible particle configurations which 

doesn’t carry an odd bit within itself.  

For these changes to happen deterministically, the particles encountering a joint 

odd setting must either shuffle the order of their variables in a coordinated way so that 

the correct (one odd, one even) values can be ‘scanned’ by each detector, or the hidden 

variables must be able to change so that the particles jointly comply with this odd 

company culture.  Either scenario implies communication and complicity between the 

two sets of hidden variables and/or the detectors.  

This leads to a second obvious question.  At what level in the system is the 

oddness enforced?  Do the particles themselves change their hidden variables, or at least 

decide which of the two options to present?  This would imply a nonlocal knowledge of 

what is happening with their twin.  It seems more likely than having the detector be in 

charge of the ‘presentation of the colors’.   

Could there an omniscient Maxwell’s Demon floating above the experimental 

Mermin’s Box setup?  Such a Demon would need to be able to discern both the detector 

settings and the states of the particles and then direct affairs like an air traffic controller 

with a penchant for oddness.   

Is it possible that there is a preferred state that the particles like to be in?  That 

given the same three colored faces (hidden variables) to choose from to present to the 

world, the particle pairs prefer to be individualistic, like self-conscious identical twins 

who insist on dressing differently whenever possible.   

Or could it be that an odd pair state is somehow more advantageous?  From the 

table above we can draw an energy analogy.  It could be construed that it is ‘easier’ to be 
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odd than even, as if being odd is a lower energy state while remaining even requires more 

work. 

We must finally draw attention to the most glaring cheat of both the Q Box and 

the reworked Mermin’s Box.  In both cases we advertised a deterministic system.  Hidden 

variables are certainly in keeping with a deterministic model.  Nonlocality, however, is a 

quantum beast, and we have used it shamelessly throughout.  Nonlocality is the key.  It is 

like a quantum spring in our otherwise clockwork boxes.  Nonlocality is like a sprinkling 

of quantum pixie dust that allows an otherwise pedestrian deterministic system to 

completely change its nature.   

These two dual systems, the Q Box and Mermin’s Box, each contain deterministic 

components which are influenced in some way by nonlocal effects or interactions.  

Combining the quantum and deterministic this way has given us insights into the possible 

interplay between these two realms of nature.  These insights will be addressed in our 

concluding chapter.   
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Chapter 7 

Reality Checks 

7.1 Nonlocal Measurement 

 In this chapter we would like to address all of the criticisms of our model that we 

can possibly think of.  The first candidate for examination is our nonlocal measurement.  

Is it perhaps cheating to put the nonlocality of our system explicitly into the measurement 

process?  At first glance, Bell’s Theorem seems to imply that three measurements are 

made on isolated particles that are members of an entangled pair. The typical Alice-Bob 

Bell’s Theorem illustrations in popularizing physics books (and in Chap. 2 of this thesis) 

also make it seem that the scientists ‘catch’ and ‘hold’ their half of the particle pair, like 

some kind of squirmy two-year-old, and that the particle holds patiently still while the 

scientists subjects it to the three different measurement procedures.  

Reality in the lab is a little different.  Entangled particles are typically created 

with either a nonlinear crystal in a down-conversion scheme or with magnets in a Stern-

Gerlach approach.  Entangled particles are not just pulled out in perfect matching sets 

from the magic pockets of Alice and Bob.  Instead, the arrivals of entangled particles to 

each scientist are signaled with elaborate timing devices.  Experimental noise, dark 

counts and other experimental vagaries are expected.  This makes the ‘measurement’ 

process an imprecise game of looking for deviations from a statistical norm.  Alice and 

Bob, who instead of being on opposite sides of the universe are in reality at opposite ends 
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of an optics table, play a much more sophisticated game of ‘catch’ than the simplistic 

Alice and Bob illustration implies.  One does not ‘catch’ a photon, one ‘bins’ detection 

events.  Alice and Bob are not each measuring one of two squirming identical twin two-

year-olds; they are in truth each sampling from a stream of multitudes of fidgeting twins.  

The only sure thing is that every one of the twins in Alice’s racing stream has a double 

somewhere in the torrent passing by Bob, so the experiments become more a statistical 

study of ‘twinness’ than a measurement of the particular attributes of any one particular 

pair of twins.
11

 

John Bell [16] understood this, and designed his theorem accordingly.  He 

said,  

 

“Unfortunately it is not at present (1976) possible to approach the 

conditions of the ideal critical experiment.  Real counters, real 

polarization analyzers, and real geometrical arrangements, are together 

so inefficient that the quantum mechanical correlations are greatly 

diluted.  The counters seldom say ‘yes, yes’, usually say ‘no, no’, and say 

‘yes, no’ with a frequency only weakly dependent on the polarizer settings.  

In these conditions [instead of ( ) 1, ±=baP  we have] 

( ) ( )( )2
,1, babaP δ−=  

where δ is small and weakly dependent on the arguments, ( )ba, .  The 

inequality  

( ) ( ) ( ) ( ) .2ˆ,ˆˆ,ˆˆ,ˆˆ,ˆ ≤′+′′+′− baEbaEbaEbaE HVHVHVHV  

is then trivially satisfied.  So it is only by allowing (in effect) for various 

inefficiencies in conventional ways, and so extrapolating from the real 

results to hypothetical ideal results, that the various experiments can be 

said to ‘test’ the inequality.  But the results are nevertheless of great 

interest
12

.  Compensating failures could be imagined, of the conventional 

quantum mechanics of spin correlations and of the conventional 

                                                 
11

 “If your experiment needs statistics, then you ought to have done a better experiment.” Ernest 

Rutherford (1st Baron Rutherford of Nelson) [29]  

  
 
12

 Bell:  “Several of the real experiments are of great elegance.  To hear of them (not in schematic terms 

from a theorist but in real terms from their authors) is, to borrow a phrase from Professor Gilberto 

Bernardini, a spiritual experience.” [16] 
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phenomenology of the instruments, which would make the practical 

experiments irrelevant.  But that would seem an extraordinary conspiracy. 

 

Bell also said, while expressing his discontent with the word ‘measurement’[30]: 

 “When I say that the word ‘measurement’ is worse than the others. 

. . I do have in mind its use in the fundamental interpretive rules of 

quantum mechanics. . .” The first charge against ‘measurement’, in the 

fundamental axioms of quantum mechanics, is that it anchors there the 

shifty split of the world into ‘system’; and ‘apparatus’. 

 A second charge is that the word comes loaded with meaning from 

everyday life, meaning which is entirely inappropriate in the quantum 

context.  When it is said that something is ‘measured’ it is difficult not to 

think of the result as referring to some preexisting property of the object 

in question.  This is to disregard Bohr’s insistence that in quantum 

phenomena the apparatus as well as the system is essentially involved.” 

 

And this [21]: 

 

 “A fine moral concerns terminology. . . I suspect that [people are] misled 

by the pernicious misuse of the word ‘measurement’ in contemporary [quantum] 

theory.  This word very strongly suggests the ascertaining of some preexisting 

property of some thing, any instrument involved playing a purely passive role.  

Quantum experiments are just not like that, as we learned especially from Bohr.  

The results have to be regarded as the joint product of ‘system’ and ‘apparatus,’ 

the complete experimental set-up.  But the misuse of the word ‘measurement’ 

makes it easy to forget this and then to expect that the ‘results of measurements’ 

should obey some simple logic in which the apparatus is not mentioned. . . I am 

convinced that the word ‘measurement’ has now been so abused that the field 

would be significantly advanced by banning its use altogether, in favor for 

example of the word ‘experiment.’  

 

Ian Percival, speaking at the International Erwin Schrödinger Institute in Vienna 

at their 2000 Conference commemorating John Bell, makes it very clear that Bell 

understood the intrinsic role measurement must play in quantum systems and designed 

his inequalities accordingly. [31] 

 “There is a profound distinction between experiments to test weak 

[abiding by relativistic limits] nonlocality by the violation of Bell 

inequalities and most other experiments with quantum systems. 

Consider for example an experiment to determine the spectrum of 

an atom. . .  The aim of [this] experiment is to determine the properties of 

[this] quantum system.  The classical apparatus used to prepare the 



 86 

system and to make the necessary measurements is essential, but 

secondary to obtaining these properties.   

In Bell experiments the converse is true.  The aim is to test for 

violation of the inequalities, which are derived from the (statistical) 

properties of classical events. . . .  The probabilities of the output, given 

the inputs, are what appear in the Bell inequalities, and it is the location 

of these events in spacetime that determine the locality or nonlocality. 

These classical events are connected by an ancillary quantum 

system, whose function is to produce their unusual statistical properties.  

The quantum properties, like the entanglement of particles, or the 

polarization of photons, or the spins of atoms, are essential, but 

secondary.  The primary result is the violation of an inequality.  The 

apparatus as well as the quantum system is essentially involved.  

[Emphasis added.] 

This distinction has implications for the analysis of Bell 

experiments.  Real Bell experiments are designed to approximate ideal 

experiments.  But the classical events in a real experiment are usually 

different from those in the ideal experiment which it simulates. . . For 

example, in an ideal experiment, it is usually assumed that the detectors 

detect every particle, but in real experiments they don’t. 

It follows that the inequalities of the ideal experiment do not 

always apply directly to the real experiment, and further assumptions are 

needed to demonstrate weak nonlocality.   

[One] way is to recognize that every real experiment that 

simulates an ideal Bell experiment has its own critical inequalities, [sic] 

that apply directly to the probabilities for all the outputs of the real 

experiment. . . 

 If any one of these inequalities is violated, weak nonlocality has 

been demonstrated, and no further assumptions are needed.”  

 

John Bell died unexpectedly of a cerebral hemorrhage at the age of 62. [32]   But, 

based on his own words and statements like those above, it seems clear that Bell designed 

his theorem for just the type of model we are proposing. 

7.2 Superluminal Communication 

Our research implies some form of superluminal communication between the 

entangled system particles. In our case, this nonlocal communication is between the Q 
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Box cubes. In the case of Mermin’s Box, the communication must either be between the 

particles or between the detectors or some combination of the two.   

Although “spooky-action-at-a-distance” is a socially acceptable topic of polite 

conversation between physicists, there are varying degrees of belief.  Opinions range 

from ‘not relevant to my research’ to ‘Nonlocality:  The God Phone’.
13

   Probably the 

most prevalent viewpoint is that yes, indeed, there seems to be some sort of inexplicable 

“spooky-action-at-a-distance”, but not to worry, as long as information about that action 

cannot be passed faster than the speed of light, relativity still reigns. We have based this 

research on the assumption that nonlocality is a fact of nature.  But what is the 

mechanism?  We would like to revisit our two analogies from Chap. 2. 

Remember our reincarnation of Maxwell’s demon as a gym teacher?  We will 

need to give our demonic gym teacher two impish teacher’s aides.  Let’s call them 

Woodscrew and Tapeworm.  Each is standing at one of the detectors with their clipboards 

and whistles, forcing some of the particles to change their colors if they don’t meet their 

high quantum standards. Of course, to do this effectively, the teacher’s aides would need 

to be in communication with each other in order to know what is happening at the other’s 

detector.  Their conversation might sound something like two dockworkers sorting cargo:   

“Hey, Woodscrew!  I see a red particle approaching.  What do you have?” 

“Incoming blue.  They don’t match, so we have a negative-- 

“How are we doing on our stats?  Are we meeting our quantum quota?” 

“Nope.  This one’s gotta change.”   

 Then Woodscrew and Tapeworm would need to make a decision together about 

which of the incoming particles must change color and then they must somehow enforce 

or expedite or facilitate this change.  Because of the possibility of one particle registering 

                                                 
13

 Try googling “superluminal action at a distance” and see what we mean. 
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while the other particle is still in transit, it seems most probable given this scenario that 

the particles themselves carry a duality of color choices with them.  This hearkens back to 

our discussion of the Q Box, where the particles can be construed to have a preferential 

state that is subject to change if the quantum need arises. 

  In the space portal docking analogy, some internal computer system would be 

needed to check the measured color against the color from the other port and then decide 

whether to report the ‘old reality’ (the color the particle started out with) or the ‘new 

reality’ (the color it must be changed to in order to be statistically quantum).  Perhaps the 

space port comes equipped with a paint shop to take care of ships that are no longer the 

quantum acceptable color.  

Both examples are silly and nonsensical, but serve to illustrate the sticking point 

of nonlocality.  Where/who/what is the mechanism?  “When is the mechanism?” is also a 

valid question.  It appears that the communication is superluminal, but is the system 

weakly nonlocal or nonlocal in a way that implies relativity can be ignored?   

We have no answers to these questions.  We can only say that it in our model we 

can reproduce quantum effects if we assume that there is some overarching nonlocal 

connection that somehow controls the realizations of the hidden variables in our model. 

Whether Nature herself works this way is impossible to say.   

In Chap. 8 we will continue our discussion of nonlocal connections as illustrated 

in the computer simulation of our Q Box. 
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Chapter 8 

A MATLAB Computer Simulation of the Q Box 

 There is some irony in having the computer simulation discussion so close to the 

end of this thesis.  The computer programming really came first, and played a crucial role 

in catalyzing the research process by forcing us to think about the possible mechanisms 

of quantum mechanics as we struggled to model such a system. 

 When we first began the research process we were endeavoring to duplicate in a 

model what we perceived to be the most fundamental quantum elements of a spin-1/2 

system: entanglement, indistinguishability, and quantum stochasticity.  We originally set 

out to study the effects of marginalization on a completely deterministic, three 

dimensional system and for this purpose designed an early progenitor of the Q Box.   

At the outset, we were more concerned with what it means to be entangled and 

indistinguishable than we were about the nonlocal aspects of quantum systems. Hidden 

variables, which have since evolved to become the focus of our research, were of interest 

in the beginning only as the properties that are entangled. Because of this focus on 

entanglement, we went through great lengths to write computer code that we hoped 

would perform the same role that quantum erasure techniques fulfill in quantum optics 

labs, and some of this is still remnant in the code. 

 As the research progressed, and we became convinced that the more interesting 

questions lie in the interplay between hidden variables and nonlocality, our computer 
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model became a springboard back to a more sophisticated Q Box; one in which the 

hidden variables play a much more important role than simply being the-property-that-is-

entangled.  At the same time, we have come to view entanglement as merely the 

manifestation of hidden variables that are being somehow controlled through nonlocal 

measurements.  Entanglement has lost its mystique.  

 The computer model is written in MATLAB code.  Of the many different 

generations of the code, we have decided that the two simulations that have been most 

influential to our research are the versions KEEPER and SIMPLEX.  Both are included in 

the appendices.  KEEPER is a general model for the Q Box as described in Chap. 5.  The 

second program, SIMPLEX, is a modification that permits weightings of the different 

possible polarization configurations, allowing us to investigate more complicated 

probability spaces for the Q Box.  After describing the general program, KEEPER, we 

will discuss the simplex that governed our probability choices for the SIMPLEX 

program.  Finally, we will discuss the modifications made for SIMPLEX.   

8.1 The MATLAB Program KEEPER 

 KEEPER starts with two 3x3x3 cubes: redcube and greencube, which are 

programmed as three variable matrices; redcube(x,y,z) and greencube(x,y,z).  The red 

matrix tracks the vertical polarization characteristics and the green matrix tracks the 

horizontal polarization characteristics of the two polarized cubes in the Q Box.  Recall 

that in our original Q Box there is also one cube that begins outside and is the first cube 

to be pushed in.  Therefore our program also has one ‘outside’ cube for both redcube and 

greencube: redout and greenout.  Since both redcube and greencube are controlled by the 
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same shuffling algorithm, this two matrix system is the equivalent of our Q Box with its 

two polarized cubes, each with one random vertical and one random horizontal 

component.   

We begin by loading the numbers one through twenty-seven into the twenty-

seven minicubes that make up redcube and greencube.  The position (x,y,z) matrices then 

look like this: 

 

(1, 1, 1)  = 1 

(1, 1, 2)  = 2 

(1, 1, 3)  = 3 

(2, 1, 1)  = 4 

(2, 1, 2)  = 5 

(2, 1, 3)  = 6 

(3, 1, 1)  = 7 

(3, 1, 2)  = 8 

(3, 1, 3)  = 9 

(1, 2, 1)  = 10 

(1, 2, 2)  = 11 

(1, 2, 3)  = 12 

(2, 2, 1)  = 13 

(2, 2, 2)  = 14 

(2, 2, 3)  = 15 

(3, 2, 1)  = 16 

(3, 2, 2)  = 17 

(3, 2, 3)  = 18 

(1, 3, 1)  = 19 

(1, 3, 2)  = 20 

(1, 3, 3)  = 21 

(2, 3, 1)  = 22 

(2, 3, 2)  = 23 

(2, 3, 3)  = 24 

(3, 3, 1)  = 25 

(3, 3, 2)  = 26 

(3, 3, 3)  = 27 
 

Figure 8-1  Position matrices and their values for both KEEPER and SIMPLEX.

Using a random generator and a rounding function, redcube’s two corner 

minicubes—those in positions (1, 1, 1) and (3, 3, 3)— are blindly loaded with values of 

0.1 and 0.2, represent spin-up and spin-down, respectively.  A random number generator 

decides which one goes in each corner after which they are both immediately rounded 

down to zero.  The greencube likewise is randomly assigned two values for the corner 

minicubes that are less than one; (1, 1, 1) is either 0.3 (spin-right) or 0.4 (spin-left), 

leaving (3, 3, 3) to be the opposite value.  Again, a FLOOR command whitewashes the 

values into nondescript zeros. This blind load duplicates the beginning of our Q Box, 
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wherein we start with corner cubes each having one unknown vertical (redcube) 

polarization and one unknown horizontal (greencube) polarization.  This gives us a model 

twice removed from the spin-½ particles our Q Box is loosely based on, with an 

entangled redcube and an entangled green cube created by ‘rounding down’ the four 

special cubes such that the values for them are equally zero and indistinguishable. This 

becomes our mechanism for ‘entanglement’.   

Note that although the program is written to follow the description given of the Q 

Box in that the beginning position of the special cubes is always the two opposing 

corners (1, 1, 1) and (3, 3, 3), it would be a simple modification to load the randomly 

up/down, right/left cubes into any two randomly chosen positions in greencube and 

redcube.  We found the one level of randomization to be sufficient.  

Once the two special cubes with values less than one are loaded into the corners 

of redcube and greencube, a 4-digit series is randomly generated to decide where the 

extra block will enter the master green and red entangled cubes. There are 54 positions on 

the face of the cubes that can be “pushed”; six faces per cube with nine possibilities on 

each face.  Only the (2, 2, 2) position is invalid as a possible entrance point, since (2, 2, 

2) denotes the coordinates for the center of the cube and is therefore inaccessible from the 

outside.    The first number in the 4-digit series is between one and six and designates the 

direction of entry or face of the cube.  The next three numbers are all between one and 

three and control the x, y, and z coordinates on that face.   

One of the three x, y or z coordinates is superfluous.  If the first number chosen 

by the computer is one, then the entry face is the top of the cube; we will be pushing in 
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the –z direction.   In this case only the x and y coordinates are necessary to choose which 

of the nine possible positions on the cube top will be the pushpoint.   
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Figure 8-2  The result of the extra cube being pushed into the master cube at position (3, 3, 2, 2). 

Figure 8-2 shows the results of the random series (3, 3, 2, 2).  The extra cube is 

being pushed in the -x direction, entering Face 3 at the center position (x=3, y=2, z=2).  

This forces another cube out from the back of the cube from position (x=1, y=2, z=2). 

Another random generation picks a new entry point and the shuffling continues.   If at 

any time the computer calls the forbidden (x=2, y=2, z=2) position as a push point, the 

series is discarded and another entry point is chosen by the computer.   

The shuffling continues, over and over.  Each time one of the cubes pops out, it is 

checked to see if the value is zero.  If so, a search mechanism finds the position in the 
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matrix of the other zero valued cube and the two cubes, outside and inside are measured 

using the same protocol as the Q Box; first the vertical component of the outside cube, 

which is our â  measurement, then the horizontal component of the inside cube, which is 

our b̂ measurement, and finally the ĉ  joint measurement across the other two variables.  

Expectation values of the joint measurements ba ˆˆ , cb ˆˆ and ca ˆˆ  are then calculated and the 

same three rules applied that we used in the Q Box.  The results are inserted into Bell’s 

Inequality and the solution checked to see if the inequality is violated or satisfied.  

Samples of various runs are included in the appendices. 

Once the basic model was completed we played with many different variations of 

the program, each one with differing levels of randomization.  For example, in one 

version of the program we shuffled the cube n number of times and then took the next 

zero out of the box for measurement.  In another we measured only every fifth, or fiftieth 

or five-hundredth zero and observed the trends.   

One of the most instructive versions of the program is called SIMPLEX.  Before 

describing the program itself it would be well to consider the Q Box simplex upon which 

it is based.   

8.2 The Simplex 

A simplex is a graphical interpretation of the probability space of a system. It 

shows the effects of weighting different possible outcomes.  Our Q Box, as discussed in 

Chap. 5, is designed such that each of the four possible polarization configurations of the 

two cubes is equally likely.  A simplex shows the effects of having one configuration 

more likely than the others.  These probabilites are called 1P , 2P , 3P  and 4P . 
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Figure 8-3  Data from nonlocal measurements to be used to compose the simplex. 

Above is a table that illustrates with the four columns of red and green arrows the 

four combinations of polarizations possible in our Q Box,  along with the results after our 

nonlocal measurement and the application of our rules.  We will solve the expectation 

values for the general probabilities 321 ,, PPP  and 4P of each possible configuration.  

Extracting the information for the expectation values from our table and assuming 

that 3214 1 PPPP −−−= , we find the following correlations: 

 

( )
( )
( ) .221

12

1222

21

2

321

PPBCE

PACE

PPPABE

++=

−=

−++=

 

 

-1 

+1 

-1 +1 -1  

-1 -1 +1 +1  

-1 +1 +1  

-1 +1 +1 -1  

+1 -1 +1 -1  

-1 -1 +1 +1  

    Cube #1 
Cube #2 

â

b̂

ĉ

ba ˆ*ˆ

cb ˆ*ˆ

ca ˆ*ˆ

    Probabilities 
4P3P

2P1P

(8.1) 
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Inserting these values into Bell’s Theorem, ( ) ( ) ( )cbEcaEbaE HVHVHV
ˆ,ˆ1ˆ,ˆˆ,ˆ +≤− , 

and remembering that the probabilities P  must be positive, we obtain the following 

inequality:  

 

.2222 2131 PPPP +≤+  

 

This inequality is violated for all values of 1P  and 4P , and for 32 PP < .  This is graphically 

represented by the light area in the graph below.  Remarkably, this demonstrates that if  

32 PP < , Bell’s Inequality is violated and the system therefore has quantum attributes for 

any values of 1P  and 4P . These are the kinds of relationships we wish to investigate with 

our SIMPLEX computer model. 

 

 

Figure 8-4  The simplex showing the region for which Bell’s Theorem is violated. 

(8.2) 
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8.3 The MATLAB Program SIMPLEX 

SIMPLEX uses the same shell as the KEEPER program, but has been modified so 

that some configurations are more likely to occur in the loading of the special cubes.  The 

probabilities are denoted by 1P , 2P , 3P  and 4P . 

 

Cube 2

Probability

Cube 1

Cube 2

Probability

Cube 1

1P
2P 3P 4P

 

Figure 8-5  Possible configurations for the inside and outside cube and their associated 

probabilities nP . 

The SIMPLEX program is designed to test the different regions of our simplex in 

which it is predicted that Bell’s Theorem is always violated.  This is accomplished with a 

simple weighting algorithm during the portion of the program that controls the loading of 

the cube. A sample SIMPLEX run is included in the appendices. 

8.4 Insights Gleaned 

Programming KEEPER and SIMPLEX was a valuable exercise since it forced us 

to think about what it means to be ‘entangled’ and ‘nonlocal’, and how one would turn 

these concepts into computer code.  During the process I asked several professors what it 

means to be ‘entangled’, and how one would program an entangled system.  The best and 
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only really feasible advice received was, “This is how you do entanglement. Don’t 

look!”
14

 

  And so we “didn’t look”.  We set up two sets of cubes that are shuffled in 

tandem.  Redcube and greencube are reference cubes that contain the hidden variables of 

0.1 (spin-up), 0.2 (spin-down), 0.3 (spin-right), and 0.4 (spin-left).  Entangled Redcube 

and Entangled Greencube are the result of rounding down the hidden variables so that 

they are all zero. Redcube and greencube are set aside at the beginning of the program 

and not accessed again until measurement time.    

 We can decide at any time to “peek” during the shuffling of the cube.     If we 

decide to have the computer report the positions of all of the minicubes that make up 

Entangled Redcube or Entangled Greencube, the computer will report a 3x3x3 matrix 

(row, column and page) filled with mixed up numbers 2 through 26 (less one of them that 

is outside) and two zeros.    If one of the ‘entangled’ minicubes is ‘outside’ the cube 

when we choose to look, then there is only one zero in the 3x3x3 matrix map produced 

by the computer, and the value of the outside cube is reported to be zero.  Everything is 

programmed to look entangled, but the Entangled Cubes are just a façade!  When a 

measurement is triggered by a zero popping out of Entangled Redcube, we then search 

for the other zero we know must be inside. These coordinates are used to access the same 

position on Redcube.  Redcube, remember, is the repository of the hidden variables, and 

has been shuffled at the same time using the same random shuffling sequences.  The 

measurements are made and the rules applied which should force the inequality.  And 

they do.   

                                                 
14

This advice was from Dr. Ross Spencer, accompanied by a pantomime of “See No Evil”. 
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 The realization that the program worked very well to violate Bell’s Inequality 

with or without the elaborate entanglement process was a key insight.  We realized that it 

is not necessary to “hide” the hidden variables. The hidden variables can be assigned 

openly as strict correlations from the beginning.  The key to turning our classical system 

into one which behaves in a quantum manner is that these hidden variables must be 

subject to change based on a nonlocal measurement. 
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Chapter 9 

Comparisons 

In this chapter we would like to discuss how our model of nonlocal hidden 

variables differs from other quantum theories.  David Griffiths [28] does an excellent job 

of summing up the doctrinal viewpoints of the different theories from which quantum 

physicists can choose when discussing where the particle was just before measurement: 

1. The realist position:  The particle was at C.  This certainly 

seems like a sensible response, and it is the one Einstein advocated.  Note, 

however, that if this is true then quantum mechanics is an incomplete 

theory, since the particle really was at C, and yet quantum mechanics was 

unable to tell us so.  To the realist, indeterminacy is not a fact of nature, 

but a reflection of our ignorance.  As d’Espagnat put it, “The position of 

the particle was never indeterminate, but was merely unknown to the 

experiment.” [33] Evidently Ψ is not the whole story—some additional 

information (known as a hidden variable) is needed to provide a complete 

description of the particle. 

2. The orthodox position:  The particle wasn’t really 

anywhere.  It was the act of measurement that forced the particle to “take 

a stand” (though how and why it decided on the point C we dare not ask).  

Jordan said it most starkly:  “Observations not only disturb what is to be 

measured, they produce it. . . We compel [the particle to assume a definite 

position.” [34] This view (the so-called Copenhagen interpretation) is 

associated with Bohr and his followers.  Among physicists it has always 

been the most widely accepted position.  Note, however, that if it is 

correct there is something very peculiar about the act of measurement—

something that over half a century of debate has done precious little to 

illuminate. 

3. The agnostic position:  Refuse to answer.  This is not quite 

as silly as it sounds—after all, what sense can there be in making 

assertions about the status of a particle before a measurement, when the 

only way of knowing whether you were right is precisely to conduct a 

measurement, in which case what you get is no longer “before the 

measurement”?  It is metaphysics (in the pejorative sense of the word) to 
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worry about something that cannot, by its nature, be tested.  Pauli said, 

“One should no more rack one’s brain about the problem of whether 

something one cannot know anything about exists all the same, than about 

the ancient question of how many angels are able to sit on the point of a 

needle.”  For decades this was the “fall-back” position of most 

physicists:  They’d try to sell you answer 2, but if you were persistent 

they’d switch to 3 and terminate the conversation. 

 

To these three physics schools of thought we would like to add one more 

ideological framework to mold one’s musings: 

  

4. The quantum theory proposed by David Bohm. [35] 

 

We wish to specifically address David Bohm’s Quantum Theory, since it is also 

fundamentally nonlocal and has hidden variables.  Throughout our research we have 

assumed nonlocality as embodied in our Q Box joint measurement and the accompanying 

rules which act to change the hidden variables such that the probability space morphs 

from classical to quantum.  We have assigned hidden variables that are intrinsic 

characteristics carried by the “particles” in our model.  (The ‘particles’ in the Q Box 

system are the two special mini-cubes.) Let’s compare that with Bohmian Mechanics, as 

put forward by David Bohm. [35] 

9.1 Bohmian Mechanics 

In 1952 David Bohm [35] produced a remarkably elegant answer to the 

philosophically vexing Quantum Court of Copenhagen.  He began conventionally, with 

the Schrödinger equation and the quantum wave function Ψ  in polar coordinates: 
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By inserting Ψ  into the Schrödinger equation and separating out the real and 

imaginary parts he comes up with two separate equations: 
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The second (imaginary) part looks like a classical Hamilton-Jacobi equation for a 

particle with momentum Sp ∇=
r

 except that it started out imaginary and has a small 

2∇ term.  In the WKB approximation of standard quantum mechanics (where the wave 

packet width is considered to be much greater than the wave length), this small term 

would be considered too small to contribute significantly and would be thrown out.  

Bohm keeps it instead, calls it the quantum potential Q, and rewrites the equation with a 

radical new two-part potential: 
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So, by beginning at the beginning, making a mathematical manipulation and 

deciding the dross was really gold, Bohm was able to reinterpret quantum mechanics. In 

his formalism, the particle acts classically.  (Almost! We will come back to this!)  It has a 

(9.2) 

(9.3) 

(9.4) 

(9.5) 
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trajectory and a well-defined position in space.  Bohmian particles are guided by the 

quantum potential Q, like little surfers riding a wave.  Indeed, Bohm calls his quantum 

potential “the pilot wave.” 

Previous to Bohm and his quantum potential, it seemed that the only possible 

explanation for the results of the double slit experiment was that particles not only 

interfered with each other but with themselves.  This gave the Copenhagen Camp 

experimental substantiation for their position that the particle was both places at once; 

thus the quantum orthodox tenet of indeterminacy. Using his pilot wave potential, 

though, Bohm was able to theoretically predict and duplicate the results of the double slit 

experiment without resorting to indeterminacy.   

Bohmian Quantum Mechanics can be thought of as an affirmative answer to 

Einstein’s question of whether quantum mechanics is incomplete.  “Yes”, Bohm seems to 

say.  “The theory is incomplete.  See, you just missed this part!  If you massage the 

equation here and keep this there, look what pops out!”  On the other hand, since Bohm 

started “from the beginning” as it were, and did nothing more than manipulate and 

reinterpret what was already there, it can also be argued that  Standard Quantum is 

complete but the practitioners are blind to all of its possibilities. 

There is a catch.  As we mentioned previously, the particle in the Bohmian 

interpretation acts classically, with a well-defined position and trajectory.  But the 

particle has a very nonclassical attribute:  It is profoundly nonlocal.  The quantum 

potential that propels the particle along is a function of the position of every other 

particle in the system,   and the nonlocality goes even deeper than that.  Since Ψ is the 

definitive description of a Bohmian quantum system just as it is in a standard quantum 
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system, the quantum potential must also be a function of every possible atomic state of 

the particle(s).  Every possible state and position of each particle is therefore entangled 

with every possible state and position of every other particle in the system.  By extension, 

every system is entangled with every other system. This leads to a world-view that is so 

completely intertwined that it can only be considered as a whole, hence the title of 

Bohm’s book, The Undivided Universe. [35]   While Bell’s Theorem has made many 

scientists feel more comfortable with the idea of nonlocality, Bohmian Quantum 

Mechanics takes nonlocality to a whole new level.
15

 

9.2 Comparison to Bohm 

Our model differs from Bohmian Mechanics from its very inception.  Bohm 

started with wave functions and the Schrödinger equation.  We begin with expectation 

values from a probability theory perspective and then use Bell’s Theorem as a test for 

quantum attributes in our system.  Nowhere in our model is there a Ψ to be seen. 

Like Bohmian Mechanics, we find nonlocality to be an integral part of quantum 

systems.  Our Q Box rules, which are applied upon measurement, are the equivalent of 

Bohm’s pilot wave.  Our rules tell our “particles” (the special cubes), which are classical 

in every way excepting their nonlocal entanglement, how they must act if they are to 

behave in a nonclassical way.  The particles then prove their quantumness by violating 

Bell’s Inequality.  Bohm’s pilot wave serves the same purpose in his theory.  The 

quantum potential, or pilot wave, tells his particles, which are also classical in every way 

excepting their nonlocal entanglement, how they must behave if they are to be quantum 

and form the expected double slit pattern.    

                                                 
15

 Even Bell calls Bohmian Mechanics ‘a grossly non-local structure’. [ 21 ] 
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 The mechanism by which a Bohmian system transforms from quantum to 

classical differs from the process that governs our model’s transformation in the classical 

limit. In a Bohmian system, the nonlocality is contained within the quantum potential and 

is too small to be detected in a macroscopic system.  Bohm says [21]: 

. . . Why [is it that] nonlocality is not encountered in our common 

experience of the world?  Basically the answer to this question is quite simple.  

For our ordinary experience, both in the domain of common sense and in that of 

classical physics, is restricted to situations in which the quantum potential is very 

small, so that, in this context at least, it does not produce significant EPR 

correlations.  For, as we have seen, quantum nonlocality is entirely the product of 

the quantum potential. 

 

On the other hand, in our model nonlocality is assumed to be pervasive in the 

system.  We assume when making our ĉ  measurement that it is possible to make an 

instantaneous joint measurement between the two special cubes.  This type of 

measurement is expressly nonlocal.  

 In other words, in our model nonlocality is embodied in the combination of the 

strict correlation (entanglement) of our system and the application of the rules that 

change the hidden variables of our system.  We believe that macroscopic systems do not 

manifest quantum entanglement because the effect has been washed out through 

marginalization. This is reminiscent of the information lost upon calculation of ( ) 2
, txΨ  

in a standard quantum problem.  The process of taking the absolute value squared 

obliterates the phase information contained in Ψ . 

9.3 Comparison to the Copenhagen Interpretation 

The Copenhagen Interpretation of quantum mechanics begins with the wave 

function Ψ , which represents all of the information that is possible to know about the 
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particle. In a spin-½ system, for example, the particle is considered to be both spin-up 

and spin-down until measurement, when it collapses into one or the other.  

Premeasurement, the particle can be thought of as having the potential to be either spin-

up or spin-down.   

Our Q Box hidden variables can be thought of as also being indeterminate in a 

way, even though we begin with the hidden variables hardcoded into the two special 

cubes. Let’s reexamine Figs. 5.7 and 5.8 from Chap. 5.  These two tables enumerated the 

results of our measurements before and after the application of our Q Box Rules: 

1) If â  and b̂  are being measured jointly together, their values remain unchanged. 

2) If â  is being measured with ĉ , its spin value is forced to match that of ĉ . 

3) If b̂  is being measured with ĉ , its spin value is forced to be opposite that of ĉ . 

The bottom table in Figure 9-1 shows again how â  and b̂  either remain in their 

classical form or change to show their quantum nature as required by the nonlocal ĉ  

measurement.  Because there is for every realization of â  and b̂  a possibility that it will 

have to change to meet the conditions specified in the rules, â  and b̂  can be thought of 

as being classically +1 or -1, but with the quantum potential of being the opposite value; 

they begin life as -1 or +1, but it is possible that they may have to change.  The important 

point here is that when looking at only the end result, there is no way to tell our Q Box 

particles from those expected in any other quantum system. 
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Figure 9-1  Measurement values before and after application of the Q Box Rules. 

We wish to stress that our model in no way refutes the Orthodox View.
16

  Our Q 

Box Model still produces quantum results; but in an alternative way from the Standard 

Model.  In our next, concluding chapter we will discuss the insights gleaned from using 

this unconventional approach. 

   

                                                 
16

 I feel like a kindred spirit to John Bell, who said, “We emphasize not only that our view is that of a 

minority, but also that current interest in such questions is small.  The typical physicist feels that they have 

long been answered, and that he will fully understand just how if ever he can spare twenty minutes to think 

about it.” [21] 
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Chapter 10 

Conclusions 

N. David Mermin, my favorite writer on all things physics, has had much to say 

about nonlocality over the years.  He mostly doesn’t like it— he considers nonlocality to 

be “too cheap a way out of the deep [quantum] conundra.”[36] Mermin suggests that 

instead of nonlocality, the physics community would be better served to call the 

phenomenon the SF mechanism, harking back to ‘spukhafte Fernwirkungen’, Einstein’s 

original term for spooky action at a distance.  Mermin argues that in switching to a more 

evocative name scientists will be more apt to see the quantum curiosity of nonlocality as 

“a ‘trick’. . . reminiscent of stage magic, which works by a process of self-deception, 

skillfully helped along by the magician.  When the trick is SF, the magician is Nature 

herself.” [36]   

Given that this whole thesis is based on showing that quantum effects can be had 

with the right combination of hidden variables and a nonlocal twist, one would think that 

we would have nothing in common with N. David Mermin.  But I find that a statement by 

Mermin made in the same article that included the jibes quoted above sums my 

conclusions about physical reality, based on this research, better than any other I have 

seen or heard or read.  Mermin said: 

I believe that the reconciliation [of the quantum conundra] is to be 

found in a view of physical reality as comprised only of correlations 



 110 

between different parts of the physical world, and not at all of 

unconditional properties possessed by those parts.  In that case the 

straight answer to the question posed in my title, [What Do These 

Correlations Know about Reality?] is . . . “everything.”  And the straight 

question—to which the straight answer is indeed “nothing”—is, “What do 

these correlations know about individual properties?” [36] 

 

Having said this, it is time to discuss what our research really shows. 

10.1 Results of Research 

 This research was built around Bell’s Inequality.  Bell’s Theorem proves that any 

given local system that includes hidden variables must abide by the inequality.  We have 

made use of the flip side of Bell’s Theorem: any system that includes hidden variables 

and violates the inequality must therefore be nonlocal.   And since quantum systems are 

the only such systems found thus far in nature, we have used the violation of Bell’s 

Theorem as an acid test for quantum qualities. 

 With Bell’s Theorem we have shown how one might take a classical system, our 

Q Box, and make it behave in a quantum manner.  This transformation requires a 

nonlocal connection that in some way causes a change in the manifestation of the hidden 

variables.  We have no way of knowing the mechanism of this change.  Although we 

indulged in some entertaining speculation in Chap. 5 with our Quantum Maxwellian 

Demons and Spaceports, this was primarily pedagogical; an effort to find some 

illumination to banish the ‘spookiness’. 

 We used the same technique on Mermin’s Box, which is the thought experiment 

Mermin designed to illustrate the ‘quantum conundrum’, the impossibility of having 
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hidden variables in a quantum object.  We were able to show that with a suitable 

combination of hidden variables and nonlocal connections we can cure Mermin’s 

‘quantum conundrum’ and provide just such an ‘impossible’ construct. 

10.2 Caveats 

 Our model speaks only about systems with hidden variables.  Our model in no 

way invalidates the standard quantum status quo.  It is consistent with both the Standard 

Interpretation and Bohmian Mechanics in terms of the final results.  Our research 

explores other ways of looking at the mysteries of quantum systems. 

10.3 Last words 

Throughout this research there has been one salient fact, one shining feature of 

nature that has become blindingly clear to us.  It is as Mermin stated:  The correlation of 

a system is the actual Reality; not the individual properties, not the hidden variables.  It is 

the connectedness that is the more fundamental truth.  We feel the same as Bell when he 

said, “Perhaps Nature is not so queer as quantum mechanics.  But the experimental 

situation is not very encouraging from this point of view.” [21] 
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Appendix 
 

 

 

KEEPER Computer Program: 

 
2/9/06 12:12 PM U:\thesis\KEEPER.m 1 of 5 
close 
%I have figured out how to violate Bell's Theorem |E(a,b)-
E(a,c)|<=1+E(b,c),with a series 
of 
%measurements made on my cube. Ahat is the vertical measurement on cube 
%#1, call it V1. Bhat is the horizontal measurement on cube #2, call it H2. 
Chat is the 
%combination by LHRule of the horizontal on cube #1 and the vertical on 
%cube #2, or H1xV2. Then I need the E1(a,b), E1(a,c) and E1(b,c). This is 
the + or - 
%value of the product of the two measurements. There is a Rule then 
%applied. If measurement a and measurement b are both posittive (yielding 
%an overall positive value, then the value of ahatxbhat and the value of 
%ahatxchat flips. If the values of both ahat and bhat are negagtive, then 
%both ahatxbhat and bhatxchat flip signs. So, I need to be able to find: 
%V1, V2, H1, H2, LHval, cval=H1[xbyLHRule]V2, ab=V1xH2, bc=H2xcval, 
%ac=V1xcval 
x0red y0red z0red ared bred cred 
x0green y0green z0green agreen bgreen cgreen 
count Vin Vout Hin Hout abtot bctot actot cval 
Niterations H1 H2 V1 V2 
count 
s 
for s=1:1 
m 
for z=1:3 %Loading the cube 1-27 
for y=1:3 
for x=1:3 
m=m 
redcube(x,y,z)=m 
greencube(x,y,z)=m 
end 
end 
end 
%The red matrix tracks the spin up and down "red" characteristic of the 
%cubes. 
redqerase=floor(2*rand) %Smearing out the loading of spin up and spin down 
%This code loads a spin up and spin down into 
%the cube into the two corners, but I don't know which 
%is in which place 
if redqerase==0 
redcube(1,1,1) %This will be 'spin up' 
redcube(3,3,3) %This will be 'spin down' 
elseif redqerase==1 
redcube(1,1,1) 
redcube(3,3,3) 
end 
redcube 
%The green matrix tracks the spin left and right "green" characteristic of 
%the cubes. 
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greenqerase=floor(2*rand) %Smearing out the loading of spin up and spin 
down 
%This code makes spin up and spin down loaded into 
%the cube into the two corners, but I don't know which 
2/9/06 12:12 PM U:\thesis\KEEPER.m 2 of 5 
%is in which place 
if greenqerase==0 
greencube(1,1,1) %This will be 'spin right' 
greencube (3,3,3) %This will be 'spin left' 
elseif greenqerase==1 
greencube(1,1,1) 
greencube(3,3,3) 
end 
Greencube 
Entangledgreencube=floor(greencube) %This code makes both the spin up and 
%spin down the value of zero in the matrix. They are 
%indistinguishable in this matrix. I know they 
%start in the corners, but I don't know which one is 
%in which corner 
entangledredcube=floor(redcube) 
redin %The purple ball is 'zero ' 
greenin 
xhat='xhat' 
negxhat='-xhat' 
yhat='yhat' 
negyhat='-yhat' 
zhat='zhat' 
negzhat='-zhat' 
for n=1:200 %Number of iterations 
mod(n)=floor(2*rand) 
face(n)=ceil(6*rand) %Choosing a face to push on 
x(n)=ceil(3*rand) % And a position on that face 
y(n)=ceil(3*rand) 
z(n)=ceil(3*rand) 
if x(n)==2&y(n)==2&z(n)==2 %[2,2,2] not allowed 
x(n)=ceil(3*rand) 
y(n)=ceil(3*rand) 
z(n)=ceil(3*rand) 
else 
iteration=n %Tracking iterations 
pushpoint=[x(n),y(n),z(n)] %Printing pushpoint if I need to 
%The shuffling mechanics is in the following section: 
if face(n)==1 %-zhat 
redout=redcube(x(n),y(n),1) 
redcube(x(n),y(n),1)=redcube(x(n),y(n),2) 
redcube(x(n),y(n),2)=redcube(x(n),y(n),3) 
redcube(x(n),y(n),3)=redin 
greenout=greencube(x(n),y(n),1) 
greencube(x(n),y(n),1)=greencube(x(n),y(n),2) 
greencube(x(n),y(n),2)=greencube(x(n),y(n),3) 
greencube(x(n),y(n),3)=greenin 
% disp(negzhat) 
elseif face(n)==2 %-xhat 
redout=redcube(1,y(n),z(n)) 
2/9/06 12:12 PM U:\thesis\KEEPER.m 3 of 5 
redcube(1,y(n),z(n))=redcube(2,y(n),z(n)) 
redcube(2,y(n),z(n))=redcube(3,y(n),z(n)) 
redcube(3,y(n),z(n))=redin 
greenout=greencube(1,y(n),z(n)) 
greencube(1,y(n),z(n))=greencube(2,y(n),z(n)) 
greencube(2,y(n),z(n))=greencube(3,y(n),z(n)) 
greencube(3,y(n),z(n))=greenin 
% disp(negxhat) 
elseif face(n)==3 %-yhat 
redout=redcube(x(n),1,z(n)) 
redcube(x(n),1,z(n))=redcube(x(n),2,z(n)) 
redcube(x(n),2,z(n))=redcube(x(n),3,z(n)) 
redcube(x(n),3,z(n))=redin 
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greenout=greencube(x(n),1,z(n)) 
greencube(x(n),1,z(n))=greencube(x(n),2,z(n)) 
greencube(x(n),2,z(n))=greencube(x(n),3,z(n)) 
greencube(x(n),3,z(n))=greenin 
% disp(negyhat) 
elseif face(n)==4 %zhat 
redout=redcube(x(n),y(n),3) 
redcube(x(n),y(n),3)=redcube(x(n),y(n),2) 
redcube(x(n),y(n),2)=redcube(x(n),y(n),1) 
redcube(x(n),y(n),1)=redin 
greenout=greencube(x(n),y(n),3) 
greencube(x(n),y(n),3)=greencube(x(n),y(n),2) 
greencube(x(n),y(n),2)=greencube(x(n),y(n),1) 
greencube(x(n),y(n),1)=greenin 
% disp(zhat) 
elseif face(n)==5 %xhat 
redout=redcube(3,y(n),z(n)) 
redcube(3,y(n),z(n))=redcube(2,y(n),z(n)) 
redcube(2,y(n),z(n))=redcube(1,y(n),z(n)) 
redcube(1,y(n),z(n))=redin 
greenout=greencube(3,y(n),z(n)) 
greencube(3,y(n),z(n))=greencube(2,y(n),z(n)) 
greencube(2,y(n),z(n))=greencube(1,y(n),z(n)) 
greencube(1,y(n),z(n))=greenin 
% disp(xhat) 
elseif face(n)==6 %yhat 
redout=redcube(x(n),3,z(n)) 
redcube(x(n),3,z(n))=redcube(x(n),2,z(n)) 
redcube(x(n),2,z(n))=redcube(x(n),1,z(n)) 
redcube(x(n),1,z(n))=redin 
greenout=greencube(x(n),3,z(n)) 
greencube(x(n),3,z(n))=greencube(x(n),2,z(n)) 
greencube(x(n),2,z(n))=greencube(x(n),1,z(n)) 
greencube(x(n),1,z(n))=greenin 
% disp(yhat) 
end 
end 
if redout<1 
Vout=redout 
2/9/06 12:12 PM U:\thesis\KEEPER.m 4 of 5 
Hout=greenout 
count=count 
if Vout==.1 
V1 
Verticalmeasurement='Spin up' %outside is vertical 
elseif Vout==.2 
V1 
Verticalmeasurement='Spin Down' 
end 
if Hout==.3 
H1 
Horizontalmeasurement='Spin right' 
elseif Hout==.4 
H1 
Horizontalmeasurement='Spin Left' 
end 
end 
for x=1:3 
for y=1:3 
for z=1:3 
if redcube(x,y,z)<1 
x0red=x y0red=y z0red=z 
end 
end 
end 
end 
endposition=[x0red,y0red,z0red] 
Vin=redcube(x0red,y0red,z0red) 
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%Assigning values to the ups and downs, rights and lefts. 
if Vin==.1 
V2 
elseif Vin==.2 
V2 
end 
Hin=greencube(x0red,y0red,z0red) 
if Hin==.3 
H2 
elseif Hin==.4 
H2 
end 
%Applying the rule: If measurement a (V1) and measurement b (H2) are both 
posittive 
(yielding 
%an overall positive value, then the value of ahatxbhat (cval) and the 
value of 
%ahatxchat flips. If the values of both ahat and bhat are negagtive, then 
%both ahatxbhat and bhatxchat flip signs. 
if H1==1 & V2==-1 
cval 
2/9/06 12:12 PM U:\thesis\KEEPER.m 5 of 5 
end 
if H1==-1 & V2==1 
cval 
end 
if H1==-1 & V2==-1 
cval 
end 
if H1==1 & V2==1 
cval 
end 
ab=V1*H2 
bc=H2*cval 
ac=V1*cval 
newab=ab 
abtot=abtot+newab 
newbc=bc 
bctot=bctot+newbc 
newac=ac 
actot=actot+newac 
redin=redout 
greenin=greenout %Tracking the ball outside 
s=s 
end 
end 
count 
abtot 
bctot 
actot 
Eab=abtot/count 
Ebc=bctot/count 
Eac=actot/count 
BellsRHS=1+Ebc 
BellsLHS=abs(Eab-Eac) 
if BellsLHS>BellsRHS 
disp('Bell''s Inequality Violated') 
else disp('Bells''s Inequality Satisfied!') 
end 
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KEEPER Results: 

 
2/9/06 1:22 PM MATLAB Command Window 1 of 15 
count = 
157 
abtot = 
-166 
bctot = 
74 
actot = 
348 
Eab = 
-1.0573 
Ebc = 
0.4713 
Eac = 
2.2166 
Bell's Inequality Violated 
count = 
164 
abtot = 
93 
bctot = 
-185 
2/9/06 1:22 PM MATLAB Command Window 2 of 15 
actot = 
115 
Eab = 
0.5671 
Ebc = 
-1.1280 
Eac = 
0.7012 
Bell's Inequality Violated 
count = 
138 
abtot = 
316 
bctot = 
246 
actot = 
140 
Eab = 
2.2899 
Ebc = 
1.7826 
Eac = 
2/9/06 1:22 PM MATLAB Command Window 3 of 15 
1.0145 
Bells's Inequality Satisfied! 
count = 
149 
abtot = 
222 
bctot = 
472 
actot = 
108 
Eab = 
1.4899 
Ebc = 
3.1678 
Eac = 
0.7248 
Bells's Inequality Satisfied! 
count = 
181 
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abtot = 
-147 
bctot = 
2/9/06 1:22 PM MATLAB Command Window 4 of 15 
-123 
actot = 
161 
Eab = 
-0.8122 
Ebc = 
-0.6796 
Eac = 
0.8895 
Bell's Inequality Violated 
count = 
139 
abtot = 
283 
bctot = 
283 
actot = 
409 
Eab = 
2.0360 
Ebc = 
2/9/06 1:22 PM MATLAB Command Window 5 of 15 
2.0360 
Eac = 
2.9424 
Bells's Inequality Satisfied! 
count = 
152 
abtot = 
-257 
bctot = 
115 
actot = 
-161 
Eab = 
-1.6908 
Ebc = 
0.7566 
Eac = 
-1.0592 
Bells's Inequality Satisfied! 
count = 
145 
abtot = 
2/9/06 1:22 PM MATLAB Command Window 6 of 15 
-124 
bctot = 
-322 
actot = 
446 
Eab = 
-0.8552 
Ebc = 
-2.2207 
Eac = 
3.0759 
Bell's Inequality Violated 
count = 
181 
abtot = 
-185 
bctot = 
21 
actot = 
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-167 
Eab = 
-1.0221 
2/9/06 1:22 PM MATLAB Command Window 7 of 15 
Ebc = 
0.1160 
Eac = 
-0.9227 
Bells's Inequality Satisfied! 
count = 
160 
abtot = 
43 
bctot = 
-47 
actot = 
353 
Eab = 
0.2687 
Ebc = 
-0.2938 
Eac = 
2.2062 
Bell's Inequality Violated 
count = 
167 
2/9/06 1:22 PM MATLAB Command Window 8 of 15 
abtot = 
-138 
bctot = 
-94 
actot = 
120 
Eab = 
-0.8263 
Ebc = 
-0.5629 
Eac = 
0.7186 
Bell's Inequality Violated 
count = 
170 
abtot = 
-47 
bctot = 
-179 
actot = 
103 
2/9/06 1:22 PM MATLAB Command Window 9 of 15 
Eab = 
-0.2765 
Ebc = 
-1.0529 
Eac = 
0.6059 
Bell's Inequality Violated 
count = 
145 
abtot = 
-5 
bctot = 
-379 
actot = 
-243 
Eab = 
-0.0345 
Ebc = 
-2.6138 



 124 

Eac = 
-1.6759 
Bell's Inequality Violated 
2/9/06 1:22 PM MATLAB Command Window 10 of 15 
count = 
133 
abtot = 
76 
bctot = 
-412 
actot = 
-400 
Eab = 
0.5714 
Ebc = 
-3.0977 
Eac = 
-3.0075 
Bell's Inequality Violated 
count = 
144 
abtot = 
-65 
bctot = 
-69 
2/9/06 1:22 PM MATLAB Command Window 11 of 15 
actot = 
-133 
Eab = 
-0.4514 
Ebc = 
-0.4792 
Eac = 
-0.9236 
Bells's Inequality Satisfied! 
count = 
146 
abtot = 
139 
bctot = 
513 
actot = 
-79 
Eab = 
0.9521 
Ebc = 
3.5137 
Eac = 
2/9/06 1:22 PM MATLAB Command Window 12 of 15 
-0.5411 
Bells's Inequality Satisfied! 
count = 
150 
abtot = 
80 
bctot = 
148 
actot = 
-84 
Eab = 
0.5333 
Ebc = 
0.9867 
Eac = 
-0.5600 
Bells's Inequality Satisfied! 
count = 
155 
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abtot = 
-412 
bctot = 
2/9/06 1:22 PM MATLAB Command Window 13 of 15 
-182 
actot = 
258 
Eab = 
-2.6581 
Ebc = 
-1.1742 
Eac = 
1.6645 
Bell's Inequality Violated 
count = 
145 
abtot = 
-220 
bctot = 
204 
actot = 
-246 
Eab = 
-1.5172 
Ebc = 
2/9/06 1:22 PM MATLAB Command Window 14 of 15 
1.4069 
Eac = 
-1.6966 
Bells's Inequality Satisfied! 
count = 
182 
abtot = 
10 
bctot = 
84 
actot = 
-168 
Eab = 
0.0549 
Ebc = 
0.4615 
Eac = 
-0.9231 
Bells's Inequality Satisfied! 
count = 
161 
abtot = 
2/9/06 1:22 PM MATLAB Command Window 15 of 15 
150 
bctot = 
-56 
actot = 
-296 
Eab = 
0.9317 
Ebc = 
-0.3478 
Eac = 
-1.8385 
Bell's Inequality Violated 
>> 
 

 

 

SIMPLEX Computer Program: 
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2/9/06 12:15 PM U:\thesis\SIMPLEX.m 1 of 5 
close 
%To get this weighted version of the program I will catch the cube every 
%time it comes out. As it is now, each configuration, #1, #2, #3, and #4 
%are equally likely. So I will have count1, count2, count3, and count4. 
%When count1=1 (everytime config #1 is encountered) I will measure it. 
%Configuration #2 will have to be counted twice (count2=2) before it is 
%measured. Measurement will happen for count3=4 and count4=4. This should 
%provide the optimum violation of Bell's. 
x0red y0red z0red ared bred cred 
x0green y0green z0green agreen bgreen cgreen 
count Vin Vout Hin Hout abtot bctot actot cval 
Niterations H1 H2 V1 V2 count1 count2 count3 count4 
count ab bc ac p1 p2 p3 p4 weight purple 
s 
for s=1:100 
m 
for z=1:3 %Loading the cube 1-27 
for y=1:3 
for x=1:3 
m=m 
redcube(x,y,z)=m 
greencube(x,y,z)=m 
end 
end 
end 
%The red matrix tracks the spin up and down "red" characteristic of the 
%cubes. 
redqerase=floor(2*rand) %Smearing out the loading of spin up and spin down 
%This code loads a spin up and spin down into 
%the cube into the two corners, but I don't know which 
%is in which place 
if redqerase==0 
redcube(1,1,1) %This will be 'spin up' 
redcube(3,3,3) %This will be 'spin down' 
elseif redqerase==1 
redcube(1,1,1) 
redcube(3,3,3) 
end 
redcube 
%The green matrix tracks the spin left and right "green" characteristic of 
%the cubes. 
greenqerase=floor(2*rand) %Smearing out the loading of spin up and spin 
down 
%This code makes spin up and spin down loaded into 
%the cube into the two corners, but I don't know which 
%is in which place 
if greenqerase==0 
greencube(1,1,1) %This will be 'spin right' 
greencube(3,3,3) %This will be 'spin left' 
elseif greenqerase==1 
greencube(1,1,1) 
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greencube(3,3,3) 
end 
greencube 
entangledgreencube=floor(greencube) %This code makes both the spin up and 
%spin down the value of zero in the matrix. They are 
%indistinguishable in this matrix. I know they 
%start in the corners, but I don't know which one is 
%in which corner 
entangledredcube=floor(redcube) 
redin %The purple ball is 'zero ' 
greenin 
for n=1:200 %Number of iterations 
mod(n)=floor(2*rand) 
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face(n)=ceil(6*rand) %Choosing a face to push on 
x(n)=ceil(3*rand) % And a position on that face 
y(n)=ceil(3*rand) 
z(n)=ceil(3*rand) 
if x(n)==2&y(n)==2&z(n)==2 %[2,2,2] not allowed 
x(n)=ceil(3*rand) 
y(n)=ceil(3*rand) 
z(n)=ceil(3*rand) 
else 
iteration=n %Tracking iterations 
pushpoint=[x(n),y(n),z(n)] %Printing pushpoint if I need to 
%The shuffling mechanics is in the following section: 
if face(n)==1 %-zhat 
redout=redcube(x(n),y(n),1) 
redcube(x(n),y(n),1)=redcube(x(n),y(n),2) 
redcube(x(n),y(n),2)=redcube(x(n),y(n),3) 
redcube(x(n),y(n),3)=redin 
greenout=greencube(x(n),y(n),1) 
greencube(x(n),y(n),1)=greencube(x(n),y(n),2) 
greencube(x(n),y(n),2)=greencube(x(n),y(n),3) 
greencube(x(n),y(n),3)=greenin 
% disp(negzhat) 
elseif face(n)==2 %-xhat 
redout=redcube(1,y(n),z(n)) 
redcube(1,y(n),z(n))=redcube(2,y(n),z(n)) 
redcube(2,y(n),z(n))=redcube(3,y(n),z(n)) 
redcube(3,y(n),z(n))=redin 
greenout=greencube(1,y(n),z(n)) 
greencube(1,y(n),z(n))=greencube(2,y(n),z(n)) 
greencube(2,y(n),z(n))=greencube(3,y(n),z(n)) 
greencube(3,y(n),z(n))=greenin 
% disp(negxhat) 
elseif face(n)==3 %-yhat 
redout=redcube(x(n),1,z(n)) 
redcube(x(n),1,z(n))=redcube(x(n),2,z(n)) 
redcube(x(n),2,z(n))=redcube(x(n),3,z(n)) 
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redcube(x(n),3,z(n))=redin 
greenout=greencube(x(n),1,z(n)) 
greencube(x(n),1,z(n))=greencube(x(n),2,z(n)) 
greencube(x(n),2,z(n))=greencube(x(n),3,z(n)) 
greencube(x(n),3,z(n))=greenin 
% disp(negyhat) 
elseif face(n)==4 %zhat 
redout=redcube(x(n),y(n),3) 
redcube(x(n),y(n),3)=redcube(x(n),y(n),2) 
redcube(x(n),y(n),2)=redcube(x(n),y(n),1) 
redcube(x(n),y(n),1)=redin 
greenout=greencube(x(n),y(n),3) 
greencube(x(n),y(n),3)=greencube(x(n),y(n),2) 
greencube(x(n),y(n),2)=greencube(x(n),y(n),1) 
greencube(x(n),y(n),1)=greenin 
% disp(zhat) 
elseif face(n)==5 %xhat 
redout=redcube(3,y(n),z(n)) 
redcube(3,y(n),z(n))=redcube(2,y(n),z(n)) 
redcube(2,y(n),z(n))=redcube(1,y(n),z(n)) 
redcube(1,y(n),z(n))=redin 
greenout=greencube(3,y(n),z(n)) 
greencube(3,y(n),z(n))=greencube(2,y(n),z(n)) 
greencube(2,y(n),z(n))=greencube(1,y(n),z(n)) 
greencube(1,y(n),z(n))=greenin 
% disp(xhat) 
elseif face(n)==6 %yhat 
redout=redcube(x(n),3,z(n)) 
redcube(x(n),3,z(n))=redcube(x(n),2,z(n)) 
redcube(x(n),2,z(n))=redcube(x(n),1,z(n)) 
redcube(x(n),1,z(n))=redin 
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greenout=greencube(x(n),3,z(n)) 
greencube(x(n),3,z(n))=greencube(x(n),2,z(n)) 
greencube(x(n),2,z(n))=greencube(x(n),1,z(n)) 
greencube(x(n),1,z(n))=greenin 
% disp(yhat) 
end 
end 
if redout<1 
Vout=redout 
Hout=greenout 
weight=rand 
if Vout==.1 & Hout==.3 & weight<=.5 
V1 
V2 
H1 
H2 
ab ac bc purple='p1' 
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% count=count+1 
elseif Vout==.1 & Hout==.4 & .5<weight<=.75 
V1 
V2 purple='p2' 
% Verticalmeasurement='Spin up'%outside is vertical 
H1 
H2 
ab ac bc 
% count=count+1 
elseif Vout==.2 & Hout==.3 & .75<weight<.875 
V1 
V2 
%Verticalmeasurement='Spin Down' 
H1 
H2 
ab ac bc purple='p3' 
count=count 
elseif Vout==.2 & Hout==.4 & .875<weight<1 
V1 
V2 
H1 
H1 
ab ac bc purple='p4' 
count=count 
else 
V1 V2 H1 H2 purple='no measurement' 
count=count 
end 
end 
count 
weight 
purple 
redin=redout 
greenin=greenout %Tracking the ball outside 
%count=count+1 
s=s 
newab=ab 
abtot=abtot+newab 
newbc=bc 
bctot=bctot+newbc 
newac=ac 
actot=actot+newac 
end 
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end 
count 
abtot 
bctot 
actot 
Eab=abtot/count 
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Ebc=bctot/count 
Eac=actot/count 
BellsRHS=1+Ebc 
BellsLHS=abs(Eab-Eac) 
if BellsLHS>BellsRHS 
disp('Bell''s Inequality Violated') 
else disp('Bells''s Inequality Satisfied!') 
end 
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Results for Simplex Probability Set #1.  P1=.50, P2=.25, P3=.125, P4=.125 

 
2/9/06 12:25 PM MATLAB Command Window 1 of 1 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bell's Inequality Violated 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
>> 
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Results for Simplex Probability Set #2P1=.25, P2=.25, P3=.25, P4=.25 

 
2/9/06 12:27 PM MATLAB Command Window 1 of 1 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
Bells's Inequality Satisfied! 
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Results for Simplex Probability Set #3.  P1=.95, P2=.01, P3=.01, P4=.03 

 

 
2/9/06 12:39 PM MATLAB Command Window 1 of 1 
Bell’s Inequality Satisfied! 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell’s Inequality Satisfied! 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell’s Inequality Satisfied! 
Bell’s Inequality Satisfied! 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell’s Inequality Satisfied! 
Bell's Inequality Violated 
Bell’s Inequality Satisfied! 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell’s Inequality Satisfied! 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell’s Inequality Satisfied! 
Bell’s Inequality Satisfied! 
Bell’s Inequality Satisfied! 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell's Inequality Violated 
Bell’s Inequality Satisfied! 
>> 
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