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ABSTRACT

CONTINUED OBSERVATIONS OF THE VARIABLE STAR

V577 OPHIUCHI, A BINARY SYSTEM WITH A δ SCUTI

COMPONENT

Natalie M. Porter

Department of Physics and Astronomy

Senior Thesis

The brightness of the system V577 Ophiuchi varies for two reasons. It is an

eclipsing binary system so the brightness changes as the stars pass in front of each

other. Also, one of the components is a δ Scuti star whose luminosity changes because

of the star’s pulsation. We are studying this system to better understand the δ Scuti

component. We used differential photometry, which compares the magnitude of the

variable star with the magnitude of a constant luminosity star. Initial measurements

of the period and amplitude of the δ Scuti were made by isolating the variation due to

pulsation from the variation due to eclipses. The semi-amplitude of the pulsation is

0.022 mag in the V filter and the period is 0.06949 days. Both of these measurements

are consistent with previously published results. A more thorough analysis of the

data consisted of Fourier transforming the data to find the main frequency and any

other frequencies. We found a total of 7 frequencies greater than one, one of which



is the double of the main frequency. We also calculated each time of maximum light

and compared them to the observed time. The difference between the two appeared

to be slightly sinusoidal. Based on these findings, we conclude that the pulsation of

the δ Scuti does not have significant long term variation, though there are more than

just the main frequency present.
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Chapter 1

Introduction and Background

1.1 Background on Variable Stars

A variable star is one whose brightness changes. There are two main clas-

sifications of variable stars: intrinsic and line-of-sight. The brightness of intrinsic

variables changes due to physical changes within the star. The main categories of

intrinsic variables are listed in Table 1.1. These stars are classified based on the cause

of variation. Sub-classifications are determined by the duration of the period, the

amplitude of the variation, the spectral type, and the chemical composition of the

star. The sub-classification groups are usually named after the first star discovered

of that type. For example, a δ Scuti variable is a sub-classification of a pulsating

variable star. They are characterized by low amplitude luminosity changes and short

periods. The light curves of these stars are sinusoidal with typical amplitudes ranging

from 0.003 to 0.9 magnitudes and typical periods ranging from 0.01 to 0.2 days. The

spectra range from types A0-F5 III-V. In some δ Scuti stars, the variation in lumi-

nosity is irregular and occasionally stops completely (General Catalogue of Variable

Stars (2004)).

Line-of-sight variables change because of the way we see them. They are often

binary systems in which two (or more) stars pass in front of one another. As one

star passes in front of the other, it blocks the light from its companion, making the

system look dimmer. A typical binary light curve is characterized by a large drop in

luminosity as the primary component passes in front of its companion, followed by a

period of constant brightness when both stars are visible. There is a smaller drop in

luminosity as the secondary component passes in front of the primary. If the system

undergoes a total eclipse, the light curve will have flat-bottomed primary drop. The
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Table 1.1. Types of Intrinsic Variable Stars and Their Classifications

Physical Classification Description

Eruptive Stars varying in brightness because of violent processes and flares occurring in their
chromospheres and coronae due to shell events or mass outflow in the form of stellar
winds of variable intensity and/or interaction with the surrounding interstellar medium.

Pulsating Stars showing periodic expansion and contraction of their surface layers. The pulsations
may be radial or nonradial. A radially pulsating star remains spherical in shape, while
in the case of nonradial pulsations the star’s shape periodically deviates from a sphere,
and even neighboring zones of its surface may have opposite pulsation phases.
Subclassifications depend on the period value, the mass and evolutionary status of the
star, and on the scale of pulsational phenomena.

Rotating Stars with nonuniform surface brightness and/or ellipsodial shapes. The nonuniformity
of surface brightness distributions may be caused by the presence of large spots or due
to thermal or chemical inhomogeneity caused by a tilted magnetic field.

Cataclysmic Stars showing outbursts caused by thermonuclear burst processes in their surface layers
(novae) or deep in their interiors (supernovae). Used for variables that show novalike
outbursts caused by rapid energy release in the surrounding space and also for objects
not displaying outbursts but resembling explosive variables at minimum light by their
spectral (or other) characteristics. The majority of explosive and novalike variables
are close binary systems, and that the hot dwarf component of the system is surrounded
by an accretion disk formed by matter lost by the other.

Other These include intense variable X-ray sources and others whose natures are
not fully known.

classification of line-of-sight variables is based on the shape of the light curve, and the

physical characteristics of the system (General Catalogue of Variable Stars (2004)).

If either of the stars are also intrinsic variables, it leads to even more variation in

the brightness of the system. Occasionally, a star is variable for a combination of

(multiple) reasons. V577 Ophiuchi is one such star.

1.2 Previous Research

V577 Oph is both an eclipsing and a pulsating variable. It is a binary system

in which one of the components is a δ Scuti variable. V577 Oph does not experience

total eclipses so its light curves are not flat-bottomed. V577 has been studied over

the course of at least 20 years and appears to have a stable δ Scuti component.

Previous research done by Shugarov and cited by Volkov et al. (1990) estimates the

eccentricity of the orbit to be around 0.22, which is supported by Deithelm et al.

(1993) who give the uncertainty of that value to be ±0.08. Volkov et al. (1990) states

that the binary system has orbital period of 6.079084 days that is stable over the 2.5
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years they observed it. The ephemeris equation they give for the primary eclipse is

HJD = 2447406.1955 + 6.079084x and the ephemeris equation they give for the δ

Scuti pulsation is HJD = 2447620.379 + 0.0694909x where x is the cycle number in

both equations. Volkov et al. (1990) also mentions an increase of reddening during

the minimum and hypothesize that there could be a third body that is cooler than

the other two components. Deithelm et al. (1993) give the period of pulsation for the

δ Scuti component as 0.07 days, which matches closely with the 0.069491 days period

given by Zhou et al. (2001). Volkov et al. (1990) give the amplitude of the δ Scuti in

the B, V, and R filters as 0.052 mag, 0.070 mag, and 0.040 mag respectively. Zhou

et al. (2001) give only the semi-amplitude for the V filter at 0.0289 mag which is a

little lower than the value given by Volkov et al. (1990), but still close.

1.3 Motivation

We have examined V577 Oph to further clarify the nature of the pulsating

component. In doing so, we hope to gain a better understanding of the mechanisms

driving the pulsation for this and similar stars. Currently, little is known about δ

Scuti variables and studying these stars is complicated by the number of unknown

quantities required in modeling them. In a non-eclipsing binary system, it is hard

to accurately determine the masses of the individual stars. However, in an eclipsing

system, the determination of the masses is relatively simple. Since V577 Oph is an

eclipsing binary, we are able to determine the masses of the components. Since one

of the components is a δ Scuti, knowing the mass allows us to create more accurate

models for these variable stars. However, if the stars in the binary are too close, the

pulsation of the δ Scuti may be driven gravitationally instead of internally. V577 Oph

is one of a few δ Scuti eclipsing binary systems in which the stars are well separated,

making it an excellent system to study. We have a total of 28 nights of data: eight

nights in 2001, six in 2003, one in 2005, seven in 2006, and five in 2007. Once we

reduced the images using the standard IRAF reduction package, we used differential

photometry to find the differential magnitude of V577 Oph. From the differential
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magnitude, we focused on the variation due to the δ Scuti component. We measured

the amplitude of the variation and calculated an equation to predict the pulsation of

the δ Scuti component.

1.4 Reduction

Data is recorded on a charge-coupled device (CCD). A CCD is comprised of

pixels that collect photons as they strike the chip. The photons are converted into

electrons that are stored in each pixel well. The number of electrons in each pixel is

related to the amount of light absorbed, which is used to create the image. However,

the raw images coming from the CCD do not accurately measure the amount of light

hitting the frame.

There are three different types of noise that must be removed before useful

information can be extracted. The first level of noise is due to electrons registered

when the electronics are turned on. Each pixel will have a different residual level

that must be subtracted from the other calibration frames and the object frames to

provide a common zero point. To measure the residual levels, we take images using a

zero second exposure time. These images are called bias or zero frames. The second

level of noise is due to electrical currents in the equipment, which cause the CCD to

register electrons that are not due to photons. To correct for this, we record images

with the shutter closed so no light hits the CCD and the only electrons registered

are noise. We use the same exposure time as for our object frames because the

number of extra electrons the CCD registers depends on the length of the exposure.

These calibration frames are called dark frames and are subtracted from the last type

of calibration frames and the object frames. The third type of noise is due to the

unequal sensitivity of each pixel, which causes an unequal absorbtion of photons. To

account for this, we take short exposures of a uniformly bright and colored area of

sky. These images, called flat frames, are scaled to an average of one and divided out

of the object frame.
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1.5 Photometry

1.5.1 Aperture Photometry

In order to find the magnitude of several stars on a frame, we use a method

called aperture photometry. Two circles are drawn centered on each star. The inner

circle includes the star and totals the number of counts for the star and the sky.

Partial pixel counts are calculated by what fraction of the pixel lies within the circle.

The outer circle totals the number of counts between the two circles, which is called

the sky count. The sky count is then subtracted from the counts within the inner

circle to obtain the total counts for just the star. The counts are then converted into

an instrumental magnitude for each star.

1.5.2 Differential Photometry

There are many things that affect the light measured from a given star, atmo-

spheric conditions being one of the most important factors. The atmosphere scatters

light and the more atmosphere the light has to travel through, the more it scatters.

Astronomers use a unit called airmass to measure how thick the atmosphere is. One

airmass corresponds to directly overhead; it is the smallest airmass possible. Data

becomes unreliable when the airmass exceeds two, which occurs when looking 30 de-

grees above the horizon. Fluctuations in the atmosphere cause light to bend which

prevents some of the light from reaching the telescope and causes the star to look

dimmer than it really is. This also spreads the light over a greater area on the CCD.

Because of this, the magnitudes we get from aperture photometry are not true ap-

parent magnitudes and vary from frame to frame during the night, and differ from

night to night. To compensate for this, we use a method called differential photome-

try. Within each of our frames, there are at least two reported constant stars; stars

whose brightness do not vary. We average the instrumental magnitude of the the

two constant stars and then subtract that magnitude from that of the variable star.
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This difference is called the differential magnitude of the variable star and the vari-

ations in magnitude are only because of the star itself. This is done for each frame.

If the apparent magnitude of the constant stars is well known, we can then convert

the differential magnitude of the variable star into an apparent magnitude, which is

consistent over all the nights of data. If we do not know the apparent magnitude of

the standard stars, we calculate the average instrumental magnitude for the variable

star for each night, and then find the difference between the average magnitude of

the first night and the each of rest of the nights. The resulting difference is called the

zero-point for each night. The zero-point is added to each night, which results in a

differential magnitude that is consistent for all the data.
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Chapter 2

Data Acquisition, Reduction, and Photometry

2.1 Observations

Data were acquired using the David Derrick Telescope (DDT) at the Orson

Pratt Observatory on the campus of Brigham Young University. The DDT is a 0.4

m telescope with both a Cassagrain and a Newtonian focus. Most of the data were

taken using the Cousins V filter with the exception of four nights that have some data

taken using the Cousins B filter and two with some data taken using the Cousins R

filter. Only the data taken in the Cousins V filter were used in analysis. The date of

each night, with the number of frames taken in each filter are detailed in Table 2.1.

The data cover a period of seven years, from 2001 to 2008. During that time, three

different CCD’s were used. The physical size of the CCD determines the area of sky

that is imaged and the number of pixels in the chip, or plate scale, determine the

resolution. The focus also has an affect on the resolution. Table 2.2 lists the different

CCD’s along with the focus they were used with, the plate scale and resulting field

of view. The right ascension (RA) of V577 Oph is 18 hrs 16 min 45.8529 sec and the

declination (δ) is +06◦ 54′ 18.241′′.

Fig. 2.1 shows the star field of V577 Oph. V577 Oph is the star in the center,

labeled star 1. The other numbered stars are comparison stars, with the exception of

star 4, which was not used because it was saturated in most frames.

2.2 Reduction

The files coming from the CCD contain both the image and a header. The

header contains details about each frame, such as when it was recorded. We used a
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Table 2.1. Summary of Data

Year Night V Filter(frames) B Filter(frames) R Filter(frames) Notes

2001 4-Jul 5 0 0
12-Jul 11 0 0
19-Jul 25 0 0
25-Jul 22 0 0
1-Aug 33 0 0
2-Aug 28 0 0
9-Aug 18 0 0
15-Aug 33 0 0

2003 9-Jul 126 0 0
16-Jul 24 0 0
24-Jul 58 0 0
30-Jul 3 0 0
5-Aug 15 0 0 Not used because the recorded

HJD is incorrect
10-Aug 19 17 0

2005 1-Oct 9 10 7
2006 18-Jun 4 3 4

21-Jul 53 0 0
23-Jul 74 0 0
27-Jul 43 0 0
28-Jul 58 0 0
3-Aug 55 0 0
9-Aug 83 0 0

2007 1-May 54 0 0 Not used in analysis because the
differential magnitude is too high

26-Jun 37 0 0 Not used in analysis because the
differential magnitude is too low

30-Jun 0 0 0
4-Aug 45 9 0
11-Aug 93 0 0

2008 3-May 31 0 0
7-May 24 0 0
17-May 35 0 0

Table 2.2. CCD Plate scale and Field of View

CCD Focus Plate Scale (′′/mm) Field of View (′) Corresponding Data

Apogee 8 Cassegrain 40.64 16.64x16.64 4-Jul-01 to 10-Aug-03
ST-1001 Cassegrain 40.64 16.64x16.64 1-Oct-05 to 9-Aug-06
ST-10 Newtonian 127.01 31.30x21.00 1-May-07 to 17-May-08
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Figure 2.1: V577 Oph is the star in the center, labeled star 1. Star 4 was not used as a
comparison star because it was saturated in most frames.

program called Image Reduction and Analysis Facility (IRAF) to reduce our images.

Before applying the calibration frames to the images, the headers were edited to

include the object, the observer, the airmass, which filter the frame was taken in,

and converted the date to the Julian Date. The calibration frame headers were also

edited to include the type of frame and the filter. To apply the calibration frames

to the images, all of the zero frames were combined into a master zero frame. This

was then used to correct the dark frames. The corrected dark frames where then
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combined into a master dark frame. Both the master dark frame and the master zero

frame were used to correct the flat frames. The corrected flat frames were combined

into a master flat frame. All three of the master frames were used to correct the

object frames. Scripts written by a fellow research assistant, Paul Iverson, were used

to facilitate this process. These scripts were designed to be used with IRAF and were

altered to work with the data on V577 Oph.

2.3 Photometry

Once the images have been reduced, any bad frames must be removed. Oc-

casionally, the pier that the telescope sits on shakes while data is being taken. This

results in frames where the stars are smeared from circles into ellipses, or yields two

sets of stars. Other bad frames are the result of a too bright background or the pres-

ence of clouds. To remove the bad frames, each frame has to be looked at individually

and then the bad ones are deleted. A script that displays frames in succession and

then deletes specified frames was used to facilitate this process.

Photometry was done using scripts designed to work with IRAF. The first

series of scripts calculate the average gain and read noise for each night and put the

values into the header. The read noise is electronic noise that is introduced as the

image is downloaded from the CCD. Gain is the relationship between the number of

photon hits and the number of electrons registered. With the gain, the number of

electrons can be converted into a flux. Gain and read noise are calculated using two

zeros and two flats. To get a more accurate average, each frame was divided into five

sections, one in each corner and a section in the center which overlaps each of the

others. The first script in the series calculates the gain and read noise for each of

the five sections, using all of the flats and zeros for that night, for each filter. The

second script takes the gain and read noise from each section, for each combination

of flats and zeros, and averages it. The third script puts the averages into the header.

Differential photometry is not affected too much by either gain or read noise because

they are typically uniform throughout the night. The main purpose of calculating
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the gain and read noise was to align the frames, since the align command in IRAF

requires values for both.

The align command also requires the value of the average Full Width Half

Maximum (FWHM) and the standard sky deviation. The FWHM is how broad the

star appears on the CCD. Even though stars are points of light,they are smeared into

circles by the atmosphere so the total amount of light gets spread out. The FWHM is

twice the distance from the peak brightness to the point where it has decreased to half

the peak value. To standardize data, only the light within in the FWHM is counted

for the star. Since the sky is not completely black, all the pixels in the CCD register

some light. The sky value is the average instrumental magnitude of the sky, not

including the magnitudes of the stars in the frame. Each pixel has its own deviation

from the average sky value, found by subtracting the sky value of each pixel from the

average. The standard sky deviation is the average of the individual deviations. The

first script in the second series trims the edges off each frame to remove bad pixels

and then calculates the average FWHM and the sky deviation. Both values are put

into the header of each image. The second script in the series aligns the trimmed

files generated by the FWHM script. To align the frames, the script selects several

stars in the first frame and shifts the rest of the frames so that those stars are in the

same position in each image. The purpose for aligning the frames is to facilitate the

use of the phot command in IRAF. The third script in the second series is modified

from one written by Dr. Eric Hintz, a professor at Brigham Young University. This

script takes the FWHM from the header, which is also used in the phot command.

The phot command generates a magnitude file for each star that is designated by a

coordinate file. The coordinate file used specified a total of eight stars; V577 Oph

and 7 potential constant stars. If the frames are not aligned, that coordinate file is

different for each frame. With aligned frames, one coordinate file works for the entire

night.

For more details on the scripts used, please see Appendix A.
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Chapter 3

Analysis

3.1 Statistical analysis

As mentioned in Sec. 1.5.2, the magnitudes generated by the phot command

in IRAF are not true apparent magnitudes so we use differential photometry to an-

alyze the light curves. To calculate differential magnitudes, I used a program called

VARSTAR, which was also written by Dr. Hintz (see Hintz et al. (1997) for details).

The input file for VARSTAR is compiled using the magnitude files generated by the

phot command. The input file contains the ID of each star, numbered as they were

entered into the coordinate file, as well as the magnitude, the HJD, the filter and

the airmass for each star. VARSTAR averages all the instrumental magnitudes for

each frame. An individual star’s magnitude is then subtracted from the average to

give the differential magnitude for that star. VARSTAR also calculates the stan-

dard deviation for each star in units of magnitude, which is the error. Stars with

the largest errors are removed and the process is repeated with those stars excluded,

until the errors of the remaining stars drop to 0.01 mag or less. The remaining stars

are usually constant stars, so differential magnitude changes for the removed stars

are due solely to changes in luminosity or just large noise. VARSTAR creates output

files for each star containing the HJD and the differential magnitude, as well as a

log file, which records which stars were left in the average at each iteration, and the

average differential magnitude for each star. Only two constant stars were used for

night of data, though which stars remained varied from night to night. The output

files from VARSTAR were imported to EXCEL for additional analysis. Fig. 3.1 shows

the differential light curve of two of the constant stars. The light curves of these two

stars have a little variation from a straight line, but are predominately constant.
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Figure 3.1: This is a light curve of the two constant stars for one night.

3.2 Initial Analysis

3.2.1 Adjusting the Differential Magnitudes

As mentioned in Sec. 1.5.2, the zero-point of each night of data is different. The

differential magnitudes for each are taken from the VARSTAR log file and averaged.

These average values are subtracted from that of the first night to give the zero-point

for each subsequent night. This is done by filter, since each filter gives a slightly

different magnitude. The first night corresponds to the first calendar night each filter

was taken: 4 July 2001 for the V filter, 10 August 2003 for the B filter, and 1 October

2005 for the R filter. The zero-points are then added to each corresponding night

to get consistent differential magnitudes. This was done using three different sets of
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zero-points. The first set contained the zero-points of only one star. The second set

was composed of the average zero-points of all the stars, excluding V577 Oph and a

star that was saturated in most frames. The third set was the average zero-points with

any outliers excluded from the averages. The second and third sets differ only in the

zero-points of several nights. The third set of zero-points yielded the most consistent

differential magnitudes, so that one was used. Fig. 3.2 shows three separate nights,

corrected with each of the different zero-point sets. The bottom graph illustrates the

set that was used.
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Figure 3.2: These three graphs illustrate the three different sets of zero-points. Each graph
shows three separate nights, and each graph is corrected using a different set of zero-points.
The zero-points used in the analysis are those used in the bottom graph.
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3.2.2 Phasing the Data

Once all the differential magnitudes have been adjusted, the time scale needs

to be adjusted as well. Since the data was taken over several years, it is difficult to

see patterns in the differential magnitude of V577 Oph. Sec. 1.1 describes the typical

light curves of both a binary system and a δ Scuti variable. Out of 28 nights of data,

there are only four that show parts of the primary eclipse and only one that shows

the secondary eclipse. To get a better idea of the shape of the light curve, we use a

process called “phasing the data”. Since previous research has been done on V577

Oph, the binary ephemeris equation published by Volkov et al. (1990) (see Sec. 1.2)

was used. Phasing the data involves entering the HJD values into the ephemeris and

solving for the cycle number. To get the fraction of the cycle, the whole number value

is subtracted off. Phased light curves plot the adjusted data vs the fractional cycle

number.

Fig. 3.3 shows the data after it has been phased using the binary ephemeris

equation. The first dip in the light curve is the primary eclipse. Slight variations

in the downward curve are due to the δ Scuti component. Only the latter part

of the secondary eclipse is evident, since the data does not cover the whole binary

period. Nevertheless, the upward curve is smooth, since during this eclipse, the δ

Scuti component is behind its companion. During an eclipse, the only light we see is

from the star in front. There are two nights which do not appear to fit with the rest

of the data; one is too low and one is too high. We are not sure why but they were

removed from consideration.

Since the curve of the secondary eclipse is smooth, the companion star of

V577 Oph does not appear to be a variable star. Therefore, changes in the light

curve, excluding the primary and secondary eclipses, are due only to the δ Scuti

component. The data between the eclipses were phased using the δ Scuti ephemeris

equation given by Volkov et al. (1990) (see Sec. 1.2). The process was the same as

that detailed above using the binary ephemeris equation. Fig. 3.4 shows the phased
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Phased Binary Light Curve
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Figure 3.3: This figure shows the data after it has been phased using the binary ephemeris
equation. The first dip is the primary eclipse. Only the latter half of the secondary eclipse was
recorded. The nights labeled 1 and 2 were not used in analysis. Each different color corresponds
to a different night.

light curve. The spread in magnitudes is roughly 0.09 mag which may be due errors

in calculating the different zero-points. However, a closer examination of only two

nights (see Fig. 3.5) shows that the peaks of individual nights occur at different points

in the cycle. Each night is indicated by a different color. This may be caused by the

presence of pulsation frequencies other than the published value. This also may be

due to the fact that the δ Scuti star is alternatively moving toward and away from us,

which changes the times between maxima that we measure. When the star is farther

away from us, it takes longer for the light to reach us, since it has a larger distance to

cover. Therefore, the time that we observe the peak in brightness will be later than
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we calculated. When the star is closer to us, it takes less time for the light to reach

us, since there is a smaller distance to travel. Therefore, the time we observe the peak

will be earlier than we expected. Since the star is alternatively moving farther and

closer, the observed peak will switch between being earlier and later than we expect

it, adding another frequency to the pulsation of the star.

Phased Pulsator Light Curve
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Figure 3.4: This figure shows the data after it has been phased using the δ Scuti ephemeris
equation.
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Phased Pulsator Light Curve-Two nights
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Figure 3.5: This figure shows two different nights, with the peak at slightly different cycle
numbers.

3.3 Secondary Analysis

3.3.1 Period04

A more thorough analysis of the δ Scuti data was made using a program

called Period04. Period04 does an analysis similar to a Fourier analysis(See Lenz

and Breger (2005) for details), which fits a sinusoidal curve to the data. From that

curve, the frequency of the data variation is calculated. To get an accurate fit, it is

often necessary to include multiple frequencies in the equation. To obtain multiple

frequencies, Period04 first calculates the most prominent frequency and subtracts it
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Table 3.1. Frequencies and Amplitudes From Period04

Frequency Corresponding Period Amplitude Comments

14.3904868 0.069490352 0.022275193 Primary frequency
2.80852102 0.35605929 0.007453959
16.3862702 0.0610267 0.005659307
7.92353629 0.126206275 0.005573664
10.7465215 0.093053366 0.003848096
12.845215 0.077850001 0.003715614
28.7713225 0.034756831 0.002822814 Double the primary frequency

from the data using a method similar to that detailed in Sec. 3.3.2. Period04 can

then go through and find the next most prominent frequency. We ran Period04 a

total of ten times and obtained seven frequencies greater than one, which are detailed

in Table 3.1. The first frequency we found was 14.3904868, which corresponds to a

period of 0.069490352 days. This is very close to the published period of 0.069491

days. The semi-amplitude given by Period04 for that frequency is 0.0223, which is

0.0066 mag less than the published value of 0.0289 mag. The final frequency we

found was 28.7713225, which is almost exactly double the initial frequency. This

strongly supports the claim that 0.069490352 days is the primary period. However,

we suspect that the other frequencies found by Period04 are important. Fig. 3.6

shows two separate nights of data and two different fit curves generated by Perio04.

The two graphs on the right show each separate night of data and the fit curve using

only the primary frequency. The two graphs on the left show the same two nights,

but the fit curve uses all the frequencies from Period04. The second set of fit curves

matches much more closely to the data, indicating that the other frequencies are

actually present in the data.

3.3.2 O-C Diagram

An Observed-Calculated diagram plots the difference between when we think

maxima will occur based on our calculated period and when the maxima actually
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Figure 3.6: These four graphs show two different fits from Period04, along with the data from
two different nights. The left two graphs have a fit line with only one frequency. The right hand
graphs have a fit line with the frequencies listed in Table 3.1.

occur. If the data points are scattered randomly around zero, the diagram shows

that the calculated period is correct. If there is a linear trend in the O-C diagram, it

indicates that the calculated period is wrong; if the slope is positive, the calculated

period is too long and if the slope is negative, the calculated period is too short.

A parabolic O-C diagram, shows that the actual period is increasing or decreasing,

depending on whether the curve is concave up or down, respectively. If the trend

is sinusoidal, it means that the actual period is changing in a regular manner. Any

other trend in the O-C diagram indicates that the period is changing irregularly.

To calculate the times of maximum light, we fit parabolic lines to each light

curve containing a maximum in our data set. We then differentiated the resulting

equations and set them equal to zero to find the HJD where the peak occurs. We also
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included several maxima that occurred during the primary eclipse. To remove the

binary component of the light curve, we fit a curve to the data, and then subtracted

the values of the curve from the data points. We used a linear fit for one night, 9

August 2006, since the data corresponds to the beginning of the eclipse. Since V577

Oph is not a total eclipsing binary, the primary minimum is parabolic shaped. We

used a parabolic fit for three other nights, 12 July 2001, 28 July 2006, and 3 August

2006, since these three nights correspond to the eclipser primary minimum. Fig. 3.7

shows the linear fit and the resulting light curve. We used the published ephemeris

equation to calculate the whole cycle number. Using our first night as a zero-point,

we shifted the cycle numbers and then plotted them vs HJD (see Fig. 3.8). From that

we calculated our own ephemeris equation, and used that to generate our calculated

values. We then subtracted those values from the observed values and plotted the

difference vs HJD to create the O-C diagram (see Fig. 3.9).
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Figure 3.7: The graph on the left shows the linear fit and the data. The graph on the right
shows the data after the linear values have been subtracted, leaving only the pulsation of the δ
Scuti.

Since the data is spread out over so many years, it is difficult to see any short

term trend in the O-C diagram. To fix this, we phased the O-C diagram as detailed
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Ephemeris
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Figure 3.8: This graph shows the whole cycle number plotted against cycle number. The fit
line is the line used to calculate the ephemeris equation.

in Sec. 3.2.2 using the binary ephemeris equation. Fig. 3.10 shows the observed-

calculated difference plotted vs the binary cycle number instead of HJD. We included

as many maxima as possible in our original phased O-C diagram (Fig. 3.10), and we

suspect many of the points are not completely reliable. Fig. 3.11 includes only times

of maximum light calculated with more than 15 data points in the parabolic fit and

with an R2 value of 0.8 or higher. The O-C diagram appears to have a sinusoidal

pattern to it. The points on the first half the graph are above zero and those on the

second half are below zero. We suspect this is due to the orbit of the δ Scuti star

around its companion. However, there is enough scatter in the data to make this

conclusion tenuous.
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O-C Diagram
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Figure 3.9: This graph shows the difference between the observed and the calculated maxima
plotted vs HJD.
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Phased O-C Diagram
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Figure 3.10: This graph shows the difference between the observed and the calculated maxima
after it has been phased using the binary period.
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Phased O-C Diagram--Selected Points
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Figure 3.11: This graph shows the difference between the observed and the calculated maxima
after it has been phased using the binary period. The points plotted are those maxima calculated
with a large number of data points in the linear fit and with an R2 value of 0.8 or higher.

25



Chapter 4

Conclusions

From the binary phased data, we are able to confirm that the period of

6.079084 given by Volkov et al. (1990) is accurate. In Fig. 3.3, the primary eclipse

consists of four nights of data from two different years, 2001 and 2006, and two

months within 2006, July and August. The overlap of each separate light curve is

almost exact, the slight difference probably due only to variations caused by the δ

Scuti component. The secondary eclipse consists of three nights from three different

years, 2001, 2006, and 2008. The overlap of the secondary eclipse is also almost exact.

Based on the accuracy of this period, we also conclude that the orbit of V577 Oph is

stable. The stars are not slowly approaching one another and causing the period to

decrease over time.

We also confirm that V577 Oph has a δ Scuti variable as its primary compo-

nent, based on the shape of the light curve during an eclipse. The primary eclipse

light curve contains variations due to the δ Scuti, whereas the secondary eclipse does

not. We measured a semi-amplitude of 0.0223 mag in the V filter, which is similar to

the published value of 0.0289 mag.

From the pulsator phased data we are able to confirm that the published period

for the δ Scuti corresponds to the primary frequency of the star’s pulsation, though

we suspect the presence of multiple frequencies. Based on the analysis of Period04,

we have considerable evidence of this. We suspect that one of these minor frequencies

is due to the orbit of the δ Scuti component around its companion. We believe the

slight sinusoidal trend in the phased O-C diagram is evidence of this.
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Appendix A

Scripts

This appendix contains the scripts used in reduction and photometry.

A.1 Data Reduction Scripts

A.1.1 Header Modification

The following two scripts edit the headers of both the image frames and the

calibration frames. The first edits the headers of the image frames and the second

edits the calibration frames.

tdateobhead.cl

#tdateobhead.cl modified slightly from Joner’s ten1headfix.cl by Paul Iverson,

altered by Alie Porter

hedit v577*.fits OBSERVAT “esc” add+ ver-

hedit v577v*.fits SUBSET “V” add+ ver-

hedit v577b*.fits SUBSET “B” add+ ver-

hedit v577r*.fits SUBSET “R” add+ ver-

hedit v577*.fits IMAGETYP object ver-

hedit v577*.fits OBSERVER “BYU-Natalie Porter” addonly- ver-

hedit *v577*.fits* RA “12:06:0.82” add+ ver-

hedit *v577*.fits* RA “12:06:0.82” add+ ver-

hedit *v577*.fits* DEC “23:12:16.77” add+ ver-
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hedit *v577*.fits* DEC “+23:12:16.77” add+ ver-

hedit v577*.fits EPOCH ‘2000.0’ add+ ver-

hselect v577*.fits $I,DATE-OBS yes > datalist1

!sed “s/[0-9-]*[T]//g” datalist1 > datalist2

list = “datalist2”

while (fscan (list, s1, s2) != EOF)

hedit (s1, “UT”, s2, add+, ver-)

del datalist1

del datalist2

!echo “st = mst(@‘DATE-OBS’, UT, obsdb (observat, \“longitude\”))” >

st.cmds

asthedit v577*.fits st.cmds table=“” verbose+

del st.cmds

setairmass v577*.fits

setjd v577*.fits

tcalhead.cl

#tcalhead.cl by Paul Iverson, edited by Alie Porter

#hedit flat*.fits SUBSET “V” ver-

hedit flatv*.fits SUBSET “V” ver-

hedit flatb*.fits SUBSET “B” ver-

hedit flatr*.fits SUBSET “R” ver-

hedit zero*.fits IMAGETYP zero ver-

hedit dark*.fits IMAGETYP dark ver-
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hedit flat*.fits IMAGETYP flat ver-

hedit zero*.fits OBJECT Zero ver-

hedit dark*.fits OBJECT Dark ver-

hedit flatv*.fits OBJECT “Flat V” ver-

hedit flatb*.fits OBJECT “Flat B” ver-

hedit flatr*.fits OBJECT “Flat R” ver-

hedit flatv*.fits FILTER “V” ver-

hedit flatb*.fits FILTER “B” ver-

hedit flatr*.fits FILTER “R” ver-

A.1.2 Image Reduction

The following script applies the calibration frames to the image frames as

detailed in Sec. 2.2.

tproc.cl

#tproc.cl by Paul Iverson, altered by Alie Porter

print (“Combining zeros”)

zerocombine zero*.fits

beep

beep

disp Zero.fits

ccdproc.ccdtype = “dark”

ccdproc.zero = “Zero.fits”
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print (“Correcting dark frames”)

ccdproc dark*.fits zerocor+ darkcor- flatcor-

print (“Combining darks”)

darkcombine dark*.fits

beep

beep

disp Dark.fits

ccdproc.ccdtype = “flat”

ccdproc.zero = “Zero.fits”

ccdproc.dark = “Dark.fits”

print (“Correcting flat frames”)

ccdproc flat*.fits zerocor+ darkcor+ flatcor-

print (“Combining flats”)

flatcombine flat*.fits subsets+

beep

beep

disp Flat.fits

#disp FlatV.fits

#disp FlatB.fits

#disp FlatR.fits

ccdproc.ccdtype = “object”

ccdproc.zero = “Zero.fits”
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ccdproc.dark = “Dark.fits”

ccdproc.flat = “Flat*.fits”

print (“Correcting images frames”)

ccdproc v577*.fits zerocor+ darkcor+ flatcor+

beep

beep

disp v577*01.fits

#disp v577v*01.fits

#disp v577b*01.fits

#disp v577r*01.fits

A.2 Differential Photometry Scripts

A.2.1 Removing Bad Frames

This script displays each individual frame and then gives the option of keeping

or deleting that frame.

alldisp.cl

#display all the frames in a folder, and deletes the bad ones.

#variables string s1 = “”

int tmp1

struct *list1

sections (“v577*.fits”,>”imagesfile”)

list1 = “imagesfile”
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while (fscan(list1,s1) != EOF){

print (“Image:”,s1)

disp (s1,1)

print (“Do you want to keep this image? 0 if no, 1 if yes)”)

scanf (“%d”,tmp1)

if (tmp1 != 0 && tmp1 != 1){

print (“Try again!”)

}

;

if (tmp1 == 0){

del (s1)

tmp = 1

}

;

}

del imagesfile

A.2.2 Preparation for Aligning Frames

The following scripts are used to calculate various parameters of each indi-

vidual frame, which values are then put into the headers to be used by the aligning

script. The first script collects the gain and read noise for several sections of each

frame, which is then averaged in the second script and the third puts the value into

the headers. The fourth script calculates the sky value and FWHM for each frame

and puts the values into the headers.

gainrdnoisecol.cl

#ap gain rdnoise collector v 1.cl by Paul Iverson altered by Alie Porter
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procedure gainrdnoisecol (fnum,bnum,pick)

string fnum {prompt = “Enter the number of flats frames to use

(minimum = 2)”}

string bnum {prompt = “Enter the number of bias frames to use

(minimum = 2)”}

string pick {prompt = “Enter the filter to collect (B,V,R or All)”,

enum=“B|V|R|All”}

begin

string flatnum

string biasnum

string anspick

flatnum = fnum

while (int(flatnum) < 2){

clear

flatnum = fnum

}

biasnum = bnum

while (int(biasnum) < 2){

clear

biasnum = bnum

}

anspick = pick

end

#variable declarations

int n=1

int f1, f2,fn
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int b1,b2,bn

int xlen, ylen

int x1, x2, x3, x4, x5, x6

int y1, y2, y3, y4, y5, y6

int numflatB, numflatV, numflatR

int numbias

string s1=“”

string flat, bias

string flat1, flat2

string bias1, bias2

fn = int(flatnum)

bn = int(biasnum)

hselect(“*.fits”, “$I,FILTER”, yes, >>“datalistfile”)

sections @datalistfile

if (sections.nimages == 0){

hselect (“*.FIT”, “$I,FILTER”, yes, >>“datalistfile”)

sections @datalistfile

if (sections.nimages == 0){

hselect (“*.fits”,“$I,FILTER”,yes,>>“datalistfile”)

}

;

}

;

match (“flat”,“datalistfile”,>>“datalistflat”)

sections @datalistflat

if (sections.nimages == 0){
35



match (“FLAT”,“datalistfile”,>>“datalistflat”)

}

;

match (“B$”,“datalistflat”,>>“datalistflatBtemp”)

sections @datalistflatBtemp

numflatB = sections.nimages

if (numflatB > 0){

while (n <= numflatB && n <= fn){

tabpar (“datalistflatBtemp”,1,n)

flat = tabpar.value

print (flat, >>“datalistflatB”)

n = n+1

}

numflatB = n - 1

}

;

n=1

match (“V$”,“datalistflat”,>>“datalistflatVtemp”)

sections @datalistflatVtemp

numflatV = sections.nimages

if (numflatV > 0){

while (n <= numflatV && n <= fn){

tabpar (“datalistflatVtemp”,1,n)

flat = tabpar.value

print (flat, >>“datalistflatV”)

n = n+1

}
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numflatV = n - 1

}

;

n=1

match (“R$”,“datalistflat”,>>“datalistflatRtemp”)

sections @datalistflatRtemp

numflatR = sections.nimages

if (numflatR > 0){

while (n <= numflatR && n <= fn){

tabpar (“datalistflatRtemp”,1,n)

flat = tabpar.value

print (flat, >>“datalistflatR”)

n = n+1

}

numflatR = n - 1

}

;

n=1

match (“zero”,“datalistfile”,>>“datalistbiastemp”)

sections @datalistbiastemp

if (sections.nimages == 0){

match (“BIAS”,“datalistfile”,>>“datalistbiastemp”)

sections @datalistbiastemp

if (sections.nimages == 0){

match (“bias”,“datalistfile”,>>“datalistbiastemp”)

}

;
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}

;

sections @datalistbiastemp

numbias = sections.nimages

if (numbias > 0){

while (n <= numbias && n <= bn){

tabpar (“datalistbiastemp”,1,n)

bias = tabpar.value

print (bias, >>“datalistbias”)

n = n+1

}

numbias = n - 1

}

;

n=1

del *temp

clear

if (anspick == “B”){

numflatV = 0

numflatR = 0

}

;

if (anspick == “V”){

numflatB = 0

numflatR = 0

}

;
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if (anspick == “R”){

numflatB = 0

numflatV = 0

}

;

print (“Using ”,numflatB,“ flat B frames”)

print (“Using ”,numflatV,“ flat V frames”)

print (“Using ”,numflatR,“ flat R frames”)

print (“Using ”,numbias,“ bias frames”)

sleep (2)

if (numflatB > 0) {

for (f1=1;f1<=numflatB-1;f1+=1){

for (f2=f1+1;f2<=numflatB;f2+=1){

for (b1=1;b1<=numbias-1;b1+=1){

for (b2=b1+1;b2<=numbias;b2+=1){

tabpar (“datalistflatB”,1,f1)

flat1 = tabpar.value

imgets.param.p mode = “h”

imgets (flat1, param=“i naxis1”)

xlen = int(imgets.value)

imgets (flat1, param=“i naxis2”)

ylen = int(imgets.value)

x1 = 50
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x2 = 150

x3 = xlen - 150

x4 = xlen - 50

if ((xlen % 2) == 0){

x5 = (xlen/2)-50

x6 = (xlen/2)+50

}

;

if ((xlen % 2) == 1){

x5 = ((xlen - 1)/2)-50

x6 = ((xlen - 1)/2)+50

}

;

y1 = 50

y2 = 150

y3 = ylen - 150

y4 = ylen - 50

if ((ylen % 2) == 0){

y5 = (ylen/2)-50

y6 = (ylen/2)+50

}

;

if ((ylen % 2) == 1){

y5 = ((ylen - 1)/2)-50

y6 = ((ylen - 1)/2)+50

}

;
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tabpar (“datalistflatB”,1,f2)

flat2 = tabpar.value

tabpar (“datalistbias”,1,b1)

bias1 = tabpar.value

tabpar (“datalistbias”,1,b2)

bias2 = tabpar.value

clear

print (“There are ”,numflatB,“ flat B frames”)

print (“There are ”,numbias,“ bias frames”)

print (“”)

print (“Flat 1: ”,flat1)

print (“Flat 2: ”,flat2)

print (“Bias 1: ”,bias1)

print (“Bias 2: ”,bias2)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x1//”:“//x2//”,“//y1

//”:“//y2//”]”,verbose-,>>“gainrdnoiseB.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x1//”:“//x2//”,“//y3

//”:“//y4//”]”,verbose-,>>“gainrdnoiseB.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x3//”:“//x4//”,“//y1

//”:“//y2//”]”,verbose-,>>“gainrdnoiseB.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x3//”:“//x4//”,“//y3

//”:“//y4//”]”,verbose-,>>“gainrdnoiseB.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x5//”:“//x6//”,“//y5

//”:“//y6//”]”,verbose-,>>“gainrdnoiseB.info”)

}

}

}
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}

}

;

if (numflatV > 0) {

for (f1=1;f1<=numflatV-1;f1+=1){

for (f2=f1+1;f2<=numflatV;f2+=1){

for (b1=1;b1<=numbias-1;b1+=1){

for (b2=b1+1;b2<=numbias;b2+=1){

tabpar (“datalistflatV”,1,f1)

flat1 = tabpar.value

imgets.param.p mode = “h”

imgets (flat1, param=“i naxis1”)

xlen = int(imgets.value)

imgets (flat1, param=“i naxis2”)

ylen = int(imgets.value)

x1 = 50

x2 = 150

x3 = xlen - 150

x4 = xlen - 50

if ((xlen % 2) == 0){

x5 = (xlen/2)-50

x6 = (xlen/2)+50

}

;

if ((xlen % 2) == 1){
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x5 = ((xlen - 1)/2)-50

x6 = ((xlen - 1)/2)+50

}

;

y1 = 50

y2 = 150

y3 = ylen - 150

y4 = ylen - 50

if ((ylen % 2) == 0){

y5 = (ylen/2)-50

y6 = (ylen/2)+50

}

;

if ((ylen % 2) == 1){

y5 = ((ylen - 1)/2)-50

y6 = ((ylen - 1)/2)+50

}

;

tabpar (“datalistflatV”,1,f2)

flat2 = tabpar.value

tabpar (“datalistbias”,1,b1)

bias1 = tabpar.value

tabpar (“datalistbias”,1,b2)

bias2 = tabpar.value

clear
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print (“There are ”,numflatV,“ flat V frames”)

print (“There are ”,numbias,“ bias frames”)

print (“”)

print (“Flat 1: ”,flat1)

print (“Flat 2: ”,flat2)

print (“Bias 1: ”,bias1)

print (“Bias 2: ”,bias2)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x1//”:“//x2//”,“//y1

//”:“//y2//”]”,verbose-,>>“gainrdnoiseV.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x1//”:“//x2//”,“//y3

//”:“//y4//”]”,verbose-,>>“gainrdnoiseV.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x3//”:“//x4//”,“//y1

//”:“//y2//”]”,verbose-,>>“gainrdnoiseV.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x3//”:“//x4//”,“//y3

//”:“//y4//”]”,verbose-,>>“gainrdnoiseV.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x5//”:“//x6//”,“//y5

//”:“//y6//”]”,verbose-,>>“gainrdnoiseV.info”)

}

}

}

}

}

;

if (numflatR > 0) {

for (f1=1;f1<=numflatR-1;f1+=1){

for (f2=f1+1;f2<=numflatR;f2+=1){

for (b1=1;b1<=numbias-1;b1+=1){

for (b2=b1+1;b2<=numbias;b2+=1){
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tabpar (“datalistflatR”,1,f1)

flat1 = tabpar.value

imgets.param.p mode = “h”

imgets (flat1, param=“i naxis1”)

xlen = int(imgets.value)

imgets (flat1, param=“i naxis2”)

ylen = int(imgets.value)

x1 = 50

x2 = 150

x3 = xlen - 150

x4 = xlen - 50

if ((xlen % 2) == 0){

x5 = (xlen/2)-50

x6 = (xlen/2)+50

}

;

if ((xlen % 2) == 1){

x5 = ((xlen - 1)/2)-50

x6 = ((xlen - 1)/2)+50

}

;

y1 = 50

y2 = 150

y3 = ylen - 150

y4 = ylen - 50
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if ((ylen % 2) == 0){

y5 = (ylen/2)-50

y6 = (ylen/2)+50

}

;

if ((ylen % 2) == 1){

y5 = ((ylen - 1)/2)-50

y6 = ((ylen - 1)/2)+50

}

;

tabpar (“datalistflatR”,1,f2)

flat2 = tabpar.value

tabpar (“datalistbias”,1,b1)

bias1 = tabpar.value

tabpar (“datalistbias”,1,b2)

bias2 = tabpar.value

clear

print (“There are ”,numflatR,“ flat R frames”)

print (“There are ”,numbias,“ bias frames”)

print (“”)

print (“Flat 1: ”,flat1)

print (“Flat 2: ”,flat2)

print (“Bias 1: ”,bias1)

print (“Bias 2: ”,bias2)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x1//”:“//x2//”,“//y1

//”:“//y2//”]”,verbose-,>>“gainrdnoiseR.info”)
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ap findgain (flat1,flat2,bias1,bias2,section=“[“//x1//”:“//x2//”,“//y3

//”:“//y4//”]”,verbose-,>>“gainrdnoiseR.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x3//”:“//x4//”,“//y1

//”:“//y2//”]”,verbose-,>>“gainrdnoiseR.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x3//”:“//x4//”,“//y3

//”:“//y4//”]”,verbose-,>>“gainrdnoiseR.info”)

ap findgain (flat1,flat2,bias1,bias2,section=“[“//x5//”:“//x6//”,“//y5

//”:“//y6//”]”,verbose-,>>“gainrdnoiseR.info”)

}

}

}

}

}

;

del data*

beep

beep

gainrdnoisecalc.cl

#apgainrdnoisecalculator v 1.cl by Paul Iverson altered by Alie Porter

#variable declarations

string s1 = “”

string s2 = “”

struct *list1

struct *list2
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sections (“*.info”,>“datalistfile”)

list1 = “datalistfile”

while (fscan(list1,s1) != EOF){

copy (s1,s1//“.temp”)

}

del data*

if (access(“gainrdnoiseB.info.temp”)){

list1 = “gainrdnoiseB.info.temp”

while (fscan(list1,s1,s2) != EOF){

clear

print (“Calculating gain and rdnoise for the B filter”)

print (s1, >> “gainB.info.temp”)

print (s2, >> “rdnoiseB.info.temp”)

}

type “gainB.info.temp” | average > “gainB.info”

type “rdnoiseB.info.temp” | average > “rdnoiseB.info”

} ;

if (access(“gainrdnoiseV.info.temp”)){

list1 = “gainrdnoiseV.info.temp”

while (fscan(list1,s1,s2) != EOF){

clear

print (“Calculating gain and rdnoise for the V filter”)

print (s1, >> “gainV.info.temp”)

print (s2, >> “rdnoiseV.info.temp”)

}
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type “gainV.info.temp” | average > “gainV.info”

type “rdnoiseV.info.temp” | average > “rdnoiseV.info”

}

;

if (access(“gainrdnoiseR.info.temp”)){

list1 = “gainrdnoiseR.info.temp”

while (fscan(list1,s1,s2) != EOF){

clear

print (“Calculating gain and rdnoise for the R filter”)

print (s1, >> “gainR.info.temp”)

print (s2, >> “rdnoiseR.info.temp”)

}

type “gainR.info.temp” | average > “gainR.info”

type “rdnoiseR.info.temp” | average > “rdnoiseR.info”

}

;

del *temp

beep

beep

gainrdnoiseobhead.cl

#ap gain rdnoise obhead v 1.cl by Paul Iverson altered by Alie Porter

#purpose of this script is to edit headers adding RDNoise and Gain;

values for RDnoise and Gain taken from Cody Short’s thesis
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#variable declarations

real Bgain, Brdnoise

real Vgain, Vrdnoise

real Rgain, Rrdnoise

string s1

string s2

struct *list1

#collects gain and rdnoise values

if (access(“gainB.info”)){

tabpar (“gainB.info”,1,1)

Bgain = real(tabpar.value)

}

;

if (access(“rdnoiseB.info”)){

tabpar (“rdnoiseB.info”,1,1)

Brdnoise = real(tabpar.value)

}

;

if (access(“gainV.info”)){

tabpar (“gainV.info”,1,1)

Vgain = real(tabpar.value)

}

;

if (access(“rdnoiseV.info”)){

tabpar (“rdnoiseV.info”,1,1)

Vrdnoise = real(tabpar.value)

}

;
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if (access(“gainR.info”)){

tabpar (“gainR.info”,1,1)

Rgain = real(tabpar.value)

}

;

if (access(“rdnoiseR.info”)){

tabpar (“rdnoiseR.info”,1,1)

Rrdnoise = real(tabpar.value)

}

;

#edits header fields “READNOISE” and “GAIN”

hselect (“v577*.fits”,“$I,SUBSET”,yes,>>“datalist1”)

hselect (“flat*.fits”,“$I,SUBSET”,yes,>>“datalist1”)

match “B$” “datalist1” > “datalistB”

match “V$” “datalist1” > “datalistV”

match “R$” “datalist1” > “datalistR”

if (access(“datalistB”)){

if (access(“gainB.info”)){

list1 = “datalistB”

while (fscan(list1,s1,s2) != EOF){

hedit (s1, “RDNOISE”, Brdnoise,add+,addonly+,ver-)

hedit (s1, “GAIN”, Bgain,add+,addonly+,ver-)

}

}

;

}

;
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if (access(“datalistV”)){

if (access(“gainV.info”)){

list1 = “datalistV”

while (fscan(list1,s1,s2) != EOF){

hedit (s1, “RDNOISE”, Vrdnoise,add+,addonly+,ver-)

hedit (s1, “GAIN”, Vgain,add+,addonly+,ver-)

}

}

;

}

;

if (access(“datalistR”)){

if (access(“gainR.info”)){

list1 = “datalistR”

while (fscan(list1,s1,s2) != EOF){

hedit (s1, “RDNOISE”, Rrdnoise,add+,addonly+,ver-)

hedit (s1, “GAIN”, Rgain,add+,addonly+,ver-)

}

}

;

}

;

del data*

beep

beep
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fwhm.cl

#ap fwhm obhead v 3.cl by Paul Iverson altered by Alie Porter

#the purpose of this cl script is to compute and add FWHM to the

header using the psfmeasure tool in IRAF

#variable declarations

int i

int n = 1

int xlen

int ylen

int x1, x2

int y1, y2

real num, avg, dev

real skyvalue, standdev

real FWHMcheck

string files, trimfiles, dimfiles

string temp

string s1 = “”

string s2 = “”

string s3 = “”

string FWHM

struct *list1

struct *list2

sections (“v577*.fits”, opt=“fullname”, > “datalist1”)

tabpar (“datalist1”,1,1)

dimfile = tabpar.value
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imgets.param.p mode = “h”

imgets (dimfile, param=“i naxis1”)

xlen = int(imgets.value)

imgets (dimfile, param=“i naxis2”)

ylen = int(imgets.value)

x1 = 15

x2 = xlen - 15

y1 = 15

y2 = ylen - 15

imcopy (“v577-*.fits”//“[“//x1//”:“//x2//”,“//y1//”:“//y2//”]”,

“v577-*//.trim”)

sections (“v577*.trim*”, opt=“fullname”, > “datalist2”)

joinlines (“datalist1,datalist2”,> “datalistfilenames”)

list1 = “datalistfilenames”

while (fscan(list1,s1,s2) != EOF){

files = (s1)

trimfiles = (s2)

if (access(“fwhm.reg”) == yes || access(“sky.reg”) == yes){

del fwhm.reg

del sky.reg

}
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;

findpars.threshold = 10

datapars.sigma = 50

datapars.datamin = INDEF

datapars.datamax = INDEF

findpars.threshold.p mode = “h”

datapars.fwhmpsf.p mode = “h”

datapars.sigma.p mode = “h”

datapars.datamin.p mode = “h”

datapars.datamax.p mode = “h”

daofind (trimfiles,output=“skydao.reg”,verif-)

txdump (“skydao.reg”,“xcenter,ycenter”,yes,> “sky.reg”)

del skydao.reg

# display (trimfiles, 1)

# tvmark (1, coords=“sky.reg”)

phot.coords.p mode = “h”

phot.output.p mode = “h”

phot (trimfiles,coords=“sky.reg”,interac-,verif-)

clear

hedit (files,“FWHM”,“INDEF”,add+,ver-)
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hedit (trimfiles,“FWHM”,“INDEF”,add+,ver-)

if (access(trimfiles//“.mag.1”)){

txdump (trimfiles//“.mag.1”,“msky”,yes,>>“msky.info”)

txdump (trimfiles//“.mag.1”,“stdev”,yes,>>“stde.info”)

type “msky.info” | average > “sky.info”

type “stde.info” | average > “stdev.info”

tabpar (“sky.info”,1,1)

skyvalue = real(tabpar.value)

hedit (files,“SKYAVG”,skyvalue,add+,addonly+,ver-)

hedit (trimfiles,“SKYAVG”,skyvalue,add+,addonly+,ver-)

tabpar (“stdev.info”,1,1)

standdev = real(tabpar.value)

hedit (files,“SKYDEV”,standdev,add+,addonly+,ver-)

hedit (trimfiles,“SKYDEV”,standdev,add+,addonly+,ver-)

del *sky*.info

del *stde*.info

findpars.threshold = (skyvalue/standdev) + 2

datapars.sigma = standdev

datapars.datamin = INDEF

datapars.datamax = INDEF

56



daofind (trimfiles,output=“fwhmdao.reg”,verif-)

txdump (“fwhmdao.reg”,“xcenter,ycenter”,yes,> “fwhm.reg”)

del fwhmdao.reg

# display (trimfiles, 1)

# tvmark (1, coords=“fwhm.reg”)

print (“q”,>>”nomoreqs”)

psfmeasure (trimfiles,display-,imagecur=“fwhm.reg”,graphcur=

“nomoreqs”,> (trimfiles)//“.fwhm”)

del nomoreqs

copy ((trimfiles)//“.fwhm”,“datafwhmA”)

sed -e ‘/NOAO/d’ -e ‘/Image/d’ -e ‘/Average/d’ -e ‘s/“ ”/d/g’

-e ‘s/obj-.........../ddddddddddddddd/g’ “datafwhmA” >> “datafwhmB”

sections @datafwhmB

clear

list2 = “datafwhmB”

while (fscan(list2,s3) != EOF){

temp = (s3)

i = strlen(temp)

if (n !=1 && n <=sections.nimages+1){

temp = substr(temp,41,i-15)

print(temp,>>“datafwhmC”)

}

;

n = n +1

}
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n = 1

sed -e ‘s/d//g’ “datafwhmC” >> “datafwhmD”

type “datafwhmD” | average > “datafwhmE”

tabpar (“datafwhmE”,1,1)

avg = real(tabpar.value)

list2 = “datafwhmD”

while (fscan(list2,s3) != EOF){

num = real(s3)

dev = 1*avg

if (num >= avg && num <= avg + dev){

print (num, >>“datafwhmF”)

}

;

if (num <= avg && num >= avg - dev){

print (num, >>“datafwhmF”)

}

;

}

type “datafwhmF” | average > “datafwhmG”

tabpar (“datafwhmG”,1,1)

avg = real(tabpar.value)

list2 = “datafwhmF”
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while (fscan(list2,s3) != EOF){

num = real(s3)

dev = 1*avg

if (num >= avg && num <= avg + dev){

print (num, >>“datafwhmH”)

}

;

if (num <= avg && num >= avg - dev){

print (num, >>“datafwhmH”)

}

;

}

type “datafwhmH” | average > “datafwhmI”

tabpar (“datafwhmI”,1,1)

avg = real(tabpar.value)

list2 = “datafwhmH”

while (fscan(list2,s3) != EOF){

num = real(s3)

dev = 0.66*avg

if (num >= avg && num <= avg + dev){

print (num, >>“datafwhmJ”)

}

;

if (num <= avg && num >= avg - dev){

print (num, >>“datafwhmJ”)

}
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;

}

type “datafwhmJ” | average > “datafwhmK”

tabpar (“datafwhmK”,1,1)

avg = real(tabpar.value)

list2 = “datafwhmJ”

while (fscan(list2,s3) != EOF){

num = real(s3)

dev = 0.33*avg

if (num >= avg && num <= avg + dev){

print (num, >>“datafwhmL”)

}

;

if (num <= avg && num >= avg - dev){

print (num, >>“datafwhmL”)

}

;

}

type “datafwhmL” | average > “datafwhmM”

tabpar (“datafwhmM”,1,1)

temp = tabpar.value

i = strlen(temp)

if (i > 6){

avg = real(substr(temp,1,6))
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}

;

if (i <= 6){

avg = real(temp)

}

;

hedit ((files),“FWHM”,avg,add+,addonly+,ver-)

hedit ((trimfiles),“FWHM”,avg,add+,addonly+,ver-)

del data*

}

;

}

#extracts filename and fwhm value from object frames

hselect (“v577*.fits”,“$I,FWHM”,yes,>>“datatotal”)

fields (“datatotal”,1,>“datafiles”)

fields (“datatotal”,2,>“dataFWHM”)

#calculates non-INDEF-included fwhm

match (“INDEF”,“dataFWHM”,stop+,>“datanoINDEFFWHM”)

type “datanoINDEFFWHM” | average > “dataaverageFWHM”

tabpar (“datanoINDEFFWHM”,1,1)

i=strlen(tabpar.value)

if (i>6){

avg=real(substr(tabpar.value,1,6))

}
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;

#removes INDEFs from fwhm values and replaces them with

group average

list1=“dataFWHM”

while (fscan(list1,s1)!=EOF){

FWHM=(s1)

FWHMcheck=5*avg

if (FWHM!=“INDEF”){

if(real(FWHM)>FWHMcheck){

FWHM=avg

}

;

print (FWHM,>>“datacorrected”)

}

;

if (FWHM==“INDEF”){

FWHM=avg

print (FWHM,>>“datacorrected”)

}

;

}

joinlines (“datafiles,datacorrected”,>> “datacorrtotal”)

list1=“datacorrtotal”

while (fscan(list1,s1,s2) !=EOF){

files=(s1)
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avg=real(s2)

#edits header field “FWHM”

hedit (files, “FWHM”,avg,add+,ver-)

print (files//“ ”//avg, >> “avgFWHM.info”)

}

del *mag*

del *fwhm*

del sky*

del data*

beep

beep

A.2.3 Aligning the Frames

The first script uses the information put into the headers by the previous four

scripts. It then aligns the frames so that the stars do not appear to move from frame

to frame. The second and third scripts are used in the aligning script.

simplalign.cl

#ap align.cl by Paul Iverson, altered by Alie Porter

#simplifies call to Eran Ofek’s autoalign.cl

string s1

string s2

string s3

string s4
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#autoalign (“ilist”, “prefix”, fwhm, readnoise, gain, xytol, objectn,

“bug log”)

hselect (“v577*trim.fits”,“$I,FWHM,RDNOISE,GAIN,SKYDEV”,yes, >

“datalist1”)

fields (“datalist1”,1,> “datalistfiles”)

fields (“datalist1”,2,> “datalist2a”)

fields (“datalist1”,3,> “datalist3a”)

fields (“datalist1”,4,> “datalist4a”)

type “datalist2a” | average >> “datalist2b”

type “datalist3a” | average >> “datalist3b”

type “datalist4a” | average >> “datalist4b”

fields (“datalist2b”,1,> “datalistFWHM”)

fields (“datalist3b”,1,> “datalistRDNOISE”)

fields (“datalist4b”,1,> “datalistGAIN”)

joinlines (“datalistFWHM,datalistRDNOISE,datalistGAIN”, >>

“datatotal”)

list = “datatotal”

while (fscan(list,s1,s2,s3) != EOF){

nautoalign (“datalistfiles”,“a-”,real(s1),real(s2),real(s3),1.5,50,

“bug log”)

}

del data*

del input shift

del tmp*

del v577*.fits.*afnl*

del v577*.fits.*coo*
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del v577*.fits.*smag*

del v577*.fits.*rmag*

del bug log

beep

beep

nautoalign.cl

procedure nautoalign (ilist, prefix, fwhm, readnoise, gain, xytol, objectn,

bug log, succeed)

#—————————————————————–

# autoalign.cl -

# Documentation

# ————-

# the list:

# #field name, and list of images in the following lines, etc.

# Example:

# #GRB990316

# 990316.015

# 990316.016

# 990316.017

# #AD Leo

# 990316.018

# 990316.019

# .

# .

# .

# INSTALL: edit and add the following lines to the login.cl

# task xyshift =/home/wise-cdr/eran/iraf/bin/xyshift
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# task autodaofind = /home/wise-cdr/eran/iraf/script/autodaofind.cl

# Written By Eran Ofek, October 1998, Last update: 061098

#—————————————————————–

string ilist {“”,prompt=“list of images to align”}

string prefix {“a”,prompt=“prefix for shifted output images”}

real fwhm {1.5,prompt=“PSF FWHM in pixels”}

real readnoise {29.0609,prompt=“CCD read out noise in electrons”}

real gain {4.0364,prompt=“CCD gain in electrons per count”}

real xytol {1.5, min=0.0,prompt=“matching tolerance for pgshift”}

int objectn {50, prompt=“Max. Number of stars to match”}

string bug log {“buglog”,prompt=“logfile name”}

bool succeed {no,prompt=“succeeded to find astrometric solution”}

struct *lis1

struct *lis2

struct *lis3

struct *lis4

begin

string imname

string refimage

string magfile real avshiftx # shift in X axis.

real avshifty # shift in Y axis.

real pershift # number of stars used to shift the image.

bool last ast

int match n # number of stars matched
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if (access(“rdnoiseR.info”)){

delete (bug log,verify=no,>>&“/dev/null”)

}

;

lis1 = ilist

while (fscan(lis1, imname)!= EOF)

{

nautodaofind(imname=imname,out file=“default”,fwhm=fwhm,

readnoise=readnoise,gain=gain,threshold sig=50.0)

}

end

# find shifts between images

lis3 = ilist

last ast = yes

while (fscan(lis3, imname)!=EOF)

{

print (‘———————————–’)

print (‘ Field Line : ’,imname)

print (‘———————————–’)

if (substr(imname,1,1) == ‘#’)

{

# next field

last ast = yes

}

else
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{

if (last ast==yes)

{

last ast = no

# set image to be reference image

refimage = imname

print (‘==================================’)

print (‘Reference Image : ’, refimage)

print (‘==================================’)

magfile = imname // ‘.coo.1’

#—————————————-

# Prepare the image list file for pgshift

#—————————————-

print(“Prepare catalog for findshift”)

delete (‘tmp object’,verify=no,>>&“/dev/null”)

print(imname, > ‘tmp object’)

#creating the .smag file

delete (imname//‘.smag.1’,verify=no,>>&“/dev/null”)

txdump(textfile=magfile,fields=“ID,XCENTER,YCENTER,MAG,

MERR,MSKY,NITER,SHARPNESS,CHI”,expr=“MAG[1] !=INDEF”,headers=yes,

>>imname//’.smag.1’)

delete (imname//‘.rmag.1’,verify=no,>>&“/dev/null”)

txdump(textfile=magfile,fields=“ID,XCENTER,YCENTER,MAG,

MERR,MSKY,NITER,SHARPNESS,CHI”,expr=“MAG[1] !=INDEF”,headers=no,

>>imname//’.rmag.1’)

print(‘ sorting ’//imname//‘.rmag.1’)
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delete (imname//‘.afnl.1’,verify=no,>>&“/dev/null”)

# creating the .afnl file

# sort the rls file by decreasing magnitude

sort(input fi=imname//‘.rmag.1’,column=4,numeric=yes, >>

imname//‘.afnl.1’)

imcopy (input=imname, output=prefix//imname)

}

else

{

magfile = imname // ‘.coo.1’

#——————————————-

# Prepare the image catalog file for pgshift

#——————————————-

print(“Prepare catalog for findshift”)

delete (‘tmp object’,verify=no,>>&“/dev/null”)

print(imname, > ‘tmp object’)

#creating the .smag file

delete (imname//‘.smag.1’,verify=no,>>&“/dev/null”)

txdump(textfile=magfile,fields=“ID,XCENTER,YCENTER,MAG,

MERR,MSKY,NITER,SHARPNESS,CHI”,expr=“MAG[1] !=INDEF”,headers=yes,

>>imname//’.smag.1’)

delete (imname//‘.rmag.1’,verify=no,>>&“/dev/null”)
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txdump(textfile=magfile,fields=“ID,XCENTER,YCENTER,MAG,

MERR,MSKY,NITER,SHARPNESS,CHI”,expr=“MAG[1] !=INDEF”,headers=no,

>>imname//’.rmag.1’)

print(‘ sorting ’//imname//‘.rmag.1’)

delete (imname//‘.afnl.1’,verify=no,>>&“/dev/null”)

# creating the .afnl file

# sort the rls file by decreasing magnitude

sort(input fi=imname//‘.rmag.1’,column=4,numeric=yes, >>

imname//‘.afnl.1’)

#—————

# compute shifts

#—————

print (‘ Computing Shifts for image : ’,imname)

delete (‘input shift’,verify=no,>>&“/dev/null”)

print (imname//‘.afnl.1’, >> ‘input shift’)

print (refimage//‘.afnl.1’, >> ‘input shift’)

print (xytol, >> ‘input shift’)

print(imname//‘.afnl.1’,‘\n’,refimage//‘.afnl.1’,‘\n’,xytol,‘\n’,objectn) |

xyshift | scan(avshiftx, avshifty, pershift, match n)

print(“————- Shift in pixels —————-”)

print(“ X = ”, avshiftx)

print(“ Y = ”, avshifty)

print(“ % = ”, pershift)

print(“ n = ”, match n)

print(‘Image : ’,imname,‘ shift% ’,pershift, >> bug log)
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# shift the image

print (‘ ===> Shifting image : ’, imname)

imshift(input=imname, output=prefix//imname, xshift=-avshiftx,

yshift=-avshifty)

}

}

}

succeed = yes

nautodaofind.cl

procedure nautodaofind

#—————————————————————–

# autodaofind.cl - Automatic daofind for image.

# By : Eran O. Ofek, altered by Alie Porter

# Written: August 1998, Last Update: Aug 10th, 1998

#—————————————————————–

string imname {“”,prompt=“image name”}

string out file {“default”,prompt=“output file name”}

real fwhm {3.0,prompt=“PSF FWHM in pixels”}

real readnoise {6.50,prompt=“CCD read out noise in electrons”}

real gain {8.42,prompt=“CCD gain in electrons per count”}

real threshold sig {5.0,prompt=“threshold on sigma above

background”}

struct *lis1

begin
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real sky noise

hselect (imname,“$I,SKYDEV”,yes, > “dataskydev”)

tabpar (“dataskydev”,2,1)

sky noise = real(tabpar.value)

print (’Find stars using Daofind’)

delete (imname//‘.coo.*’,verify=no,>>&“/dev/null”)

daofind(image=imname,output=out file,verify=no, verbose=yes,

sigma=sky noise, scale=1, fwhmpsf=fwhm, readnoi=readnoise, epadu=gain,

thresho=threshold sig)

del dataskydev

print(“END autodaofind”)

end

A.2.4 Obtaining Differential Magnitudes

This script uses a coordinate file to calculate the magnitude of specific stars

in the frame. Those magnitudes are later converted into differential magnitudes.

anightphot4.cl

# NIGHTPHOT – IRAF script designed to make photing a million files a

lot easier

# without having to do each frame individually.
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procedure anightphot4 (images, center file)

string images {prompt=“Root name of images to phot”}

string center file {prompt=“File of approximate centers (ds9.reg)”}

struct *list, *list2

begin

# Local variables

string imagelist

string img

string imgroot

string coordfile, tmp5

int i, end1, end2, tmp1, tmp2, tmp3, tmp4, tmp6

real temp, FWHM, temp3, intfwhm, inthwhm #temp2

# Make sure the noao and apphot or daophot packages are loaded

if (! defpac (“digiphot”)) {

print (“You have not loaded the apphot or daophot package.”)

print (“One of these packages must be loaded before continuing.”)

bye

}

# Create a text file list of images to phot.

imagelist = mktemp (“tmp$night”)

imgroot = images

sections (imgroot//“*”, > imagelist)

# Open the list of images and scan through it.

list = imagelist

coordfile = center file
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#print (“What is your starting FWHM value from IMEXAM”)

#scanf (“%f”, intfwhm)

while (fscan (list, img) != EOF) {

# Display the current image frame in frame 1. This allows the

# frame to appear fresh without markings, etc.

display (img, 1)

# Call the tvmark command to allow the user to see if his/her stars

# are correctly centered.

tvmark (1, coords=coordfile)

# Ask the user to input whether to continue or not.

end1 = 0

while (end1 == 0){

print (“Are your stars marked and labeled correctly? (0 if no, 1 if yes)”)

scanf (“%d”,tmp3)

if (tmp3 != 0 && tmp3 != 1)

print (“You entered an incorrect response!”)

if (tmp3 == 0){

while (tmp3 == 0) {

display (img, 1)

print (“Please re-mark the stars and save as ‘̀ds9.reg”̈)

print (“Once you are done please enter 1 to continue.”)

scanf (“%d”, tmp4)

if (tmp4 != 1)

print (“You entered an incorrect response!”)

if (tmp4 == 1)

tmp3 = 1
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}

}

if (tmp3 == 1){

coordfile = “ds9.reg”

end1 = 1

}

}

# PSFMeasure Command

imgets (img,param=“FWHM”)

intfwhm = real(imgets.value)

if (intfwhm == INDEF){

intfwhm = 5.5

}

if (intfwhm != INDEF) {

temp = intfwhm

temp3 = 3*intfwhm

}

# Get rid of the “.fits” extension

i = strlen (img)

if (substr (img, i-3, i) == “.fits”)

img = substr (img, 1, i-4)

# Call the phot command

fitskypars.annulus = temp3

phot (img, “”, coords=coordfile, output=“default”, verify=no,

update=yes, verbose=yes)
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# Ask the user to input whether they want to keep this

“.mag.1” file.

end2 = 0

while (end2 == 0){

print (“Are you satisfied with your results for this frame (no errors)?”)

print (“Enter 1 to continue, 0 to re-phot”)

scanf (“%d”, tmp1)

if (tmp1 != 0 && tmp1 != 1)

print (“You entered an incorrect response!”)

if (tmp1 == 0){

delete img//“.mag.1”

while (tmp1 == 0){

display (img, 1)

print (“Please re-mark the stars and save as ‘̀ds9.reg”̈)

print (“Once you are done please enter 1 to continue.”)

print (“This will re-phot the image frame with the new coordinates”)

scanf (“%d”, tmp2)

if (tmp2 != 1)

print (“You entered an incorrect response!”)

if (tmp2 == 1){

coordfile = “ds9.reg”

phot (img, “”, coords=coordfile, output=“default”, verify=no,

update=yes, verbose=yes)

print (“Are you satisfied with your results for this frame (no errors)?”)

print (“Enter 1 to continue, 0 to re-phot”)

scanf (“%d”, tmp6)

if (tmp6 != 0 && tmp6 != 1)

print (“You entered an incorrect response!”)

if(tmp6 == 1)
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tmp1 = 1

if(tmp6 == 0){

tmp1 = 0

delete img//“.mag.1”

}

}

}

}

if (tmp1 == 1)

end2 = 1

}

# Delete the coordinate file

delete “ds9.reg”

# Text dump the coordinates from the above image’s mag file

# into a new coordinate file

txdump (img//“.mag.1”, “xcenter,ycenter”, “yes”, headers=no,

parameters=yes, > coordfile)

}

# Create the text file for Varstar.

print (“Nightphot will now create the text file needed for Varstar4 or

Varstar5”)

print (“What would you like to name the file? (e.g. starB.lst)”)

scanf (“%20s”, tmp5)

txdump (imgroot//“*.mag.1”, “id,mag,otime,xairmass,ifilter”, “yes”,

headers=no, parameters=yes, > tmp5)
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# Clean up

delete (imagelist, ver-, >& “dev$null”)

end
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