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ABSTRACT

CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND

SILICON MULTILAYER THIN FILMS

David T. Oliphant

Department of Physics and Astronomy

Master of Science

In order to understand discrepancies between calculated and measured values of re-

flectance for the IMAGE mirrors a characterization of the top layer of uranium was

undertaken. To better understand this uranium oxide cap, single thin film layers of

uranium were also studied. Physical and chemical properties of samples were studied

with atomic force microscopy, X ray diffraction, X ray photoelectron spectroscopy,

transmission electron microscopy and ellipsometry. It was determined that most of

the uranium oxide cap is composed of uranium dioxide. However, there is a surface

layer different than the pure dioxide. This layer is likely a hydroxide or hyperstoichio-

metric uranium oxide or both. It was also found that the bottom of the uranium oxide

cap diffused into the amorphous silicon layer beneath it. Not far into the underlying

silicon layer the uranium was found to stop oxidizing. A study of the oxidation rate



of sputtered uranium thin films was also conducted. It showed a rate that varied with

time, dissimilar to published uranium oxidation rates for bulk samples. In addition,

a new method for analyzing X ray diffraction data was also formulated.
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Chapter 1

Background

1.1 Introduction

On May 5, 2000 the extreme ultraviolet imager on the IMAGE satellite sent back to

earth its first pictures taken using specially designed soft X ray mirrors (figure 1.1).

The IMAGE mission will increase our understanding of the electromagnetic weather

around the earth. Geomagnetic storms brought on by solar activity can adversely

affect orbiting satellites, communications, large electrical grids and other electronic

equipment. By using a number of different instruments, including the EUV imager,

the IMAGE satellite collects data about the plasmasphere around the earth. Under

the direction of Bill R. Sandel, the University of Arizona’s Lunar and Planetary

Laboratory built the EUV imager for the IMAGE mission [1]. They asked Dr. David

Allred and the EUV group at BYU to design and make the mirrors for the EUV

imager.

The mirrors’ multi-functional design is unique. They reflect 304 Å wavelength

light well but have a low reflectance at 584 Å. This allows the IMAGE satellite to

image the He ions around the earth without being saturated by the bright light from
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Figure 1.1: EUV Imager First Photo.

neutral helium [2]. Surprisingly the mirrors worked better than expected. With

what was known about the multilayer mirrors at the time they should reflect 29% [3]

of the light at 304 Å and about 3% at 584 Å. The measured reflectance at 304 Å

was 23%, a large discrepancy but not nearly as large as the factor of 3 at 584 Å.

Its measured reflectance was about 1% [3]. There was clearly something important

about the nature of the multilayer mirror that was not understood. In the process

of designing and producing the mirror it was found experimentally that a thin layer

of oxidized uranium deposited on the top of the multilayer gave the best reflectance

values.

In order to understand the discrepancy in reflectance, a complete characterization

of the uranium oxide cap needed to be conducted. This thesis outlines research
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completed on both the physical and chemical properties of thin films of oxidized

uranium and multilayers of oxidized uranium on uranium and amorphous silicon.

Thickness has been analyzed with X ray diffraction (XRD), transmission electron

microscopy (TEM) and ellipsometric measurements. Although sputter rates for the

uranium were previously calculated, the amount of expansion due to oxidation was

unknown. For this reason a study of the oxidation rates and the oxidation process

of uranium is also outlined. Atomic force microscopy (AFM) was used as a direct

measurement of surface roughness. Roughness was also included in the models used

for reflection measurement. X ray photoelectron spectroscopy (XPS) was used to

better understand the elemental composition and chemical binding of the multilayers.

1.2 Previous Work at BYU

The design and fabrication of the EUV IMAGE mirrors presented a number of chal-

lenges. First, it is difficult to get a large contrast in optical constant between materials

in the EUV. Optical constants of different materials in the EUV are very similar. This

makes the reflectance from a single interface very small. Another serious challenge

is with oxidation. Oxygen is extremely absorptive at 584 Å, the wavelength of light

the mirror needed to reflect. Too thick of a layer of oxide on the top of the mirror

could completely destroy the desired properties of the multilayer. Another problem

is the dependability of optical constants in this region of the spectrum; published val-

ues often conflict [3]. In addition, the role that chemical bonding has on the optical

constants in the EUV region is not well understood.
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The problem of low reflectance at each interface is typically overcome by having

many periods in the multilayer so that there are many boundaries to contribute to

the reflectance. However, large absorptive constants limit the number of layers. Each

period is typically composed of a bi-layer, two materials one on top of the other.

A multilayer is made by staking a number of these periods on top of each other.

Standard X ray mirror design practice says that the period should be composed of

a relatively thin layer of material with a large absorptive constant and the rest of

the period being composed of a less absorptive spacer material. Shannon Lunt[4]

developed a computer program to find the best combination of materials and the

thicknesses for each of the layers. Lunt’s software uses a combination of the Genetic

Algorithm, a global optimization procedure, and a local minimization technique called

the Simplex Method. It has the flexibility to allow for aperiodic layers. The optimum

mirror design found by Lunt’s software that met the specifications for the IMAGE

mission was an aperiodic Y2O3 and Al multilayer with a total of 16 layers.

Y2O3 is not a conductor and could not be sputtered using DC magnetron sput-

tering. This made it impractical to use Y2O3 because BYU was not equipped for

RF sputtering. Uranium/aluminum multilayers were produced instead. These mul-

tilayers were studied by Adam Fenimore [5]. He found that the aluminum oxidizes

deep into the stack, producing a thick layer of oxide. In addition, he found signifi-

cant columnar growth. These were unacceptable because they destroyed the desired

optical properties.

Upon review of the published optical constants in the EUV region it was found

4



that there is disagreement between sources. Matthew Squires’ study of the optical

constants of uranium and silicon found that chemical bonding may affect the values

of the optical constants in the EUV region [3]. Squires used a McPherson hollow

cathode plasma lamp with He gas to produce EUV light at 304 Å and 584 Å. His

reflectance measurements of uranium and silicon multilayers at these wavelengths

shows that further research needs to be conducted to obtain accurate and reliable

optical constants in the EUV.

The final mirrors were made with uranium and silicon. Aperiodic multilayers

where found to be too difficult to analyze with X ray diffraction. For this reason

periodic structures were adopted. The multilayers consisted of 7 bilayers with a

period thickness, or d-spacing, of 181 Å and a ratio of thicknesses within the period

(Γ) of about 0.7 with the silicon layer on the top of the period [6]. If the silicon was

left on top it would oxidize and dramatically change the reflectance. To avoid this

a thin layer of uranium was deposited on top and allowed to oxidize. The addition

of this uranium oxide cap worked very well. This cap not only prevented the silicon

from oxidizing but it also enhanced the desired reflectance properties.

1.3 Light Interacting With Matter

Ellipsometry and X ray diffraction, as well as other characterization tools, use re-

flectance data to better understand a sample. For this reason the method for calcu-

lating reflectance from a multilayer is outlined here. Information more specific to the

characterization technique will be discussed in chapter 2.
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The mathematics of light is described by using Maxwell’s equations and the appro-

priate boundary conditions. Assuming homogeneous and isotropic media Maxwell’s

equations can be written as[7]

∇ · E =
ρ

ε
(1.1)

∇ · B = 0 (1.2)

∇× E = −dB
dt

(1.3)

∇× B = µε
dE

dt
+ µJ. (1.4)

In free space J = 0 , ρ = 0, ε = ε0 and µ = µ0. Taking the cross product of equation

1.3 and using equation 1.2 and 1.4 leads to the wave equation for E:

∇2E = −µεd
2E

d2t
⇒ E = E0e

i(k·x−ωt). (1.5)

If the same thing is done with equations 1.4, 1.1 and 1.3 the wave equation for B is

derived.

∇2B = −µεd
2B

d2t
⇒ B = B0e

i(k·x−ωt), (1.6)

where the wave number k is defined as

k ≡ ω
√
µε k̂ (1.7)
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The velocity of this wave is given by

v =
1√
µε
. (1.8)

When the wave is propagating in free space v = c, the speed of light in vacuum.

In optics it is common to define the optical constant n for a material at a given

frequency as the ratio of the speed of light in a vacuum to the speed of light in that

material.

n =
c

v
(1.9)

With equation 1.8, n can be written as

n =

√
µε

µ0ε0
(1.10)

It is also common to define the relative permeability µ and the relative permitivity

ε as being the ratios of µ and ε to their vacuum values µ0 and ε0. In addition, the

materials discussed in this thesis have a relative permeability very close to one. This

makes it a very good approximation to describe the index of refraction as just the

square root of the relative permitivity (n =
√
ε) [8]. This allows us to discuss the

optical properties of a material by just looking at the relative permitivity ε.

The permitivity of a material depends on the electrons’ energy levels within the

atom. The bound electrons can be thought of as damped simple harmonic oscillators

especially when they interact with X rays. If each electron within an atom has a

natural frequency of ωj, a damping constant of γj with an oscillator strength of fj,

then the relative permitivity can be modeled as

ε(ω) = 1 +
Ne2

ε0m

∑
j

fj(ω
2
j − ω2 − iωγj)

−1, (1.11)
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where N is the number of molecules per unit volume and e and m are the charge and

mass of an electron, respectively [7]. The summation accounts for all the electrons

within the atom. The damping term γj in equation 1.11 translates into an imaginary

term in the index of refraction. When the complex index of refraction n = (nr + ini)

is used the wave number can then be defined as

k =
2π

λ0

nk̂ =
2π

λ0

(nr + ini)k̂ (1.12)

where λ0 is the vacuum wavelength of the light. If this k is employed in the wave

equations for E it is clear to see that the wave is damped as it propagates.

E = E0e
i( 2π

λ0
(nr+ini)k̂·x)

= E0e
i( 2π

λ0
nrk̂·x)

e
− 2π

λ0
nik̂·x (1.13)

This formalism works well for describing complicated quantum mechanical interac-

tions of light with matter.

1.3.1 Abrupt Interfaces

To calculate the total reflectance of a multilayer mirror it is necessary to know what

happens at a single interface between two different materials. This is done by using

the boundary conditions for the electric and magnetic fields to match up the waves

on each side of the boundary. The tangential component of the electric field (E‖) and

the normal component of the magnetic field (B⊥) are continuous across an interface.

On the other hand the normal component of the electric field (E⊥) and the tangential

component of the magnetic field (B‖) are discontinuous at a boundary due to the

charge and current at the boundary. Applying these boundary conditions to an

8
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Figure 1.2: Light Incident On a Boundary.

electromagnetic wave incident on an interface at an angle of θ1 leads to Snell’s law:

n1 sin(θ1) = n2 sin(θ2), (1.14)

where θ2 is the angle between the normal and the transmitted wave, and n is the

index of refraction. When n is complex the angles no longer represent physical angles.

The ratio of the reflected electric field (E ′
1) to the incident electric field (E1) of an

electromagnetic plane wave incident on the boundary between layer 1 and layer 2 is

given by the Fresnel equations [8].

E perpendicular to the optical plane (s polarization):

rs12 ≡
E

′s
1

Es
1

=
n1 cos(θ1) − n2 cos(θ2)

n1 cos(θ1) + n2 cos(θ2)
(1.15)

E parallel to the optical plane (p polarization):

rp12 ≡
E

′p
1

Ep
1

=
n1 cos(θ2) − n2 cos(θ1)

n1 cos(θ2) + n2 cos(θ1)
(1.16)

The transmission Fresnel equations are not included here. A more detailed explana-

tion of the derivation of the Fresnel equations can be found in any number of optics

9



books [7, 8, 9].

1.3.2 Multilayer Reflectance

Calculating the reflectance for a multilayer combines the effects of reflection off each

boundary with the way the electric field is modified as it is transmitted through each

layer. The formalism presented below is from the documentation with David Windt’s

computer program IMD[10]. Born and Wolf use a similar formalism [9]. It involves

starting at the bottom-most boundary (the boundary between Layer # 0 and Layer

# 1 in figure 1.3) to calculate the Fresnel coefficients. Here there is no reflected wave

from lower boundaries, just an incident, reflected and transmitted wave. To account

for the phase change as the wave propagates in the next layer up (Layer #1) the

reflected electric field is modified by the phase factor:

e2iβj , (1.17)

where

βj =
2πdjnj cos(θj)

λ0

, j = 1, (1.18)

and where λ0 is the vacuum wavelength, dj is the thickness of the jth layer and nj is

the index of refraction for the jth layer. Because n is complex, this equation not only

accounts for the change in phase but also accounts for the absorption of the layer. At

the next boundary (the boundary between Layer # 1 and Layer # 2) the reflection

(the wave traveling up in Layer # 2) is calculated by the equation:

ri =
rij + rje

2iβj

1 + rijrje2iβj
, i = 2, j = 1 (1.19)
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Here rij is one of the Fresnel coefficients, equations 1.16 or 1.15 depending on the

polarization, and ri and rj are the reflected electric field ratio for the given layer.

Equation 1.19 is then applied recursively (i = 3, 4, 5...x, j = 2, 3, 4, ...x− 1) until the

top boundary is reached. At this point rx gives the ratio of the total reflected electric

field to the initial incident electric field. The fraction of the energy reflected is then

given by

R = |rx|2. (1.20)

This process is applied for both the s and p polarizations separately. The total non-

polarized fraction of the energy reflected is given by the average of the reflection for

the two polarizations.

Rtotal =
Rp +Rs

2
=

|rpx|2 + |rsx|2
2

. (1.21)

1.3.3 Non-Uniform Interfaces – Roughness and Diffusion

It is impractical and unnecessary to completely describe the structure of a rough

surface for calculating reflection and transmission values. A few statistics about the

surface are usually sufficient. The most common statistic for describing a rough sur-

face is the root-mean-square (rms roughness). This value is defined by the following:

rms =

√∑N
i=1(zi − z̄)2

N
, (1.22)

where zi is the height of the surface at the point i, z̄ is the average height over all

measured points and N is the number of points. The rms value does not give any

information about the lateral size of the structures that make up the roughness. It is

12



also highly dependent on the following measurement parameters [11]:

1. The length of the part of the sample being measured

2. The lateral resolution of the measuring tool

3. The lateral step size, i.e. the distance between measurements.

These measurement parameters are always a limiting factor in determining the rough-

ness of a surface. Collectively they make the measurements “band limited.”

The power-spectral-density (PSD) function provides detail about the lateral size

of structures making up the roughness. It is the square of the Fourier Transform of

the surface profile. There are many other statistics to describe the roughness of a

surface such as the height distribution function, the slope distribution function, the

autocovariance function and others. Consult reference [11] for more information on

these, the PSD function and the rms value.

For surfaces where the average lateral size of the roughness is much smaller than

the wavelength of light that is being reflected roughness has the same effect as diffu-

sion. For this scenario both diffusion and roughness can be modeled the same way.

To model an interface between materials with dielectric constants ε0 and ε′0, Stearns

uses the interface profile function [12]:

p(z) ≡ 1

∆

∫ ∫
[ε(x) − ε′0]dx dy∫ ∫

dx dy
, (1.23)

where ∆ ≡ ε0 − ε′0 and ε(x) describes the spatial variation of the dielectric function

across the interface. The function p(z) is just ε(x) averaged over x and y. In this way
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it describes how the dialectic function varies in the z direction across the interface.

The derivative of p(z) is then taken with respect to z to give w(z):

w(z) =
dp(z)

dz
. (1.24)

The Fresnel coefficients are then modified by multiplying them by w̃(si), the Fourier

transform of w(z).

r′ij = rijw̃(si), si =
4π cos(θi)

λ
(1.25)

where λ is the vacuum wavelength divided by the index of refraction. This is done

for both p and s polarizations independently. These modified Fresnel coefficients

are used in place of the normal Fresnel coefficients in equation 1.19. Stearns offers

four examples of possible interface profile function and their corresponding w̃(si). He

mentions how three of them can be used to model different types of diffusion and

roughness (see Table 1.1).

This method developed by Stearns is a first order approximation and is valid when

∆

(n0
z)

2
� 1. (1.26)

Here n0
z is the z component of the incident wave vector. This condition holds when

the difference between the dielectric constants of the two materials is small and when

the incident wave is not too near grazing. In other words it holds when there is little

reflectance off each interface, a condition common in the X ray region but not as

applicable in the EUV.

Stearns’ model does not take into account non-specular scattered light that upon

further reflections gets scattered back into the specular field. It also only holds for
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Table 1.1: Interface Profile Functions (IPF) and Corresponding w̃(si), σ = rms rough-

ness.

IPF Name p(z) w̃(si) model for

Error Function 1√
π

∫ z
−∞ e

−t2

2σ2 dt e
−σ2s2

2 classical diffusion

0, z < −√
3σ diffusion

Linear 1
2

+ z
2
√

3σ
, |z| ≤ √

3σ sin(
√

3σs)√
3σs

due to

1, z >
√

3σ sputtering

1
2
e

√
2z
σ , z ≤ 0

Exponential 1

(1+ s2σ2

2
)

roughness

1 − 1
2
e−

√
2z
σ , z > 0

roughness on the length scale much smaller than a wavelength. For this reason an

attempt was made to model roughness with a Monte Carlo ray tracing algorithm. We

had hoped that such a model would help explain discrepancies in X ray diffraction

data. The model was flawed because it did not fully account for the quantum me-

chanical nature of the photon. It was also deemed unnecessary because the condition

of low reflectance at each interface in Stearns’ model holds extremely well for X ray

diffraction in the range (0.5◦ to 5◦ from grazing), the range for the data in question.

The condition for the length scale is not satisfied as well. Taking this into account

could be a topic of further research.

Diffusion can be modeled in a simpler, more accurate, but computationally more

intensive way. This is done by breaking up a single interface into many layers. The
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layers’ index of refractions are a combination of the indices of the two materials that

make up the single interface. Indices are weighted according to their position in the

interface transition and the profile of that transition. To be accurate the thickness

of each effective layer should be small compared to a wavelength. If, in addition, the

total interface thickness is large this can mean there are many effective layers for each

interface. If the multilayer has many interfaces the total number of effective layers

can be huge. This makes the time it takes to compute the reflectance very long and

impractical.
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Chapter 2

Characterization Methods

There are many different methods for probing the compositional and/or structural

nature of thin films. These can be categorized by what they use to probe the thin

film and what they analyze. Both X ray diffraction and ellipsometry use photons to

probe and photons to analyze thin films. On the other hand, X ray photoelectron

spectroscopy and Auger spectroscopy use photons to probe but analyze the electrons

that are emitted as a result of the incident X ray photons. Transmission electron

microscopy as well as electron diffraction use electrons to probe and electrons to

analyze. Secondary ion mass spectroscopy uses ions to probe and the atoms emitted

from ion sputtering to analyze. Each method has it advantages and weaknesses.

Some are better at compositional analysis. Others are better for structural analysis.

Most can give information about both. For the work reported in this thesis X ray

diffraction and ellipsometry were used for determining thicknesses. However, X ray

diffraction can be used to infer composition when the material is crystalline. In
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addition, by using ellipsometry to determine the index of refraction, information can

be learned about the compositional nature of a thin film. Using data concurrently

from a number of different methods for the same thin film can give a wealth of

information about a sample. This chapter describes four methods and the way they

were used to characterize uranium/silicon thin films. Other methods such as atomic

force microscopy and secondary ion mass spectroscopy were also used but not as

extensively as those described in this chapter.

2.1 X Ray Diffraction

2.1.1 Theory

X ray diffraction (XRD) is most commonly used to determine the distance between

planes in crystals. Each plane will scatter X rays in the same way. So the phase

change in the scattered waves is only a function of the separation between the planes,

the angle of incidence, and the material. Constructive interference between scattered

waves is described by Bragg’s law [13]:

2d sin(θ) = nλ (2.1)

Here θ is measured from grazing and n is the order of the peak, a positive integer.

The incident X rays are scanned over a range of θ to find all the Bragg angles. For

crystals where the spacing is on the order of a few angstroms only a few constructive

interference peaks are observed. The amount of scattering of an X ray from a single

crystal plane is small. However, in a bulk sample there are millions of crystal planes
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that contribute to refection. Therefore, the intensity of the constructive interference

peaks is typically large. This makes it possible to observe peaks even at high angles.

By knowing the position of each peak, Bragg’s Law can be used to determine d, the

spacing between planes.

d =
(ni − nj)λ

2[sin(θi) − sin(θj)]
, (2.2)

where ni and nj are the order of the Bragg angles θi and θj respectively.

Multilayer thin films have some similarities to crystals. Periodic structures within

a multilayer can produce Bragg-like peaks. For this reason a similar method can be

employed for thin films. However, there are a few important differences. Even the

largest of multilayers do not contain millions of separate layers like a crystal. For

this reason the reflection off each interface becomes more important. XRD peaks

from thin films can only be seen at angles near grazing where the X rays reflect well

at each boundary. Also the thickness of each layer in a thin film is on the order of

a few nanometers instead of a few angstroms. This increases the number of peaks

that can be observed. Another important difference is due to the variety of index of

refractions that a thin film can have. Some boundaries may introduce a phase change

where others will not. This makes it so that where there would have been a peak

just using equation 2.1 there may be a minimum. In addition, not all multilayers are

periodic. To my knowledge, methods for analyzing aperiodic multilayers with XRD

have not yet been fully researched.

To determine the thickness of a single layer an approximation can be made. At

low angles, sin(θ) ≈ θ. If ni − nj = 1, i.e. if i and j are adjacent peaks, and if they
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are both at low angles then equation 2.2 can be approximated with

d ≈ λ

2(θi − θj)
=

λ

2∆θ
(2.3)

The period (∆θ) can be determined using peaks or minima. In this way it is not

necessary to know the order of each peak or minima to get a good approximation for

the thickness of the single layer. This same method can be applied to multilayers, but

it is often more difficult to distinguish the value of ∆θ. There are many other periodic

structures in the XRD data that are a result of the thicknesses of individual layers

rather than the total period thickness. This method offers little help in determining

structures for aperiodic multilayers. In addition this method is only an approxima-

tion. It does not account for the details of reflections off interfaces as described in

section 1.3. For these reasons other methods are used for determining the structure

of multilayers from XRD data. Some of these methods are discussed in sections 2.1.3

and 2.1.4.

2.1.2 Experimental Setup

A Scintag X ray diffractometer was used to collect XRD data for a number of different

samples. Samples are mounted on a stationary sample holder. The angle of the

source and detector arms are varied simultaneously. The Cu Kα (1.54 Å, 8 k eV)

radiation emitted from the X ray tube passes through a scatter slit, a collimator

and a divergence slit before reaching the sample. On the detector side the light

passes through another scatter slit, collimator and divergence slit before it reaches

the detector. The slit sizes can be changed. Available slit sizes range from 6 mm to
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0.05 mm. The slits and the collimator are designed to reduce the amount of non-

specular light that reaches the detector. The slit size also affects the size of the X ray

beam that reaches the sample. If a large divergence slit is used at very low angles

(θ < 1◦), the spot size of the beam on the sample can be larger than the sample

itself. This makes it look like the reflectance at low angles drops off. However, the

reflectance actually approaches unity as the angle goes to zero. The size of the slits

also affects the intensity of the light that reaches the detector.

2.1.3 Traditional Analysis

X ray diffraction data is used to determine the period thickness (d) and the ratio(Γ)

of the thicknesses of the top layer within a period to the period thickness. Past

attempts to find d and Γ from the data with an automated computer program have

not worked well. Global optimizers tend to find incorrect values and local optimizers

tend to not converge well. Previously, XRD data from thin films at BYU has been

fitted by visual comparison. The data is imported into a software package such as

IMD [10] or wfit [14]. These programs plot the data alongside calculated values. The

parameters for the calculated values are adjusted by the user until the two plots look

similar. Then the d and Γ parameters are said to be a correct match to the data.

Often it is difficult to tell when the two plots line up the best. The d spacing is easier

to determine than Γ; but other parameters such as inter-diffusion, slight variations in

period, and different normalization make it extremely difficult for a trained user and

nearly impossible for an untrained user to use this method.
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Figure 2.1: XRD data plotted on a normalized linear scale.

There are a few things that can make it easier to find a correct match. First,

data is observed over a large range of θ (0◦ to 5◦ or so). Details of the data are more

easily seen when plotted on a logarithmic scale (compare figure 2.1 to figure 2.2).

Next, the period thickness is fit by lining up peaks and valleys in the plot of the data

with peaks and valleys in the calculated plot. Another trick that can be helpful in

fitting d spacing is to count the number of peaks within a certain range and make

sure that number is the same in the calculated plot. Once d is established, Γ is fit by

comparing the peak heights.

A slight misalignment in the X ray diffractometer when taking the data can make
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Figure 2.2: XRD data plotted on a normalized log scale.
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this process even more difficult. Small misalignments will shift the θ axis by the

amount that the instrument is off. It will also dramatically affect the intensities at

very low angles (θ < 0.5 from grazing). This should be considered carefully when

fitting the data. Even for someone who is experienced at fitting XRD data visually,

it is still difficult to quantify the quality of a fit. It can also be very time consuming

to make a complete scan over the entire range of d and Γ. For these reasons I have

developed a more automated method for analyzing this kind of data.

2.1.4 Automated Analysis

General Fitting Considerations

When fitting any kind of data there are generally four questions to ask.

1. Exactly what parameters is the fit trying to find?

2. What is being compared to the calculated values, the raw data, or some modified

version?

3. How is the data being compared? (i.e. What is the merit function)? The most

common merit function when comparing data is least squares (LS), or some

modification of it. This involves taking the square of the difference between the

data, D(x), and the calculated values, C(x), at each x and then summing up

over all the data points.

LS =
∑
x

(D(x) − C(x))2 (2.4)
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Sometimes to get a number that is more meaningful when comparing different

data sets, this value is divided by the total number of points. A small least

squares value is better than a large one. However, it is difficult to tell precisely

how good or how bad a fit is by looking at the least squares value.

4. How are the extrema found? There have been many methods developed to ad-

dress this question. Methods such as the simplex method, Marquardt-Levenberg

fitting algorithm, gradient method, and even the genetic algorithm, to name a

few, are highly-developed, often-used fitting methods.

Admittedly the first three questions could be combined into one by having the

merit function absorb the mathematics of the first two. However, it is beneficial to

take a closer look at how the first two questions could be answered differently than

usual.

New Fitting Method

In developing a more automated method, I have focused my attention on the first

three things to consider, and specifically on the second of the four, the way the

data is modified. Rather than having the computer find the extrema for the last

consideration, a plot is made of the parameter-merit function space so the user can

easily spot the maximum. The user may also learn other characteristics about the

thin film by observing other features in the parameter-merit function space.

The values Γ and d are common nomenclature for describing the thickness proper-

ties of thin films. However, there are many other sets of numbers that are equivalent.
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Another equivalent way to describe a thin film is with d1, the thickness of the top

layer within a period, and d2 the thickness of the bottom layer within a period.

Other equivalent sets include d, d1 and d, d2. It was found that by using d and Γ for

parameter-merit function space it was easier to see what the d spacing was. However,

by looking at the d1, d2 parameter-merit function space other features in the plot

were more interpretable. More work could be done to determine what parameters are

the best to use for learning specific information.

The way the data was fit visually was considered for determining how the data

should be modified before it is compared to calculated values. Using the raw data

without modification weights the data at angles closer to grazing more heavily than

the rest. This is because the reflectivity of most thin films at Cu Kα radiation is

extremely small except at angles very close to grazing. By not modifying the raw

data, problems due to small misalignments as describe earlier are accentuated. To

modify the data such that each angle is weighted approximately equally two things

are done. First the log of the raw data Dr(θ) is taken (see figure 2.3). Then the log

of the calculated reflectivity of a bulk sample of the same material as the top of the

multilayer Bc(θ) is subtracted.

Dm(θ) = log[(Dr(θ)] − log[Bc(θ)] = log

[
Dr(θ)

Bc(θ)

]
(2.5)

To be consistent, the calculated values C(θ, d1, d2) are modified in the same way.

Cm(θ, d1, d2) = log[C(θ, d1, d2)] − log[Bc(θ)] = log

[
C(θ, d1, d2)

Bc(θ)

]
(2.6)

An example of the raw data is in figure 2.1 and the same data after modification
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Figure 2.3: Comparison of reflection off a multilayer, Dr, and reflection off a bulk

sample, Bc.
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Figure 2.4: Modified XRD Data.

is in figure 2.4. The data at higher angles is less accurate because reflections there

are so small. Modifying the data in a way that would reflect this would likely be

better. There may also be other ways to modify the data such that variations in the

fit parameters are accentuated. Further research into how the data could be modified

could greatly improve the usefulness of XRD data.

To compare the two modified data sets Dm(θ) and Cm(θ, d1, d2) the Pearson’s

correlation coefficient Pc is used. This value has two advantages over simple least

squares. First, it is independent of normalization - it only depends on the relative

shape of the two data sets. Second, the value it gives is more meaningful. The
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value is always less than 1 and greater than -1. This allows the goodness of a fit to

be quantified. The Pearson’s correlation coefficient is simply the normalized inner

product of the deviance of the data from its mean. If each data set is thought of as

a multi-dimensional vector with each θ value being a new dimension then Pc is the

cosine of the angle between the two vectors. So if the value of Pc is close to 1 then

the two data sets line up, i.e. they are a good fit. If Pc is equal to 0 then they are

going in perpendicular directions and it is a bad fit. If the value is negative then they

are going in opposite directions.

To calculate Pc first the average over θ is calculated for both data sets.

Dm =

∑
θDm(θ)

N
(2.7)

Cm(d1, d2) =

∑
θ Cm(θ, d1, d2)

N
, (2.8)

where N is the number of θ values. These average values are then subtracted from

each point in their respective data sets.

Dm(θ) −Dm (2.9)

Cm(θ, d1, d2) − Cm(d1, d2) (2.10)

The value of each set at each point is then multiplied by each other and summed over

θ. All this is then normalized by dividing by the standard deviation of each data set

and by (N − 1), the total degrees of freedom.

Pc(d1, d2) =

∑
θ

[
Dm(θ) −Dm

] [
Cm(θ, d1, d2) − Cm(d1, d2)

]
sDsC(N − 1)

(2.11)
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Figure 2.5: d1 and d2 space for a uranium/aluminum multilayer.

where

sD =

√√√√∑
θ

[
Dm(θ) −Dm

]2

N − 1
(2.12)

and

sC =

√√√√∑
θ

[
Cm(θ, d1, d2) − Cm(d1, d2)

]2

N − 1
(2.13)

The best fit is a maximum of Pc(d1, d2). A plot of the Pc(d1, d2) space for a

uranium/aluminum multilayer is shown in figure 2.5. It is visually easy to find the
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maximum of this plot. Where the straight horizontal line intersects with the diagonal

line is the maximum. The correct value of d1 and d2 are the x and y coordinates at

the center of the point where these two lines intersect. The other features within the

plot could give additional information about the multilayer. In general the diagonal

lines represent d-spacing. The horizontal or vertical lines represent thicknesses of

individual layers within a period. The other diagonal lines in the lower left hand

corner of figure 2.5 could just be ‘harmonics’ of the primary d-spacing line and not

have a physical interpretation. To help interpret what is physical and what is not,

XRD data was generated from a hypothetical multilayer and ran though the same

process as the real XRD data. A Pc(d1, d2) surface plot of two of these hypothetical

data sets are shown in the appendix in figure A.1 and A.2. These also have additional

lines at a lower d-spacing. Further research needs to be conducted to determine just

what can be learned from these types of plots.

2.2 Ellipsometry

2.2.1 Ellipsometry Theory

Ellipsometry uses the fact that materials reflect s and p polarizations differently. It

measures a ratio of the reflectance of the two polarizations by measuring ψ and ∆ as

defined in equation 2.14.

Rp

Rs

= tan(ψ)ei∆ (2.14)
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Where Rp and Rs are the complex ratios of the reflected electric field to the incident

electric field for the different polarizations (see section 1.3). An advantage of ellip-

sometry over other reflectance measurements is that ellipsometry is able to measure

the phase ∆. Other reflectance measurements simply measure the intensity of the re-

flected beam. This additional phase information makes this technique more sensitive

to parameters in the optical system being measured.

2.2.2 Experimental Setup

A variable angle spectroscopic ellipsometer made by J. A. Woollam was used to collect

data from the samples. It can measure ψ and ∆ at 44 different wavelengths from

2861 Å to 6052 Å. It is also configured with a manual stage goniometer. Ellipsometric

measurements can practically be taken from about 5◦ to 85◦ from normal.

Analysis of the data was done with software that came with the ellipsometer. This

software allows the user to specify a model for a data set and then fit any parameters

of that model to the data. It allows up to ten different model - data set pairs at

the same time, and has the ability to couple any of the parameters of one of these

ten models to any of the other ones. In this way it is possible to use more than one

data set to find a given parameter. For example, if the user had two samples of the

same unknown thickness, then the thickness in the model for each data set could be

coupled to each other. This makes it so the two thickness are not allowed to vary

independently in the fit algorithm. In this way the data from both samples are used

to determine the thickness.
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The software uses a method called the Levenberg-Marquardt algorithm to find the

minimum in the parameter space. This method is a hybrid of the gradient method

and the inverse Hessian method. The gradient method first determines the direction

of the steepest slope and takes a step in that direction. The inverse Hessian method

fits an N dimensional parabola to the surface then jumps to the minimum of that

parabola. The Levenberg-Marquardt algorithm shifts from the gradient method when

far from a minimum to the inverse Hessian method when close to a minimum. The

value that it minimizes is the mean-squared error (MSE), and is defined as

MSE =
1

2N −M

N∑
i=1





ψmod

i − ψ
exp
i

σ
exp
ψ,i




2

+


∆mod

i − ∆
exp
i

σ
exp
∆,i




2

 (2.15)

This is similar to χ2 but is normalized by dividing by 2N−M where N is the number

of ψ,∆ pairs and M is the number of fit parameters. [15]

2.3 Transmission Electron Microscopy

2.3.1 TEM Theory

Transmission electron microscopy involves observing electrons that are transmitted

through a sample from an incident electron beam. The electrons are emitted from

a source such as a tungsten filament that is heated to a temperature just below its

melting point. The electrons emitted from the filament are accelerated through a

voltage potential and channeled into a small beam with electromagnetic lenses. This

beam then interacts with the sample. Depending on the makeup of the sample the

electrons are either transmitted through the sample or scattered. To produce a light
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field image the beam of electrons that are not scattered continue down the column

and pass through a number of other magnifying electro-magnetic lenses. The beam is

then incident on a phosphor screen, film, CCD or other imaging device. In this way

an image of how the electrons interact with the sample is generated. [16]

Because silicon is a low density semiconductor with a relatively small atomic

number and uranium is a relatively dense metal with high atomic number there is

a great deal of difference in the way they scatter electrons. This makes imaging

uranium/silicon multilayers with TEM relatively easy. The hardest part is sample

preparation. Getting a sample thin enough to allow electrons to transmit through it,

without destroying the part of the sample that is of interest, can be a real challenge.

A common procedure uses ion milling. However this procedure can be very time

consuming. In addition, the success rate for this procedure is not that good, especially

for a less experience microscopist. A simpler technique with a better success rate is

the small angle cleavage technique.

2.3.2 Small Angle Cleavage Technique

Small angle cleavage technique is a promising technique for preparing thin films for

TEM analysis. It causes less sample damage to the sample than ion milling and uses

more common equipment. It “uses only hand tools such as a scriber and tweezers

and readily available laboratory equipment such as a sample grinder, a low-power

stereo light microscope, a hot plate and a low temperature oven” [17]. Originally this

technique was primarily used to look only at crystalline specimens and was primitive.
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The following is a brief description of the technique by Goodhew published in 1972:

To prepare slices initially it is usually sufficient to strike the crystal sharply

on its edge with a razor blade and then to select from the resultant debris

suitably shaped pieces. A piece of tape is pressed on to a freshly macro-

cleaved surface and then pulled off from one end, taking a flake of the

material with it. This process is repeated until small enough flakes are

clinging to one of the pieces of tape. [18]

Since then, more precise techniques have been developed. These techniques are de-

signed for looking at thin films on crystalline substrates. Walck and McCaffrey [19]

give detailed step-by-step directions, with photos, on how to use this technique for

thin films. They include alternative methods for different materials and a large sec-

tion on things to consider and “tips and tricks.” A summary of the procedure is as

follows:

1. A small (approximately 2mm × 3mm) sample is scribed and broken from the

wafer. All but a thin layer (100 µm) of the substrate is removed by grinding.

This is done on a polishing wheel with 15 to 30 µm abrasive paper. When

the sample gets close to the desired thickness care is taken to make the scratch

marks from the abrasive paper between 12 - 15◦ from the long side of the sample.

2. A diamond scribe is used to score lines every 0.5 mm in the same direction as

the scratch marks from the polishing. The sample is then removed from the

polishing mount and carefully broken along the scribe lines.
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3. There should be five or six pieces to work with. These pieces are turned over,

so that the side with the thin film is up. A small scribe line is made sideways

along a corner of the sample. This is done with a mini-diamond scribe under

a microscope. As the scribe line is made, light pressure is applied so that a

fracture will propagate slowly to the edge of the sample. This should produce

a very small, very sharp wedge shaped piece of the sample. This process is

repeated for all of the five or six pieces.

4. The thin edge of each wedge shaped piece is examined under a powerful light

microscope. If the edge cannot be seen, it is probably thin enough for the

transmission electron microscope, otherwise it is discarded. One or more of the

good pieces are mounted on a single hole grid (see figure 2.6). The grid is place

in the microscope for examination.

This technique is relatively easy to learn, but parts of it take practice to do well.

I found that the most difficult part was the final scribing (part 3). It is absolutely

necessary to use a mini-diamond scribe for this step. A standard-sized scribe is much

too difficult to work with under the microscope. A big advantage of this technique

is that there are many pieces to work with. Because of this there are typically about

twelve chances to get the last two steps correct.
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Figure 2.6: Four wedge-shaped samples mounted on a single hole TEM grid[17].

2.4 X Ray Photoelectron Spectroscopy

X ray photoelectron spectroscopy (XPS) is a powerful surface analytical technique.

Combined with sputtering it can give a wealth of information concerning the com-

position of a thin film. It cannot only tell what elements are in a specimen but can

also indicate how those elements are bonded. XPS cannot give an exact composition

versus depth profile because different materials have different sputter rates. However,

with careful analysis it can give a good indication of composition versus depth.

The XPS process involves irradiating a sample with X rays and observing the

energy of the electrons that are emitted. The X rays are typically either Al Kα

(8.29 Å,1486.6 eV)or Mg Kα (9.83 Å,1253.6 eV). When these X rays interact with the

electrons in an atom, electrons bound with less energy can be removed as described
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by the photoelectric effect. The ejected electrons’ kinetic energy is the difference

between the photon’s energy and their binding energy. The energy of these electrons

is then measured and referenced to the energy of the original X ray. Analysis of the

energy lost versus counts of electrons reveals characteristic peaks for the electrons of

different elements.[20]

Figure 2.7 shows two peaks for uranium in the 385 eV region from the 4f5/2 and

4f7/2 electrons and two others in the 100 eV region from the 5d5/2 and 5d3/2 electrons.

The large peak at 530 eV is from the oxygen 1s electron. Much smaller peaks for

carbon at 285 eV and Si at 150 eV can also be seen [21]. By looking at the relative

intensities of the peaks for different elements and by knowing sensitivity factors for

each peak one can get a percent composition for each element. Careful analysis of

any shifts in characteristic peaks can also lead to binding information.
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Figure 2.7: XPS scan of U8Si157.
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Chapter 3

Results

The methods described in the previous chapter along with atomic force microscopy

were used to characterize six samples. One of the samples is a uranium/silicon mul-

tilayer (U8Si157) that was made as a practice run for the IMAGE mission mirrors.

The others are all single layers of uranium (U66, U67, U68, U69, U70). All of the

samples were allowed to oxidize in air. Parts of some of these samples were also

annealed at 90◦C (U67B90,U68B90) and other parts at 180◦C (U67B180,U68B180).

The “B” after the sample name indicates that it was annealed. The number after

the “B” refers to the approximate annealing temperature. The number before the

“B” and after the “U” were assigned sequentially as samples were made, arbitrarily

starting with the number 66. This chapter gives data collected from these samples

and provides interpretation of that data when possible.
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3.1 Depth Profile

3.1.1 Atomic Force Microscopy

The roughness of two different samples was measured with atomic force microscopy

(AFM). The first, U66, is a single layer of uranium oxide. The uranium layer was

deposited in August of 1999. Using the sputter rate of uranium determined by X ray

diffraction the original pure uranium thickness of this sample is about 50 Å ±4%.

It was allowed to oxidize at room temperature for over nine months. After it had

oxidized the thickness, also measured by X ray diffraction, was about 110 Å ±2%.

The second sample, U68B180, is also a single layer of uranium oxide, but it was

deposited in May of 2000 and then annealed in air for more than a day at about

180◦C. Its estimated original thickness is about 150 Å ±4%. After it had oxidized it

was determined with X ray diffraction to be about 400 Å ±2% thick.

As expected the annealed sample is the rougher of the two. It was measured with

AFM to be 4.4 Å rms roughness over a 1 µm area. The room temperature sample has

about 1.4 Å rms roughness. It is difficult to tell just how much of this roughness can

be attributed to noise and instrument error. Most of the features seen in the AFM

scan for U68B180, the annealed sample, (figure 3.2) did not change as the needle

rastered back over them. So it is assumed that they are physical. This was not the

case with most of the smaller features in the scan of U66 (figure 3.1). The accuracy of

the calibration for height of the AFM at the 1 nm level and below is also questionable.

So the roughness values should be considered approximate.
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Figure 3.1: AFM surface image and analysis for U66. Lighter areas are higher parts,

dark areas are lower.
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Figure 3.2: AFM surface image and analysis for U68B180. Lighter areas are higher

parts, dark areas are lower.

3.1.2 X Ray Diffraction

X ray diffraction (XRD) was used to measure the thickness characteristics of many

samples. Primarily, it was used to measure thicknesses of single layers of uranium

oxide, but it was also used to characterize the uranium silicon multilayer U8Si157.

To find the thickness of the single layers the old method of visually comparing data

with calculated values as described in section 2.1.3 was used. This was used because

with a single layer it is relatively easy and fast to do, and because the other method

(section 2.1.3) had not been completely developed. The new fitting method was used

to fit the XRD data for the uranium-silicon multilayer U8Si157. Optical constants

for uranium at 1.54 Å were obtained from CXRO’s web site [22]. The index of
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Table 3.1: Summary of XRD Measurements of Single Layer Uranium Samples.

Thickness in Å

Sample Name Sputtered Room Temp Annealed 90◦ Annealed 180◦

U66 50 ±2 105 ± 2

U67 200 ±8 385 ± 3 470 ± 10 475 ± 10

U68 150 ±6 310 ± 5 396 ± 2 404 ± 2

U69 100 ±4 265 ± 5

U70 400 ±16 645 ± 5

refraction obtained for uranium with a density of 18.92 grams/cm3 on this site is

n=(1 − 4.47131 × 10−5) − i(7.29783 × 10−6).

There were five different single layer uranium samples made: U66, U67, U68, U69,

U20. Parts of some of these samples were annealed at about 90◦ C and other parts at

about 180◦ C. The thickness values that were measured with XRD are summarized

in Table 3.1. The difference in optical constants at this energy between uranium and

uranium oxide is not large enough for XRD measurements to tell the difference. So

the thicknesses shown should be considered as the sum of the oxide thickness and the

thickness of any non-oxidized uranium layer, if any. The uncertainty range is based

on a subjective analysis of the quality of the visual fit.

To characterize the uranium-silicon multilayer, U8Si157, a graph of the d and Γ

space was studied. The strong line that extends over all possible gammas in figure
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Figure 3.3: d and Γ space for U8Si157. Dark horizontal line near the top represents

a d-spacing of 187 Å, other curved lines represent possible Γ values.
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Figure 3.4: d1 and d2 space for U8Si157.

3.3 indicates the that the correct d spacing for this sample is 187.0 Å. A plot of the

d1 uranium, d2 silicon space (figure 3.4) makes it easier to interpret other features in

the plot. Although not all these lines represent physical thicknesses, some of them

do. There are two horizontal lines that represent the thicknesses of the d1 and d2 at

56 Å and 131 Å respectively. There is also a relatively strong line at about 30 Å.

This line could represent the thickness of the uranium oxide cap. It is not yet clear

how much information can be extracted from a plot like this, but the line near 30 Å

is at least supporting evidence of the thickness of the top uranium oxide cap.
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Figure 3.5: TEM image of U8Si157.
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3.1.3 Transmission Electron Microscopy

Sample U8Si157 was also analyzed by transmission electron microscopy (TEM). There

were many images taken but the most revealing is shown in figure 3.5. The 187 Å d

spacing is confirmed by comparing the period in the image to the scale. Also with

careful analysis the thin top layer of uranium looks like it is between 25 and 35 Å

thick. This image can also give information about diffusion. The small angle cleavage

technique (section 2.3.2) produces a sample that has a wedge shape. The image is

taken by looking at the thinnest edge of the wedge. The orientation of the sample

is such that it is thicker on the right side of the image in figure 3.5. Between the

uranium, the thick dark lines, is the lighter silicon. However, all the lines get dark on

the right side of the image because the sample is thicker there. The silicon lines stay

lighter on the part that is further down the stack. This indicates that the uranium

layer above it has diffused into the silicon clear down to the next uranium layer, and

that the concentration of this diffused uranium decreases approximately linearly with

the depth of the silicon layer.

3.1.4 X Ray Photoelectron Spectroscopy

X ray photoelectron spectra were compared to spectra published in an article by

Teterin, et. al [23]. It gives a detailed study of changes in a number of the XPS peaks

of uranium and oxygen for different oxides of uranium from UO2+x with x < 1. This

thesis uses for comparison the binding energy range from 0 to 40 eV which includes

U5f, U6p, U6p1 and O2s peaks. It also uses the two peaks of uranium in the range
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from 375 to 410 eV (U4f7 and U4f5) and oxygen 1s at 531 eV.

First, a study of only the surface of three samples was conducted. A very clear

difference in the samples was observed in the doublet for uranium U4f7 and U4f5

(figure 3.6). The spectra that is different is from a sample (U67C) that was relatively

fresh, about a month old, when it was measured. The two spectra that are the same

are from the samples U67B180 and U8Si157. U67B180 is also a month old, but it

was annealed at 180◦ C for about two days. Sample U8Si157 had been sitting in air

for more than a year. It is not too surprising to see that the older sample is more

like the annealed sample. Uranium oxidizes very quickly in air to UO2+x(section 3.3).

This data also shows that long time scales can also make a difference in the surface

oxidation of uranium. The fresh sample spectra matches very well with the published

spectra for UO2. The two peaks in the other spectra are shifted to higher binding

energies. This indicates a higher oxide. They do not compare exactly but the closest

match in the article is UO2.13.

The spectra for O1s (figure 3.7) reveals more information about the surface of

these samples. The peak for O1s is at a higher binding energy than that of U4f

uranium doublet. This means that the electrons measured for it have less kinetic

energy when they leave the atom. So they cannot travel as far through a material.

This makes the O1s peak more subject to surface effects. All of the samples show

components of two peaks. This indicates that all are a greater oxide than UO2. I

would speculate that U67C has a thin layer of higher oxide, perhaps a monolayer

or two, and that U67B180 is a higher oxide, perhaps UO2.1, that is more uniform
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Figure 3.6: XPS data for 4f uranium doublet. Comparison of old (U8Si157), annealed

(U67B180) and fresh (U67C) samples.
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Figure 3.7: XPS data for oxygen 1s. Comparison of old (U8Si157), annealed

(U67B180) and fresh (U67C) samples.

throughout the sample. The top of U8Si157 is likely to be similar to U67C but have

a thicker layer of a higher oxide.

XPS was combined with sputtering multiple thin layers off the surface to produce

a detailed composition versus depth profile for U8Si157. The sputter rates for a few

common elements were listed in the documentation that came with the spectrometer,

but uranium was not one of them. The slowest sputter rate listed was about 0.1 Å

per second. There are many variables that can change the sputter rate. The type
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of elements on the surface and how they are bonded as well as user-defined variables

like the sputter spot size and the current all affect sputter rates. In addition, the

technician running the spectrometer was still learning how to sputter at the time

she sputtered our sample. With all these variables it is difficult to estimate the

sputter rate without inferring it directly from the data. The data showing the peaks

for Si2p and U5d5 and U5d3 (figure 3.10) indicates a shift from mostly uranium

to mostly silicon somewhere between 430 to 1030 seconds of sputtering. Assuming

the top uranium layer is between 25 and 35Å, this gives a range of the sputter rate

from 0.024 Å/s to 0.081 Å/s. These seem a little low, but considering the number

of unknown variables they are still reasonable. For the remainder of this section, a

sputter rate of 0.053 Å/s will be assumed.

There are a number of transitions that are noticeable in the sputter XPS data for

the multilayer U8Si157. The first happens within the first 30 seconds of sputtering.

This corresponds to about 1.6 Å, but XPS only has a depth resolution of about 10

to 20 Å depending on the material [25, 24]. So a better estimate of the depth for

this transition would be between 5 and 15 Å. This transition is from a higher oxide,

perhaps UO2.2, to uranium dioxide and is indicated by a small shift in binding energy

as seen in figure 3.8.

Another transition from 90 s to 190 s is noticeable by looking at the oxygen 1s

peak (figure 3.9). This transition starts at about 5 Å and has a thickness of about 5 Å.

The approximate 1 eV shift in binding energy of the O1s peak would signify a large

change in the oxidation of uranium. However, the full width half max (FWHM) of
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Figure 3.8: XPS depth profile data for U4f doublet. Time represents sputter time for

removing surface layers and corresponds to depth.
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this peak as a function of depth compared to the data given in reference [23] indicates

otherwise. The FWHM of the peaks before the transition is 1.6 eV, exactly in line

with the value given in the article for UO2. The FWHM for the peaks after the

transition is 1.9 eV, where the FWHM given for UO2.06 is 2.3 eV and for UO2.13 is

3.0 eV. In addition, there is a shift of about 0.9 eV in the uranium 4f doublet, but

there is no change in the relative position of the doublet and their satellites. This

transition could simply be due to a small degree of charging. However, it is more

likely due to a real transition of either a very small shift to a higher uranium oxide

or more likely due to hydration or absorbed oxygen.

The next transition is the beginning of the boundary between the uranium oxide

cap and the underlying silicon layer (figure 3.10). It happens between 430 s and 1030

s and can best be seen by looking at the Si2p peak at 100.1 eV. It is flanked on

either side by the uranium 5d3 and 5d5 peaks. This makes it easy to compare the

two intensities. As the uranium peaks decrease the silicon increases. The time of this

transition corresponds to about 32 Å.

The last transition observed with this XPS data begins just after the previous

transition starts (figure 3.11). It goes from 670 s (55 Å) to 1630 s (86 Å). This is

the change from uranium dioxide to non-oxidized uranium. It is most easily seen by

looking at the strongest of the uranium peaks, the uranium doublet 4f7 and 4f5 near

377 eV and 388 eV respectively. The two peaks in the beginning of the transition at

392 eV and 381 eV with the satellite peaks at higher energies are characteristic of

uranium dioxide. The two peaks in the end of the transition at 377 eV and 388 eV
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Figure 3.9: XPS depth profile data for oxygen 1s. Time represents sputter time for

removing surface layers and corresponds to depth.
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Figure 3.10: Transition from uranium to silicon. XPS depth profile data for U5d3,

Si2p, U5d5. Silicon peak is in the center at about 100 eV. The two uranium peaks are

on either side of the silicon peak. Time represents sputter time for removing surface

layers and corresponds to depth.
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Figure 3.11: Transition from uranium oxide to uranium. XPS depth profile data for

U4f doublet. Time represents sputter time for removing surface layers and corre-

sponds to depth.

are characteristic of non-oxidized uranium.

It is significant that the transition from the oxide to non-oxidized uranium begins

just after the silicon begins to dominate. The uranium oxide is still present some

time after the silicon is introduced. For this reason I do not believe that the silicon

itself prevents the oxide from forming. However, it appears that the silicon mixed

with the uranium dioxide may inhibit the mechanism for further oxide growth of both
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the uranium and the silicon. Further research is needed to explain exactly why the

oxide growth did not continue further down the multilayer. A summary of all the

transitions is shown in figure 3.12. The depths shown are approximated from the

sputter rates as described previously. The stoichiometry of the top layer of uranium

oxide is assumed as well as the shown hydroxide.

3.2 Optical Constants

To determine thicknesses for an oxidation rate study (section 3.3) optical constants

in the visible and IR were needed for uranium and uranium oxide. The needed

uranium optical constants were taken from published literature [26]. There have been

a number of different studies on the optical properties of uranium dioxide [28, 29, 27].

However, the optical constants for uranium oxide can vary greatly depending on

the value of x in UO2+x [30, 31]. In addition, the role that a hydroxide plays was

unknown. For these reasons, optical constants were determined using ellipsometric

measurements. A method similar to the one Herzinger [32] used to determine optical

constants for silicon and silicon dioxide was employed. Multiple angle, spectroscopic

ellipsometric measurements were made on five different single layer uranium samples.

Measurements were taken at different times so that a total of ten different sets of

data were obtained (see Table 3.2). All this data was then used to simultaneously

find the values of the uranium and oxide thicknesses for each of the samples as well

as the optical constants for the top layer of oxide. This was done with the software

that came with the ellipsometer as described in section 2.2.2. With all the different
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Figure 3.12: Hypothetical depth profile of uranium oxide cap on U8Si157.
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angles, wavelengths and samples the total number of measurements used in the fit

came to 5,368. The total number of parameters the software was finding with this

data was 108. The MSE value (see section 2.2.2) was 7.6657. Generally an MSE value

of less than 10 implies that the fit is good, i.e.. it has likely found a global minimum.

The results of the real part of the index of refraction are shown in figure 3.13 and the

imaginary part are shown in figure 3.14. As a comparison, both plots also show the

index of refraction values published by Ackermann [27]. Differences in these values

are likely due to measurement errors, the absorption of water vapor and/or slightly

different stoichiometries. Transmission measurements of the oxide thin films would

give additional valuable information about the index of refraction.

3.3 Oxidation Rates

3.3.1 Units

Most of the literature that discuss oxidation rates give rates in units of milligrams

per centimeter squared per hour or per minute (mg/cm2/h or mg/cm2/min). The

measurements I took were thickness measurements. For this reason it is easier to

discuss oxidation rates in units of angstroms per second (Å/s). This section describes

the relationship between these two sets of units.

First it is helpful to know the expansion ratio. This is the ratio of the thickness

of the oxide (z′) to the thickness of the amount of metal that oxidized to form the
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Figure 3.13: Real part of the index of refraction for uranium oxide. Comparison of

values for uranium dioxide found by Ackermann to values determined in this study

with ellipsometry.
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Figure 3.14: Imaginary part of the index of refraction for uranium oxide. Comparison

of values for uranium dioxide found by Ackermann to values determined in this study

with ellipsometry.
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Table 3.2: Summary of ellipsometry measurements used for determining optical con-

stants of uranium oxide, all thicknesses in Å. Time is time from removing from vac-

uum.

Sample Time Angles, step 5◦ U thickness Oxide thickness Total

U66 10 months 40◦ to 80◦ 7.7±1.1 107.7±2.1 115.4

U67 16 days 45◦ to 85◦ 138.7±2.3 202.2±5.0 340.9

U67 26 days 45◦ to 80◦ 127.2±2.3 221.9±5.7 349.1

U68 1day 45◦ to 80◦ 132.6±1.6 130.4±2.8 263.0

U68 8 days 45◦ to 75◦ 96.7±1.9 187.8±4.6 284.5

U69 2hr 20min 50◦ to 80◦ 93.8±0.9 78.5±1.4 172.3

U69 5hr 4min 50◦ to 80◦ 71.1±1.2 111.8±2.2 192.9

U69 1day 5hr 45◦ to 75◦ 53.0±1.6 143.4±3.2 196.4

U70 13min 39s 70◦ to 80◦ 374.8±9.4 65.8±1.2 440.6

U70 3hr 54min 70◦ to 80◦ 428.7±16.1 110.5±2.4 539.2
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oxide (z). This ratio is given by

z′

z
=
a+ 1

a

Dmetal
Doxide

(3.1)

where a is the ratio of the mass of the metal atoms to the mass of the oxygen atoms

in the oxide, and D is the density for either the metal or the oxide. This assumes

that all the expansion due to oxidation is in one dimension, i.e. there is no buckling

or cracking, etc. It also assumes that the density of the bulk is the same as that of

the thin films. For uranium dioxide the mass of one mole of uranium 238 g and the

mass of one mole of oxygen is 32 g. So a is given by

aUO2 =
molar mass of U

2(molar mass of O)
=

238

2(16)
= 7.44 (3.2)

The density of uranium is 18.9 g/cm3, and the density of uranium dioxide is 10.8

g/cm3 [33]. This gives an expansion ratio of

z′

z
=

(7.44 + 1)

7.44

18.9

10.9
= 1.97. (3.3)

For comparison Table 3.3 gives the expansion ratio calculated this way for a number

of different uranium oxides.

To transform an oxidation rate in units of mg/cm2/h (rmass) to an oxidation rate

in units of Å/s (rthickness) the following formula is used:

rthickness[Å/s] =
(a+ 1)

Doxide

1000

36
rmass[mg/cm2/h]. (3.4)

Here the density (Doxide) is assumed to have units of g/cm3. If the original units

of rmass were in minutes instead of hours then the 36 in the denominator would be
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Table 3.3: Expansion ratios of different uranium oxides.

Oxide Density [33] Molar Mass a Expansion Ratio

UO2 10.96 270 7.44 1.97

U3O8 8.30 842 5.58 2.70

UO3 7.29 286 4.96 3.13

replaced with 0.6. This equation assumes that all the mass gain is due to accumulation

of oxygen. It is not applicable when there is mass lost due to the oxide being volatile.

3.3.2 Previous Work

There have been many studies conducted on the rate and mechanisms of uranium

oxidation. For a good overview of these studies consult references [34, 35, 36]. These

references outline variations in the oxidation rate of uranium over temperature, water

vapor pressure, oxygen partial pressure, carbon monoxide partial pressure and im-

purity concentrations. McGillivray, et al. have taken the data from previous studies

and combined it with their own to develop an equation for variations of oxidation

rate over a wide range of temperatures and water vapor pressures [37]. The equation

they developed is

oxidation rate in units of mg/cm2/h =
k1P

1 + k2P
+D, (3.5)

where D , k1 and k2 are defined as follows, T (K) is the temperature in Kelvin.

lnD = 11.093 − 8077

T (K)
(3.6)
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ln k1 = 7.831 − 6432

T (K)
(3.7)

ln k2 = −15.208 +
5327

T (K)
(3.8)

Most of the data used to develop this equation was for high temperatures (above 115◦

C). However, if it is applied at room temperature it gives a rate of about 0.35 Å/hour

with 10kPa water vapor partial pressure. Citations for measurements of the oxidation

rate near room temperature are not common. Ritchie et al. measured a rate at 50◦C

in dry air of about 46 Å/hour [38]. With this higher temperature, a faster rate is

expected, but for general considerations 0.35 to 46 Å/hour gives a range of possible

values for the oxidation rate at room temperatures. All of these studies have used

bulk samples that have been mechanically and/or chemically cleaned before oxidation

is allowed to take place. As far as I know there have been no studies that have shown

any dependency of the rate on time nor have there been any studies on the oxidation

rate of sputtered thin films of uranium. Tench [39] showed a slower oxidation rate of

thin films of uranium grown with laser ablation as compared to bulk rates. However,

his study did not specifically address the value of the oxidation rate.

3.3.3 Ellipsometry Measurements

Sputtered thin films often behave differently than bulk samples. There is little data

about room temperature oxidation of uranium. For this reason a study of room

temperature oxidation of sputtered uranium thin films was conducted. Ellipsometry

was used to determine oxide and unoxidized uranium thicknesses for four different
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uranium thin films. The films were D.C. magnetron sputtered. Measurements began

as soon as possible after removing the films from vacuum. Measurement times after

removing from vacuum varied from 7 minutes to 23 days. A summary of the data is

found in figure 3.15. Variations in roughness between samples as well as uncertainty

in optical constants make the exact values for thicknesses questionable. However, the

rate of change in thicknesses over time is more reliable. This can be seen by looking

at the graph in figure 3.15. The data shows two sets of points. One below the fit line

and one above. The slope of each of these sets is the same and is given by

rate [Å/S] =
d

dt
(12.52 ln(t) − 31) =

12.52

t
(3.9)

This rate varies with time, unlike the rates previously quoted in the literature. It

is difficult to say the range of time where this function is applicable. Obviously it

is not applicable at the very beginning stages of oxidation. If the thin film is thick

enough it could reach a critical point when the oxide layer begins to flake off and allow

faster oxidation of the uranium below it. If this was the case the rate would reach

a steady state value until all of the uranium was oxidized. There are many different

mechanisms that can give a logarithmic rate equation like the one found here [40].

Determining which of these is most credible is beyond the scope of this research.

Using the ratio of the change in uranium thickness to the change in oxide thickness

an expansion ratio was calculated. If all the data was used a value of about 1 is found

for the expansion ratio, but the standard deviation for this value is 2.6. This large

standard deviation is primarily due to inaccuracy in determining the thickness of the

non-oxidized uranium layer. It was not uncommon to see the thickness of this uranium
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Figure 3.15: Uranium Oxidation Data and Fit: y = 12.5x− 31 x = ln t.
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layer, found from fitting ellipsometry data, to grow with time. If the outlying and

unreasonable values for change in the uranium thickness are thrown out, an expansion

ratio of 1.3 is obtained with a standard deviation of 0.55. Although this number is

still below any of the expansion ratios in Table 3.3, it is closest to the expansion ratio

for UO2. There are many reasons why it may be too low. The first and most likely

reason is error in determining uranium thicknesses. It also could be due to differences

between thin film and bulk values of the density for uranium and uranium oxide.
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Chapter 4

Conclusion

Uranium is a promising material for making mirrors for the EUV. The success of the

mirrors for the IMAGE mission is a good example. However, oxidized uranium can

compromise the optical performance of uranium multilayers. The uranium oxygen

water vapor system is very complicated. Greater understanding of this system is

necessary to accurately design mirrors with uranium. This work has shown a dramatic

difference in the oxidation rate of sputtered uranium thin films as compared to bulk

uranium. It has shown that uranium thin films oxidize to UO2 but that there can

be hyperstoichiometric layers on the surface. In the process of studying uranium

thin films a new way of analyzing X ray diffraction data was developed. This new

information and tool should significantly aid in the design of multilayer thin films.

This new method for analyzing X ray diffraction data was developed by consid-

ering the Γ, d-spacing, merit function surface. This new method uses modified data

and compares it to calculated values with the Pearson’s correlation coefficient. This

70



method makes it easer to determine the d-spacing and Γ values for multilayers. It

also shows promise in allowing aperiodic multilayers to be characterized with X ray

diffraction. Further research needs to be conducted to see what kind of information

can be obtained this way.

XPS data has shown that uranium oxidizes to uranium dioxide at standard tem-

perature and pressure. It was previously thought that it oxidized to uranium trioxide

[3]. The very surface of the oxide is not pure uranium dioxide. There is either a

higher oxide or a hydroxide or both that develop on the surface. Exactly which and

what role this surface layer plays in the optical properties of the multilayer is a topic

of further research. Depth profiling with XPS has shown that silicon may play a part

in stopping the oxidation from progressing further down into the stack. This could

also be an subject of additional research.

Oxidation rates for thin films of sputtered uranium were found to vary with time

according to the equation

rate [Å/S] =
12.52

t
. (4.1)

Knowing this is useful in the design and production of uranium thin films. It would

also be valuable to better understand the oxidation mechanism that produces this

time dependant rate. By understanding this mechanism it would be easier to find

ways of stopping or slowing down the oxidation process.

This work has answered many questions about the composition and structure of

the uranium oxide cap. However, there is much work to be done to determine the

effects this top layer has on reflectance. The new XRD analysis tool shows promise
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for determining additional information about a sample with X ray diffraction data. It

is difficult to tell just how much information can be gained this way. Further research

into this field could be enlightening. The dramatic difference in oxidation rates of

sputtered uranium thin films to that of bulk uranium merits further research in this

area as well. As in most scientific research, while seeking after answers many more

questions arise.
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Appendix A

XRD Pc(d1, d2) Surface plots

This appendix contains three surface plots generated with the new XRD data analysis

tool as describe in section 2.1.4. The first two plots were made with XRD data that

had been calculated from a hypothetical multilayer. The last plot is an example of

the limitations of this method. This is a plot made with XRD data taken from a

ruthenium/aluminum 4 period multilayer. It is difficult to determine the correct d-

spacing or the correct Γ with this plot. However, it was also difficult to determine

these parameters with the traditional method as describe in section 2.1.3.
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Figure A.1: d1 and d2 space for a hypothetical multilayer with a d-spacing of 130 Å

and a Γ of 0.7.
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Figure A.2: d1 and d2 space for a hypothetical multilayer with a d-spacing of 130 Å

and a Γ of 0.2.
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Figure A.3: d1 and d2 space for a ruthenium/aluminum multilayer with 4 periods.
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