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ABSTRACT

A STUDY OF QUANTUM CLOCKS

Seokjae Kim
Department of Physics and Astronomy

Master of Science

In the microscopic domain, time measurements are obtained by applying
quantum operators called quantum clocks. We review different types of quantum
clocks, based on a time-independent Hamiltonian. Explicit microscopic models of
ticking quantum clocks are constructed by using the superposition of wavefunctions
in periodic multi-wells. Dispersion of the wave packet and accuracy of the clacks are

discussed. The transition to relativistic clocks is addressed and some solutions for the

relativistic double well are presented.




Contents

Graduate Committee Approval
Final Reading Approval and Acceptance
Abstract

1 Introduction to Time
1.1 What is Time? . . . . @ o .o o e e e e e e e e e
1.2 Timein Physics . . . . . . . . . i e e e e e

13 Timein ThisWork . . .. .. .. . ... ... . .. . . . ... ..

2 Background on Quantum Clocks
2.1 What is a Quantum Clock? . . ... ... ... . . .. ........
2.2 Salecker and Wigner's Quantum Clock . . .. .............

23 Peres'sQuantum Clock . . . . . . . .. ... . ... ...

ifi

vii

11

12




3 Study of Nonrelativistic Quantum Clocks
3.1 The Wave Function of the Quantum Clock . . . .. ..
3.2 The Time Operator of the Quantum Clock . . . . . ..
3.3 The Hamiltonian of the Quantum Clock . . ... ...

3.4 The Evolution of the Quantum Clock . . . . ... .. )

An Explicit Model for a Ticking Quantum Clock

4.1 Symmetric Double Well Potential . . . ... ......
4.2 Symmetric Triple Well Potential . . . . . ... ... ..

4.3 Symmetric Quadruple Well Potential . . ... .....

Special Relativity and the Quantum Clock

5.1 Special Relativity and Quantum Clocks . . . . . .. ..
5.2 A Dirac Particle and the Quantum Clock . . . . .. ..
5.3 Relativistic Single Square Well Potential . . . ... ..

5.4 Relativistic Double Square Well Potential . . . . . P

Conclusion

Bibliography

CONTENTS

15

........ 15
........ 16
........ 17

....... 1T

21

........ 25
........ 39
e e 49
........ 53

........ 56

........ a9
........ 60
........ 63

........ 67

83

87




xil

LIST OF FIGURES

4.12 Equally Spaced Three Energy Levels for the Triple Well Potential . . 47

4.13 Equally Spaced Three Energy Levels for the Triple Well Potential with

the Last Solution Magnified . . . . .« v v oo v v oo 48
4.14 Symmetric Quadruple Well Potential . .. .. ... «.o v 50
4.15 Energy Solutions of the Symmetric Quadruple Well Potential . . .. sl

4.16 Convergence of Energy Solutions of the Symmetric Quadruple Well

Potemtial . « « « v v o e e e e e e e e e e 52
4.17 Multi Well Potential . . . . .o oo v 58
5.1 Relativistic Single Well Potential . . . ... ... ..coovee e 62
5.2 Energy Solutions of the Relativistic Single Well Potential . . . . . . - 66
5.3 Symmetric Double Well Potential with a Dirac Particle . . . . .. .. 68

5.4 Symmetric Double Well Potential with a Dirac Particle When C =D 80

5.5 Symmetric Double Well Potential with a Dirac Particle When C' = —D 81




List of Figures

3.1 ExampleofPeres'sClock. ... ......... ... .........

3.2 Exampleof Peres'sClock . . . . . ... ... ... ... . ...,

4,1 N Periodic Well Potential . .. .. ... ... ... ... ...,
4.2 Energy Levels of N Periodic Well Potential . . . . ... ... ... ..
4.3 Symmetric Double Well Potential ....................
4.4 Even and Odd Solutions for the Symmetric Double Well Potential . .
4.5 Even and Odd Energy Solutions When Ais9. . .. .. ... ... ..
4.6 Odd Energy Solutions with E ClosetoVp .. .............
4.7 Even and Odd Energy Levels with £ Closeto Vp. . . . . ... .. ..
4.8 Symmetric Triple Well Potential . . . . . ... ... .. .. .. ....
4.9 Even and Odd Solutions of the Triple Well Potential . ... ... ..
4.10 Convergence of Even and Odd Solutions of the Triple Well Potential .
4.11 Convergence of the First Three Solutions of the Triple Well Potential

xi

30

32

36

37

38

42



——— e ——r

Chapter 1

Introduction to Time

1.1 What is Time?

Time is one of the dimensions in which we are conscious of the world. However,
the true character of time is not easily grasped thoroughly. In his Cenfessions St.
Augustine said, “What is time?—if nobody asks me, I know; but if I try to explain
it to one who asks me, I do not know” [10]. Human beings have been pondering to
find the character of time for a time as long as their history. One central concern of
Greek, Oriental and Western philosophy was about the concepts of time in eternity
and transience. Although the Greek philosophers developed systematic geometry,
they could not figure out the answer about the concept of time because the answer
lay beyond pure mathematics. Aristotle discovered a fundamental role for time by

1



2 CHAPTER 1. INTRODUCTION TO TIME

i studying the motion in time, but he failed to introduce the notion of time as an
‘abstract parameter of mathematics’ [6]. Time was motion to him and he perceived

| time through the motion of objects.

R The concept of time as an independently existing entity emerged in Europe
B during the medieval era. The existence of an order in nature was recognized and
a precise and objective meaning was given to that order with the rise of modern

science. For this purpose clocks were designed to tell the time, and to organize

i human activities.

b Tt was Galileo who transformed time to a practical, measurable quantity after

watching a swinging lamp in a church. By measuring the period of the swing against

\ the pulse of his wrist, he discovered the law of the pendulum. It did not take long

until Huygens built the pendulum clock.

More than ever the subject of time is central to all of us. We can only feel what -
time means from our daily experience in which time is appointments, transportations,
business and class schedules, television programs, and cooking controls. Of course, it
’ is by no means obvious in all these cases what time is exactly. However, in these expe-
riences time involves at least the following characteristics: (1)an irreversible one-way

direction, (2)categorical differences between past, present and future, and (3)constant

' becoming [10]. It is sometimes stated that physics provides no basis for any of these
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features. But for physicists there is no other way to solve the problem of time than
through physics. Hans Reichenbach said, “if time is objective, the physicist must
have discovered the fact; if there is Becoming, the physicist Iﬁust know it; if there is
a solution to the philosophical problem of time, it is written down in the equations
of mathematical physics” {10]. There is a vast literature on the meaning of time and
on the perception of time through history. We refer the reader to source references

[6, 10, 20, 21, 22, 23] on time both within and outside of physics.

1.2 Time in 'Physics

Time in phyéicé%s different from time in philosophy or psychology. It is
defined by the way it enters the metaphysical structure of any particular physical
theory. We do not assert that physical theories can ultimately solve the metaphysical
problems that time raises. Physics is mainly concerned with the measurement of time,
rather than with the essentially metaphysical questions as to its nature. Accurate
measurement of time is a practical and fundamental task for physicists.

To measure time in classical mechanics, we actually have to observe some
dynamical variables and use the laws of motion. We do not assign time to a particle
like we do mass or charge. In Schridinger’s theory time is not a dynamical variable

but a parameter, so that it is not an observable. Therefore, the measurement of time
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4 CHAPTER 1. INTRODUCTION TO TIME

is different from that of other quantities such as position, energy, or momentum.

Before Galileo and Newton, time was just an abstrlact thing, not a parameter
to be measﬁred with geometrical ﬁrecision. Time was a part of nature. Newton,
however, took time right out of nature and gave it an independent existence. He
made time part of the laws of the universe in the late seventeenth Cenﬁury. By his
work time entered into the laws of mechanics and it became a, fundamental parameter
in the physical world. His time is an absolute, true and mathematical time. It existed
independently of the human mind and flowed without relation to the external world
with which it interacted. He made time an exactly measurable dimension, but his

time taught us little about time itself because his time acted merely as a way to keep

track of motion mathematically.

Leibniz had different views of space and time from Newton. To Newton space
and time were absolute and real entities. They existed independently of the human
mind. This has now come to be called ‘classical physics.” He felt that if they were
absolute and real, they would be independent of God and set limitations on God’s
capabilities; that is, God would not be able to exert any control over them. For him
space and time were orders or relations. Whereas space is the “order of coexistences,”

time is the “order of successions” [11]. His view was essentially relativistic. It took

two centuries for physicists to catch up with these relativistic views of Leibniz.
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The story of time in the twentieth century is overwhelmingly the story of
Einstein. He, more than anyone else, is responsible for time being a measurable
quantity. He restored time to its right place at the core of nature, as one of the
four dimensions of space-time. Relativity was a monumental first step towards the
rediscovery of time. His time was intrinsically flexible and tied to the experience of
an individual observer. Thus, in special relativity his time is called the ‘proper time’

which is the time in the reference frame where two events occur at the same place.

Although the relativity of motion was known to Galileo, what Einstein redis-
c:OVered was that not only motion but also space and time were relative. His work
revolutionized our understanding of time, but the consequences, especially the impli-
cations on time from general relativity and cosmology, have yet to be fully worked
out. Beyond his work scientists probed decper and deeper into the mysteries of time
by asking questions concerning the beginning and the end of time, the directionality
of time, and the possibility of time travel, etc. In spite of nearly a century of inves-
tigation, we have not yet found clear answers to any one of these questions. Hven
Einstein’s time is probably inadequate to explain fully the physical universe and our

conception of it. A revolution was started by Einstein, but it remains unfinished.

The other big revolution in twentieth century science is quantum theory. Like

relativity, quantum theory forced us to change our understanding of the universe. The
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well as the time operator of the quantum clock. In Chapter 4 I will explore various
symmetric square well potentials to construct an explicit model for a ticking quantum
clock. In addition, I will discuss the accuracy and dispersion of the quantum clock.
In Chapter 5 I will study relativistic single and double square well potentials as a first
model for a clock whose inner working is represented by a relativistic microsystem.

Finally, in Chapter 6 I will describe some limitations on constructing real quantum

clocks.



Chapter 2

Background on Quantum Clocks

In this chapter I will discuss the general properties of a quanturn clock and

describe two models of quantum clocks that of Salecker and Wigner and that of Peres.

2.1 What is a Quantum Clock?

To measure time in quantum mechanics, we use a quantum clock. A time-
independent Hamiltonian has to be introduced. The idea of the quantum clock came
from the possibility that we might describe the measurement of time in a ‘realistic’
way by the clock mechanism in the time-independent Hamiltonian. Then quantum
time can be registered simply in terms of the distance or the position of a particle if
we assume that we know what the position of the particle is.

9



2.2. SALECKER AND WIGNER’S QUANTUM CLOCK 11

apparatus, we have

tAEAQ > ——t'd(Q) kAo, (2.3)

i 5
Thus, if the clock is to serve its purpose, whatever () may be, ¢ must satisfy

tAB > 7, (2.4)

where AFE is the energy uncertainty of the system’s state.

r 2.2 Salecker and Wigner’s Quantum Clock

H. Salecker and E. P. Wigner first introduced the quantum clock in 1958
f [19). The clock is composed of N potential wells in which one particle is confined.
Then the wave function of the clock, v, is the superposition of N stationary states
b1, P2, ..., O and the potential has very closely spaced energy levels. If the clock
has an accuracy 7, the wave function v will actually go through N orthogonal states
; at time 7, 27,..., N7, and the location of the particle will change from one trough
to the other. The location of the particle indicates the pointer of the clock, and the
clock measures the maximum time interval T = N7, which is the proper time for the

system. The clock registers intervals of time by obeying quantum mechanics.
Salecker and Wigner focused on the intrinsic quantum limitations imposed on

the measurement of space-time distances. They proposed to use only clocks for the
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record of the physical processes that it had monitored.

His model of the clock is similar to the usual round-shaped mechanical clock
we can see around us. From the wave functions of the clock and orthogonal basis
for them, a sharp peak happens at & = 3”5’,—&, where 0 is the angular position of the
sharp peak on the clock, N is the number of states or the total number of hours the
clock indicator points, and & = 0, 1,..., N — 1. The sharp peak is said to point to
the “kth’ hour. Then he introduced a projection operator and a clock time operator
of which an eigenvector is the ‘kth’ orthogonal basis of the clock wave functions and
an eigenvalue is k7. This yields at best a discrete approximation to the true time by
measuring the clocl time operator. It is by the time independent Hamiltonian of the
clock that a clock successively passes through the states go, ¢1, ¢o,. .. at every time

interval 1.




Chapter 3

Study of Nonrelativistic Quantum

Clocks

In this chapter I will discuss non-relativistic quantum clocks. The Hamilto-
nian of the quantum clock as well as the time operator of the quantum clock will be

introduced and it will be shown how the wavefunction of the quantum clock evolves.

3.1 The Wave Function of the Quantum Clock

The quantum clock of Peres’s model can be described as follows [18]. The

wave function 7 of the quantum clock is

VY (8) = —mem £8™0 (3.1)
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and t; = k7 is a discrete approximation to the true time (it is assumed that the

initial state of the clock is always ¢y).

3.3 The Hamiltonian of the Quantum Clock

The Hamiltonian is an energy operator in quantum mechanics. The Hamil-

tonian of the quantum clock can be written as

'l He=wl, (3.6)
!
t where w = %’1': and J = —ih gg. If it is applied to the quantum clock wavefunction,
’ | the eigenvalue equation is
i

H )y =mhwiby,, (3.7

and the quantum system evolves as time goes by

| g Hoth gy gmimut L imwn) (3.8)

V21

3.4 The Evolution of the Quantum Clock

The evolution is given by

i | e MM gy = rs, (3.9)
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Figure 3.2 The sharp peaks of ¢(6) occurring in Peres’s quantum clock. N = 13,

k = 6 (top) and k = 9 (bottom).



Chapter 4

An Explicit Model for a Ticking

Quantum Clock

In this chapter I will explore the various symmetric square well potentials to
construct an explicit model for a ticking quantum clock. In addition, I will discuss
the accuracy and dispersion of the quantum clock. An explicit model for a ticking
quantum elock can be constructed with a one-dimensional periodic well potential of
which the total width is L as shown in Figure 4.1 as first proposed by Salecker and
Wigner [19]. We choose a potential consisting of N very narrow wells and IV —1 equally
narrow barriers. The potential energy is infinite at both end walls and alternates
between zero and V; in between. It confines a particle between the two end walls and

21
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has a lot of very closely spaced energy levels clustered in groups of N as shown in
Figure 4.2. I will consider a very special superposition of these levels in Section 4.5.

If the constants of the system are properly adjusted in such a way that the
level spacing becomes %, where T is a maximum time interval 7', the time dependent

wavefunction ¢ can be chosen as
N .
W(t) = 3 an e (4.1)
1

where the constant az = 7117 is a normalization factor and wy can be expressed as

2nk 2k
wk:wo—l—m-—mwg—l——;—. (4.2)

The wavefunction will have the property that the position of the particle changes, in
the time element 7, from one trough to the next (from left to right). After N such
transitions and a time N7 = T, the particle finds itself iﬁ the right-most trough. This
is the maximal time for the clock to go once around.

We can also see that the clock now evolves periodically because at an arbitrary

time £ the clock wavefunction is

1 . . )
P(t) = W (¢16—W1 P o2t e et t)

-E gl

VN

o)

(qble——i%g_—t + @e—i%t L (‘ﬁNG—-i%ﬁt) (4‘3)
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and for each time interval 7, 27,..., N7,
—fwpt o A .
| P(r) = ¢ i (qﬁle"‘T + e~ F 4. +¢Ne“2°") (4.4)
: —fwg . .
T P(2r) = f_\/__ﬁ_ (cble”‘éﬁ“ + e F 4o que““") (4.5)
|
|
i
gy t . . .
’l,[)(NT) _ Gm (¢1e~:2w+¢2e-—14w+._.+¢Ne-—a2N7r) (46)
and for t = (N + D)7
gt ~42E(N+1) AT (N1 —i27 (N+1)
| YNT+T) = = (AT RO 4 e B ooy g7 (D)
|
! ~twpt (2 A :
| _ e‘/N (gble""f\’"' _|_¢26——'i-ﬂ— +_._+¢N6—a2w)
= y(r). - | (4.7)

Thus, the period of the clock is T = N, and at ¢ = (N + 1)7 the indicator of the

clock points the same position as that at ¢ = 7. In this way, the position of the

particle can be considered as the pointer of the clock.

4.1 Symmetric Double Well Potential

In this section I construct the explicit solution in the special case of a double

well potential. Let’s consider the stationary solution of the potential shown in Figure
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4.3 for E < V,. This one dimensional double well potential is symmetric with respect
to reflection around its central y-axis. The width of each of the potential well is
labeled @ and that of the central barrier is labeled . We distinguish three regions
from left to right, ‘Region I, ‘Region II,’ and ‘Region III,” and establish appropriate

eigenfunctions in each region:

P1(z) = At + Be™ e (4.8)
for —a —b/2 < z < —b/2,
Yu(x)=Ce"* +De™” (4.9)
for ~b/2 <z < b/2, and
Y (x) = Fet* + Ge** (4.10)

for b/2 < = < a + b/2. Here, we define k = @EL, and ¢ = 3@ as the real
wave numbers in the troughs and barriers,
Symmetric considerations lead to the following simplification. The symmetry

of the potential imposes reflection symmetry of the probability density around the

central axis. When z is replaced by —z, a function 1(x) needs to exhibit the following

property:
(@) = ()’ (4.11)
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By the symmetric structure of the double well potential, if we replace z with

\

i —x in 17, we get ¥y in «, and vice verse. The condition is

|

Pr(—z) = A0 4 Be %) = gy (z) = F '™ + Ge**. (4.18)

Because €% and ¢~** are linearly independent functions, A = G and B = F. Sim-
ilarly, the antisymmetric solution of the double well potential yields A = ~G and
| B=-F.
By doing this we have reduced six coefficients to four. We can further reduce
the number of the coefficients to three by imposing the symmetry consideration on

the wavefunction in the central barrier
Yu(—z) = £ ¢Pn(). (4.19)

This implies D = +C. We now choose to solve the even and odd solutions separately.

In this case we can just set up a 3 X 3 matrix from the boundary conditions

(e +5/2) =0 (4.20)
| Y (6/2) = Y (b/2) (4.21)
| and at = b/2
| | %gz%%, (4.22)

and find its determinant. This determinant expresses the condition on the allowed

energy levels since all boundary conditions are to be satisfied simultaneously.
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If we do not use the symmetry consideration, we can find both even and odd

solutions by solving the determinant of a 6 x 6 matrix, the final equation is

~2kq sin(2ka) = tanh(gb){(k* + &) + (F* — ¢*) cos(2ka)]. (4.23)
This equation can be further transformed by choosing a = b (equal width for well
and barrier), and defining & = ka, 7 = ga, and A = ¥22%q, Then A* = £* + 7%, and

(4.23) can be rewritten as

—2 coth (\/Az - 52) = - 5_ E tan(€) + % cot(£). (4.24)

! By plotting the left—hzind ;za,nd the right-hand sides of this equation separately, we
can find both even and odd solutions together for given N's and @’s. The results are
i plotted on Figure 4.4. The graph shows that the eigenvalue solutions of these two
equations appear paired and they are quasi-degenerate.

On the contrary, we can solve by separating even solutions from odd solutions
and solve 3 X 3 determinants only. We return to the general case where ‘a’ and ‘b’

are not necessarily equal each other. For the even states the wave functions in each

region can be chosen as

\k ¥ = Asin(kz)+ Bcos(kz) (4.25)
‘ Wy = Dcosh(qx) (4.26)
‘ Ym = Bsin(kz)+ Acos(kz). (4.27)
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By applying boundary conditions we finally get an equation for the energy

solutions of the even stafes ag
—q tanh(gb/2) = k cot(ka). | (4.28)

For the odd states the wave functions in each region are

; Wy = Asin{kz) + Bcos(kzx) | (4.29)
i ¥y = Csinh(gz) (4.30)
Y = -Bsin(kz)— Acos(kz). (4.31)

The final energy solution equation for these states after applying boundary conditions
is
—~g coth(gh/2) = k cot(ka). (4.32)

Particularizing to the case where a = b, these even and odd energy solutions can be

rewritten respectively as

> —cot(f) = —‘/—XZ__E tanh (N;_g?) (4.33)
o) = LT i (VEE) as

where £ = ka, 7 = ga, and A = )@Tg‘:@a. The even and odd energy solutions are
plotted in Figure 4.5. As can be seen in Figure 4.5, the even and odd solutions have

almost the same values except when the levels are very close to the top of the potential
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So
1 2mE
=+ 3= B w
Thus,
1\? m2h?
E= (n + 5) o (4.42)
wheren=20,1,2,3,....
For the odd case, let z = v/AZ —&2. Then
lim = coth (EU—) _1 (4.43)
) 5 2/ 6- )
Therefore,
1
or
~&eot(€) = 1. (4.45)

We can graphically find the energy states of the odd case for given potential energy
and the width of ‘a.” Results are presented in Figure 4.6.

Comparing these even and odd solutions, we can see from Figure 4.7 that the
even states are slightly below the odd states when V' 2 F,, and the gap between them
becomes smaller as the energy increases, and tends to be zero as the barrier becomes

infinite.
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| Figure 4.7: Even and odd solutions for the symmetric double well potential when E
is close to V. The even and odd solutions always appear grouped. The lower lines

represent even and the upper ones odd solutions. As £ increase to be close to Vo, the

even and odd solutions degenerate to be the same. Here, V5 is 30.
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4.2 Symmetric Triple Well Potential

We now consider a triple well potential as shown in Figure 4.8. We will am:ga,in
concentrate on finding energy levels below tfie barrier that is £ < V. ’This one
dimensional tripie well potential is also symmetric with fespect to reflection around
its central y-axis. The width of each of thé potential well is labeled @, and that of the
central barrier is labeled b. We name the regions from left to right, ‘Region I,’ ‘Region
II,’ ‘Region III,” ‘Region IV,” and ‘Region V,’ and establish appropriate eigenfunctions
in each region: | |

for —3a/2—b<z < —af2~b

Wr(z) = Ae'*® + Be ¢ (4.46)
for —a/2—b < z £ ~a/2
tp(x) = Ce® + De™", (4.47)
for -a/2 <z < a2
Ym(z) = Fetf® + Qe iFe, (4.48)
foraf2<z<af2+b
Y (z) = 1e9° + Le™1?, (4.49)

and for /2 + b <2 < 3a/2+b

Py (®) = MetF® + N e 2, (4.50)
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to

e {§) o 70 [ 0 ) g ]
(4.53)

sin (%5-) == —tanh ( 22— g:’) {@ sin(¢) sin (g) + -\/Tf._g:g— cos(§) cos (g)}
(4.54)

for the even and odd solutions, respectively.

The solutions of these equations can be found graphically as the intersections
between the curves representing the right-hand side and left-hand side of the equa-
tions. Plots can be made to equate the left and the right hand sides of the even
and the odd solution equations. Figure 4.9 is such a plot for a particular A = 12
value from E = 0 to E = V}. Since the horizontal axis represents £ which is directly
related to the energy, this graph simultaneously indicates the position of energy levels
within the barrier. Here we can see that two even solutions and one odd solution or
one even solution and two odd solutions are grouped, and the order is even-odd-even
or odd-even-odd, etc., starting from the lowest energy. In either case we notice the
second and third solutions are closer to each other than they are to the first one. We
illustrate the global distribution of energy levels below the barrier by plotting £ as a

function of A, or a measure for the energy as a function of the potential.

We identify the following features: the plot is restricted to values A and £ such
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that £ < V,. The line £ = X corresponds fo the location where levels appear since
E = Vp. Levels are grouped three by three. The resolution of the plot only allows us
to see two dots. An enlargement of the lowest branch in Figure 4.11 shows all three
solutions. As ) increases the two (really three) solutions get closer together to merge
in the limit A — oo, the ratio of energy differences between the three components
of a triplet is of the order 1/100. In other words, the last two solutions come closer
and closer, and finally they become the same value within our finite accuracy and
they keep coming closer to the first solution as ) increases more. This means that
they degenerate to be one solution when ) is large. This is shown in Figure 4.10
and Figure 4.11. The different spacing between the levels can be understood by the
inequivalent nature of the side wells and the central well,

We now derive some results about the general model of the triple well potential.

For this model ¢ is different from b. Let p = 2, then b= pa. Then
n=qb=pgqa (4.55)

and

Py %2- (4.56)

With these relations the equations for the even and odd solutions for the triple

well potential—(4.51) and (4.52)-—can be rewritten as
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Figure 4.11: ¢ vs. X for the triple well potential. Convergence of the first three
solutions of a triple well potential: it is clear that the upper two solutions merge
fast into one within our accuracy and finally all three solutions totally coalesce as A

increases.
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Figure 4.12: The three energy levels for the triple well potential are equally spaced
with p = 0.293. L = 10nm and V; = 0.035¢V. The intercepts between the dotted
lines represent even solutions and that between solid lines represents an odd solution.
The dots on the horizontal axis are the reflections of the intersections. The first even
solution is 0.01074793099 eV, followed by 0.02254853321 eV (odd) and 0.03434017832
eV (even). The energy difference between the first-middle and the middle-last is

0.895661 x 10-°.
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4.3 Symmetric Quadruple Well Potential

For the quadruple well potential shown in Figure 4.14, I followed similar steps

to find the energy solutions. The even and odd solutions are given respectively by

24/ X2 — £ + £[cot(€) — tan(£)] coth (m" :iz_g ) =
— tanh (\/)F——Ez) X

2228 o (LE) £l 400 STEC]

2/ — € + Efcot(€) — tan(8)] tanh

I — tanh (‘/)_\;1——5) X

[ %/%—}_——;_%% tanh (\/Xz:f’) L Eoot(®) + (,\; —-&) tan(f)] (461)

()

The energy solutions are shown in Figure 4.15, and the relation between energy
and initial potential in Figure 4.16. From the Figure 4.16, we can sce that two even
and two odd solutions are grouped and as the initial potential barrier increases, the
firat even and odd solutions get really close, and the other even and odd sclutions
do the same thing. As the potential barrier is increased, all four solutions will come

together.
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o 45'/\”

o 1N

Fi'gure 4.15: Energy Solutions of the Symmetric Quadruple Well Potential. This is
the enefgy solution for the symmetric quadruple well potential when A = 9. The solid
curves represent even and the dotted curves represent odd solutions. For the lower
¢ levels, the even and odd solutions are almost degenerated. The roots are found
at 2.563767593, 2.563926478, 2.822588678, 2.822588678; 5.082450444, 5.083324093,

5.610164388, 5.610164391; 7.463209556, 7.471930048, 8.262264948, 8.262281025.
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4.4 Symmetric Multi-Well Potential

We now generalize our method to include symmetric multi-well potentials in
the special case where a = b. Again using symmetry arguments we can consider only
the right side of the potential. Starting at the extreme right potential well, we label
the constants as A;, By, Ca, Da, Az, Bs, Cy, Dy, etc. as shown in Figure 4.17.

The eigenfunctions are the appropriate combinations of sine and cosine func-
tion in the wells, whereas they are combinations of hyperbolic sine and hyperbolic
cosine functions under the{ barriers. In the central domain we reserve the letters A
and B for classically allowed domains and the letters C' and D for classically forbid-

den domains, we can simply assign sine or cosine when it is a well, or hyperbolic sine

' or hyperbolic cosine when it is a barrier. Sine and hyperbolic sine correspond to odd

solutions whereas cosine and hyperbolic cosine to even solutions.
3 By applying the boundary conditions starting from the right-most potential
wall, we can find the ratios of two constants in eac;h well or barrier. This way of
proceeding is similar to the transfer matrix method in multibarrier scattering [8].
Successive ratios can be expressed in terms of previous ratios. For example, the ratio
of A; and B, for a single well potential can be found from the boundary condition at
the right-hand wall

Al ~ ik )
—- = — e, 4.62
5 =€ (462)
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A _ et (G det (% -1)] (4.68)
and for a quintuple well potential
%i‘ = —er (4.69)
G o~Taa [E—L (m + 1) _ g~Tika (1{9_ _ 1)]
E_2_ - %} I;?k j. ]_) — g~ Tika (% _;i 1) (470)
h o) e (o) -
BT TR nremEi) |
gi e o340 [% (ﬂ 4 1) _ p-Bika (yg . 1)]
Dy %ﬁ‘ (% j. 1) — g~3ika (%s, _;i 1) (4.72)
and for a sextuple well potential
%_1; —_ e-—lla‘ka (4.73)
‘, — o998 [%; (g& 1 1) e g~k (g _ 1)]
D, A (;q& j 1) _ o—Yika (%6_ _E 1) (4.74)
A g—Tika [_g_g (15-_ + 1) + g—Taa (@ _ 1)]
BT T EE-Drem(F) 4
G e—540 [%& (3;{6_ + 1) — p—Bika (t_fg 1)]
Dy ‘}% (z_k j 1) . % _;i 1) (4.76)
A 3ika [%i“ (ﬂ n 1) _ %0 (if_» _ 1)]
BT T B( e () “r

where the wavefunction is either Fcos(kz) (F'sin(kz)) or G cosh{qx) (G'sinh(gz))
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where the constant ay, = TIN= is a normalization factor, and wy can be expressed as

2k 2nk
Wy = Wwp + N = wo + —5:- (4.82)

wy is the eigenfrequency of the kth state in the triplet starting counting wo,
and hw;, are the energy levels for the stationary states and there is a range in the
energy of ¥(t) equal to

¢ = h{wy —wo) = 2—’:1 (4.83)

This means that the clock wavefunction ¢(¢) cannot move from one well to the other

during the time interval T if its energy uncertainty satisfies the relation
T = N2rh (4.84)

or the order of the energy uncertainty is

N2mh _]_1_

= (4.85)

The well potential has infinity potential at the end walls so a particle confined
in the well potential cannot escape from it. As time goes by the clock wave function
#(t) moves periodically with the period N7 = T (refer to Page 25). If the spread
of energies is too small, then the localization of #(t) at different ¢'s is insufficient to
claim that the clock ticks every 7. In addition, the energy levels are equally spaced
so it does not lead to ‘dispersion.’ Thus the clock is ‘perfect’ and is not likely to have

dispersion due to the finite number of superposed terms.



Chapter 5

Special Relativity and the

Quantum Clock

5.1 Special .Relativity and Quantum Clocks

Relativity and quantum mechanics are two of the most successful scientific
theories of the twentieth century. Each of them represents a great triumph of the
human mind in understanding the universe. Relativity was essentially established Al-
bert Einstein, whereas quantum theory was the product of the work of many scientists
around the world. These two realms secmed totally separated, but they were unified
by P. A. M. Dirac in 1928 [7]. The Dirac equation in relativistic quantum mechan-
ics exhibits several properties that are typically not associated with the Schrodinger

59
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0 & I 0
where o = , B= , Ty is the rest mass of a Dirac particle, P(q)
g 0 0 I
is a projection operator, and H, is the Hamiltonian of a clock itself. In addition,
01 0 —i 1 0
Oy = , Oy = , and o, = are Pauli spin matrices,
10 i 0 0 -1

I is a unit 2 x 2 matrix, and P(q) = 1 if 0 < ¢ < L and 0 otherwise (g is the
position of the clock, and L is the length of the clock) [5]. To measure time with a
Dirac particle, we first measure the velocity of the particle within the clock potential
from the phase shift which occurs as the particle comes into and goes out of the one
dimensional potential bérrie;' whose width is L.

Suppose now that the clock is in one of the energy eigenstates: ¢ = ¢,,. Then

we can obtain an energy eigenvalue equation for :

27 m P(q)

(-za-V+ﬁmg+ Vo

)w:Ew (52)

This is the equation of a Dirac particle moving in the square potential V = Vp =
2rm/(N7) for 0<g< L and V = 0 elsewhere. When we consider a clock with an
arbitrary spin state, we couple this spin state to the projection operator of the clock

as

(~¢a-v+ﬁm+2wm1;f3)“'“) b = Ev. (5.3)

We solve this equation for three regions defined by ¢<0, 0<¢<L, and L<¢

by assuming that the plane wave e is initially from left to right, and we can find
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time from the velocity which in turn comes from a phase shift occuring in the region
0<q<L.

For the next qﬁestion relating to the construction of a relativistic clock, I found
the solutions of the Dirac equation with single and double square well potentials
in analogy with the work for the Schrédinger case in Chapter 4. In this case the
relativistic behavior of the clock will be incorporated in the last term of (5.1). One

then constructs a superposition of stationary states leading to localized ‘clock states.’

5.3 Relativistic Single Square Well Potential

Before solving the Dirac equation in the symmetric one-dimensional rigid dou-
ble square well potential, we will study a relativistic ‘free’ particle confined to a
one-dimensional infinite square well potential as shown in Figure 5.1 [1, 2, 4]. Let’s
consider a free electron of mass my moving along the z direction inside the potential.

The Dirac equation can be written as

H¢=(azpzc+ﬁmoc2)¢=E1/J (5.4)
0 o, I 0 1 0

where o, = , B = ,and o, = is a 2 x 2 Pauli
o, 0 0 —I 0 -1

spin matrices, [ is a unit 2 x 2 matrix, and p, = —il4 is the z component of the

momentum operator of the particle.




_
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conditions for the wavefunction and the self-adjointness of the formal Dirac operator

(2]. The proper boundary and symmetry conditions with the end walls of the potential

well located at z = 0 and z = L are

p(0) = p(L)%0 (5.6)

J(0) = g(L)=0 | (5.7)

It

i where p = ¢! is the Dirac probability density and j, = c9ta,% is the Dirac proba-
bility current. From these boundary conditions and relativistic boundary conditions
of the MIT bag model [3] that makes the outward flux of probability at the end walls

of the infinite potential well be zero such as

H-)Bah =9 (5.8)

where ‘-’ corresponds to the left end wall (z = 0) and ‘+’ to the right end wall (z = L),

we can have a transcendental equation such as {1, 2]

2P hk

tan(kL) = 77 =~ (5.9)
. { e
' where we introduced the following factors:
i
hikc )
= — 5.10 I
P 4 myc? (5.10)

= 5.11
) iP+1 (5:1) :

U S
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When the length I is equal or smaller than the Compton wavelength of the
particle divided by 27, the particle is considered relativistic and (5.9) can be applied.
For example, the Compton wavelength for an electron is about 0.0044 = 4.0x107%m.

From the discrete values of k which satisfy (5.9), discrete values of energy & =

\thc)2 + m3c* can be obtained. The graphical solution of (5.9) is shown in Figure
5.2. One important remark is that the relativistic energy levels are lower than the

corresponding non-relativistic ores [1].

5.4 Relativistic Double Square Well Potential

Now consider a Dirac particle confined to the one-dimensional symmetric
double well potential shown in Figure 5.3. We choose z as the relevant coordinate.
Therefore, 1 is only a function of z, e.g. ¥ = 1(2). Then the Dirac equations in each

domain are following:

(azpzc-i-ﬁmo 02) ¥r = Eiy (5.13)
(acpsc+Bmod) o = (E~W)¥u (5.14)
(azp,,c—l—ﬁmo c2) Ym = Em. (5.15)
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Here, Vo > mo® + E and E > moc?, and if we consider only the ‘spin up’ case, then

the wavefunction solutions to Equations 5.13, 5.14 and 5.15 are respectively

1 . \ / . \
, 0 . 0
r = At + Be~w/h (5.16)
Fima Frmod
\ 0 ) \ 0 )
( 1 \ ( 1 \
‘ 0 . 0
i = CeP#/m | + Dep22/R (5.17)
0 ) SR
() (5 )
, 0 . 0
W = FePEh + Ge™Pr/P (5.18)
\ 0 N

where pic = y/E? —mjc* and psc = \KVO — EY? — mjct.

As mentioned in Section 5.3 for the single potential well, the symmetry’ and

boundary conditions for the Dirac particle are

pr(~a—b/2) = pmla+b/2)%0 (5.19)

Gar(—a—b/2) = foml{e+b/2)=0 (5.20)
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(6010 [ W (1)
0 0 0 -1 _ 0 , 0
Aezplz/ﬁ 4 Be—-amz/ﬁ.
1000 E+—;]§;c2 ."E?%
o -toeojl L o) L 0]
(a8 ppe
- (AA ot med BB Frmed) (5.27)
Similarly,
C . 2pc . 2pc
Jenr = (C_CE-!—mocz——Vo DD BT med V0 (5.28)
. . " 2p]_C‘Z _ " 2p102
Jer = (FFE‘FWL[)Cz GG E+m0c2 . (529)

For the probability density,

Pr= ﬂ?/i.r
— xo—tp12/h {1 ______plc ) * iplz/h( —pic )]
[Ae (,0, TR, 0) + Bren i (1,0, i, 0)| ¢
[ 7
() ()
, 0 , 0
Aezplz/ﬁ 4 Be—-zplz/h
i - e
Etmge? E+mgc?
| Y \ 0 /]

pic’ . .
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and (5.32) as
_ nc . ]
pm = (1+ Tt mody (AA* + BB*)+
& . .
(1 1 f 02)2) (B* Ac~¥Pe/h + 4B (5.36)

The boundary conditions used so far are not sufficient to find the quantized ener-
gies. We need something else. According to the MIT bag model [3], the relativistic
boundary condition that makes the outward flux of probability at the end walls of

the infinite potential well is

H(—)Bop =7 (5.37)

where - corresponds to the left end wall (2 = —a - %) and ‘+' to the right end walt

(2 = a + &). If we multiply (5.37) by ¥ (= ¥'B) from the left, we get

()P Bty = ()Y BB (5.38)
= £(~iylay (5.39)
= P (5.40)

Note that (5.39) represents the probability current density for a Dirac spinor in the 2
dircction. We can easily check from (5.39) and (5.40) that the outward flux is zero at

the end-walls. Thus, (5.37) expresses the same condition as (5.7) at the boundaries
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then

B = Aelt—f2e+hl (5.46)

= Ae” . (547)

where I' = 6 — k(22 + b).

Thus, by using (5.47) ¥m(z) can be rewritten as

o X ) X
Ym(z) = AeTe* + Ag~H* (5.48)

Py —Pix

(eir‘eiklz o e—iklz)x
A (5.49)
Pl (etTeiklz _ e—ik),z)x

1l

2cos(kiz + 5)x

= AT/ (5.50)
2i P, sin{ky z -+ g)x
Since
X X . X

Yir(z) = Ce®* + De#%* ) (5.51)

Py —Pox
from (5.26) we can finally find two equations for the solutions such as
Cet¥? 4 De=ikat/2 = 2A4e™/% cos (%—b + -12—1) (5.52)

CPye/? . DPye~™2? = 2{AP e sin (-@ + £) : (5.53)

2 2
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2i sin(kaz)x
= C ’ . (5.61)

2P; cos(kaz)X

Therefore, when C = D, (5.52) and (5.53) can be rewritten as

2C cos kaby 2472 cos kib + L (5.62)
2 2 2
%CP; sin (%2) = 2APe™sin (%—b- + g-) , (5.63)

and the two homogeheous equations of (5.62) and (5.63) are

C cos (%ﬁ) — Ae™? cos (%}3 + -g) = () {5.64)
C Py sin (%2) —~ AP e gin (%ﬁ + !2‘") = (. (5.65)

Since there exist solutions when the determinant of (5.64) and (5.65) are zero, we

have
cos(22?) —eiT/2 coa( B2t + L)
’ P = (5.66)
Pysin(f2t) —PeT/? sin(%2 + %)
Thus, from (5.66) we have
(kb P (kb T
tam(z)npztan(2 +2). (5.67)

For the special case that a = b, (5.67) can be rewritten as

/A E +mod® — Vg _"313 d - 2kia— kia
tan() = T ErmeE ta.n(2 + 5 (5.68)
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tan 1 arctan | —
2 ’—"{;93 ke
(4]

|
o |
[

2he m%ci
1 Y
tan | — arctan | — |- . (5.76)

c2
2 E‘ﬁ;o— he

Therefore, (5.75) and (5.76) are the final solutions for the relativistic symmet- |
ric double well potential. By plotting them for {2, we can find the energy solutions
from the relation @ = &. For example, when a = 0.0044 = 4.0 x 107 ¥m, me® =
0.5MeV, Vi = 10 x mpc?, and hc = 197eV -nm (E > moc* and [Vp — E| > moc?), the
plots are shown in Figure 5.4 and 5.5.

The terms ‘even’ and ‘odd’ which were used in the Schrédinger case do not
apply here in the same way. (5.75) applies to the case C' = D corresponding to an
even first component of the spinor and an odd third component.

In conclusion, we have found the transcendental equation giving the energy

levels of a particle in a double well. The equations were obtained by combining the i
boundary conditions at all intermediate boundaries which can be expressed either in

terms of the continuity of all components of ¢ or as the continuity of both p and j.

Indeed, the different components of the spinor behave differently under parity. 1
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Figure 5.5: The plot of (5.76) when a = 0.004A = 4.0 x 10~**m, V, = 5MeV. The
golid curve is for the left-hand side of the equation and the dotted line for the right-
hand side of the equation. The intersections are the values of 2 which are projected
on the horizontal axis (big dots). They are from the smallest one 0.2288416918,

0.3988894183, 0.6212410231 and 0.7487633999.




Chapter 6

Conclusion

My study of quantum clocks confirms the realizability of Salecker and Wigner’s
clock and shows the possibility of constructing a simple one-dimensional model of
a clock. In addition, it shows that the dispersion can be removed with sufficient
accuracy by making the spacing between energy levels equal. Then, the clock can run
accurately for an arbitrary amount of time. This can be done by adjusting the ratio
between the widths of the well and barrier in the Schrodinger case.

We can probably argue the same thing for the relativistic quantum clock. For
the relativistic case the boundary condition is different from that for the Schrédinger
case. For this case the wavefunction is not zero at the wall of the infinite potential
well. Because the wavefunction is a spinor of four complex components and it is

coupled in a systern of first-order differential equations, the requirement that the

83
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far my analysis has been limited to the clock itself. I assumed that the clock was not
interacting with anything else; it was just running. For the clock to be useful in a
practical sense, a measurement has to happen. At the quantum level a measurement
is described by the interaction between the system and the measuring apparatus.
Eventually, the measurement will have to be recorded by a macroscopic device as
pointed out by von Neumann [16]. Our carefully crafted clock will have to interact
with its surroundings and other physical systems. In the process, energy will be

exchanged and the system and clock will affect each other. The quantum limitations

still apply.

Finally, we should mention that both our notion of the concept of time and
our understanding of the structure of quantum mechanics may very well change in
the future. The intense efforts presently underway to understand both the ultimate
building blocks of matter and the large-scale structure of the universe are leading
towards a need for the unification of general relativity and quantum theory. In that
process both theories are likely to change and with them so will our understanding of
the concept of time and that of quantization. The quantum clock of the future may

be very different from that of today.

Still, it gives satisfaction to discover that physical systems at the microscopic

level can presently mimic time: there is room for cautiously measuring time in quan-
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6 CHAPTER 1. INTRODUCTION TO TIME

theory is based on the discreteness and randomness of microscopic physical processes.
Tt really provides a new set of physical rules and a new view of the measurement
process. The Schrodinger equation in quantum theory replaces Newton’s second law.
Both theories contain time in the differential equation as a mathematical parameter;
however, the Schrodinger equation is first order in time, whereas Newton's second
law is second order.

In quantum mechanics all physical observables can be represented by mathe-
matical operators. For example, the energy of a quantum system is represented by the
Hamiltonian operator, a position of a particle by a position operator, and a momen-
tum of a particle by a momentum operator. Time, however, remains as a parameter
in the quantum mechanical eql_mtion, not being transformed into an operator [18].

Then, how can we measure time in quantum mechanics?

1.3 Time in This Work

In this thesis I add my modest contribution to the problem of how to measure
time. In Chapter 2 I will describe the general background and definition of a quantum
clock, and two models of a quantum clock—Salecker and Wigner’s model and Peres’s
model—will be introduced. In Chapter 3 the Hamiltonian of the quanturm clock will

be discussed, and it will be shown how the quantum clock wavefunction evolves as
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The quantum clock is a dynamical quantum system which in constant time
intervals passes through its successive states, and tells coordinate time by measuring
the beginning and end of the time interval. A clock-time operator discriminates
between the clock’s specific time readings. When coupled to another physical system,
it can measure the duration of a physical process and keep a permanent record of if.
It can even control the duration of a physical process. This is done by combining the
time-independent Hamiltonian of the system, the clock, and the interaction between
the two. |

However, there is a limitation for a quantum clock to serve its purpose. A
clock, for instance, is interacting with an apparatus. In order to know what time it
is, we have to read on the clock the value of an dbsefvable () which is an angular

position of a clock pointer, and the observable should satisfy the following relation

(17]
19 _ L (1,0l 21)
and therefore
h|d{(Q)
AEAQZ 5 ""d?‘-‘ (2.2)

In order that the clock functions, the expectation value (¢}) must depend on time

and this change in {Q) must be greater than the standard deviation AQ@ to be signif-

icant. If the clock is observed for a time t through which the clock interacts with the
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measurement because the use of macroscopic objects such as a measuring rod would
affect the measurement. The accuracy of the running time of the quantum clock is
related to the minimum uncertainty of the clock mass. They found that the time
resolution was inversely proportional to the energy exchange between the clock and
the system with which it interacted. Thus, the clock modified the evolution of the
system it measured.

Salecker and Wigner mainly tried to answer the question about the minimum
mass and mass (or energy) uncertainty of the clock, but I will not tackle this problem
in my thesis. Instéad, I will check if ther‘e is a dispersion arising from this model
and try to get the verification of constructing and functioning of this kind of clock by

removing the dispersion.

2.3 Peres’s Quantum Clock

To 1980 A. Peres constructed explicitly a time-independent Hamiltonian for
the quantum clock and described three possible uses of the clock: velocity determina-
tion by a time-of-flight measurement, study of the decay time of an unstable system,
and the control of precession of spin in a magnetic field which is turned on and off
at prescribed times [18]. He was mainly concerned with how much a system was per-

turbed by its coupling to a physical clock and how the clock could keep a permanent
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where m = —j,..., 7, 0< 80 < 2x, and j is an integer number. Then an alternative
orthogonal basis ¢ for the wave function is given by

2rikm/N ,d)
m

¢(0) = ‘\‘/-1—1\—, > e

_ 1 sin[ (6 — 2E)] | . 39)

V2r N sin[}( — 2£%)]
where £ = 0,..., N — 1, and N = 2§ + 1, corresponding to sharp peaks for large N

at ¢ = #E with an angular uncertainty + %. These sharp peaks indicate that the

quantuni clock points to the hours labeled by “k.” Some examples of the sharp peaks

are in Figure 3.1 and 3.2.

3.2 The Time Operator of the Quantum Clock

The operator of the quantum clock time is
T.=7Y . mP, (3.3)

where T is a time resolution or an accuracy of the quantum clock, and F, is the
projection operator of the quantum clock. If we apply the operator to the states of
the quantum clock, then

P b = Ok G- (3.4)

The time of the quantum clock is given by

Tedr =te o (3.5)
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Figure 3.1: The sharp peaks of ¢4(@) occurring in Peres’s quantum clock. N = 13,

k =0 (top) and k = 3 (bottom).
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indicating that the quantum clock passes successively through the states ¢g, ¢1, @2, ...

at time interval 7, and a measure for its energy uncertainty is
E = #{w — wp) = 2wk /T (3.10)

where w = wy + 2rk/(NT).

The total Hamiltonian of the system is
= Hygp)+P@)w/, (3.11)

where H, is the Hamiltonian for the dynamical system and P(g) is a projection

operator which is 1 when the clock is on, and 0 when off. The second term leads to

a potential barrier for the dynamical system described by H,.

¢
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Figure 4.1: N periodic well potential: a potential with N narrow wells and NV — 1
narrow barriers confines a particle and has clusters of N very closely spaced energy
levels. The N grouped wave functions are superposed and move, in a time 7, from
one well to the other. They, therefore, indicate a specific time. This kind of potential

is a good example of the quantum clock of very small size.




94 CHAPTER 4. AN EXPLICIT MODEL FOR A TICKING QUANTUM CLOCK

: . ) N levels

i

: _ ) N levels

FH/T

3 ]

Figure 4.2: Energy levels of N periodic well potential. This kind of potential has a
lot of very closely spaced energy levels clustered in groups of N. The energy level

spacing is %
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Figure 4.3: This one dimensional double well potential is symmetric with respect to
its central y-axis. The width of each of the potential well is a and that of the central
barrier is b. The potential energy is Vj at the top of the barrier. Three regions are

distinguished, from left to right, ‘Region I, ‘Region II,’ and ‘Region JIL.
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which is

()| = [(—=)l. | (4.12)
Thefefore,

W) = ép(-a)
= ()

= eio(z) (4.13)

where the phase « is some real constant. Thus,

fte=1 (4.14)
cos(2a) +isin(2a) = 1. (4.15)

So
o =nw (4.16)

wheren=0,1,2,3,....
Therefore, there are only two possible choices: g'® = +1 (positive parity or

symmetric solution) or ¢i® = —1 (negative parity or antisymmetric solution), and the

possible forms for the wave function are

() = £Ym(2).
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N
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Figure 4.4: Even and odd solutions for the symmetric double well potential

with A = 9. The straight line represents -2 coth (\/XE ——Eﬁ) and the parabolas
@ tan(¢) + ﬁ cot(£). There are two solutions at the top of each parabola.

The two solutions are very close each other and are almost degenerate as A in-

creases. The roots are found at 2.822485029, 2.822692268, 5.609414347, 5.610913783,

8.246498167, and 8.278652604.
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Figure 4.5: Even and odd solutions for the symmetric double well potential with
A = 9. The long-dotted curves are for —cot(£). The vertical long-dotted lines are
asymptotic lines. The intercepts of the long-dotted curves with the short-dotted lines
represent even solutions and with the solid line odd solutions. Note that the even and
odd solutions have almost the same values except the very upper level solutions (inside
the circle) since the solid line and the short-dotted line are almost identical. The roots
are found at 2.822485029, 2.822692268, 5.609414347, 5.610913783, 8.246498167, and

8.278652604.
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barrier. Note that the value of £ of each couple of even and odd solutions is lower

than that of (= nm,n=1,2,3,...) in a single infinite well potential.

If the central barrier potential V; goes to infinity, so does A, and the equations
above become
—cot(§) = lim y¥-g : —& tanh (#\rz—f) =00 (4.35)
—cot(€) = Alim —_—— g ¢ coth (u——-————‘z_g) = 00 (4.36)
and the solution in both cases is
sin(§) =0 (4.37)
which is
£ = nm. (4.38)
Since £ = ka and k = Y22E,
242
g mh
E=n a2 (4.39)
where n = 1, 2, 3, ..., and these are the energy states for a single infinite well poten-

tial. We have recovered the solution of the single well, indicating no coupling between

the two wells.

We now look for energy levels at the potential barrier, F is close to Vg, which

corresponds to & close to A. Then the solution reduces in the even case to

cos(§) = 0. (4.40)
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Figure 4.6: Odd energy solutions for the symmetric double well potential when E is
close to V. The dotted lines are for —¢ cot(£) and the solid line is for 1. The dots on

the horizontal solid line represent the intersections between y = —§ cot(§) and y = 1.

The roots are found at 2.028757838, 4.913180439, 7.978665712, and 11.08553841.
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Figure 4.8: This one dimensional triple well potential is symmetric with respect to
: its central y-axis. The width of each of the potential wells is a@ and that of the central

barriers is b. The potential energy is V; at the top of the barrier. Five regions are

distinguished, from left to right, ‘Region I’ ‘Region II,’ ‘Region III,’ ‘Region IV,’ and

‘Region V.’
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where A, B, C, D, F, G, I, L, M and N are constants to be determined and k and
@hﬁ.ﬁ’ and q = £:2m(%_E) .

q are again defined as k = (

By analogy with our discussion in Section 4.1, we can show that the symmetry
(x — —x) imposes the following simultaneous relations A = +N, B = +M,C==+L
and DD = +] where the upper (lower) sign refers to the even (odd) solution. Inside
the central potential well, the eigenfunction is Q cos(kz) (Qsin(ke)), where Q is a
constar:* given by Q = F+G (Q = i(F—G)) for even (odd) solutions. This symmetric
treatment reduces the ten constants to five, and we can consider only the right-half
of the figure to find energy solutions. We apply the boundary conditions by imposing
continuity in the wavefunction and continuity of its derivative at z = a/2, af2+b
and by imposing continuity in the wavefunction at 3a/2 + b. By doing this we can
construct a 5 X 5 matrix equation, and solving the determinant of the matrix yields

one transcendental equation for the even and the odd solutions:

even:
3kay) q . ka k . (ka
cos ( 5 ) = — tanh(gb) [k sin(ka) cos( 5 ) ; cos(ka) sin ( 5 )] (4.51)
odd:

sin (?—’—gﬁ) _ _ tanh(gb) [% sin(ka) sin (’—“29—) + gcos(ka) cos (%‘1)] )

When a = b, by using ) and £ defined in Section 4.1, (4.51) and (4.52) simplify
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Figure 4.9: Even and odd solutions for the symmetric triple well —potential with A = 12.
The intersections of the dotted lines represent even solutions and the iﬁtersections be-
tween the solid lines represent odd solutions. The dots on £he horizontal axis are the
reflections of the intersections. Note. that every three solutions appear grouped. The

roots are found at 2.689502091, 2.897706546, 2.897706547; 5.357566216, 5.780575082,

i 5780575084 7.971652381, 8.623013258, 8.623013398; 1045192739, 11.33111190,
11.33135433. |
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Figure 4.10: £ vs. A for the triple well potential. This is the corresponding £ (related
to F) values for integer values of A (related to V5). The resolution makes it hard to
differentiate two solutions grouped in the upper dots. As X increases the two (really
three) solutions get closer together to merge in the limit A — oo, the ratio of energy

differences between the three components of a triplet is of the order 1/100.



L 46 CHAPTER 4. AN EXPLICIT MODEL FOR A TICKING QUANTUM CLOCK

o (36 = —tan (o) | ¥ i) o (£) - srimgeos@rsin )|

(4.57)

odd:

1 _

. sin (-35-) = —tanh (p\//\"* - 52) [——E:——-g— sin(£) sin (g-) + ——A'ﬁ cos() cos (%)}
(4.58)

By adjusting the magnitude of p, we can change the relative spacing of the
three levels in the triplet. In particular we can space them equally in one of the
| triplets. However, not all grouped solutions are equally spaced simultaneously for a
- ‘ ' specific value of p. In order for this triple well poteritial to be applied for the Salecker-
Wigner model of the quantum clock, we need to pick up one group of three equally
spaced triplets.

To illustrate this in the microworld, we fix the length of the triple potential

to be L = 10 nm. Then the width of the well @ is

B __L _lom
T 34+2  3+2

(4.59)

When Vj, = 0.035 eV, there are only three solutions and choosing p == 0.293 the three

solutions are equally spaced within our accuracy as shown in Figure 4.12 and Figure

0 4.13,
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E
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Figure 4.13: The last energy level of Figure 4.12 is magnified. Note that the second

even solution occurs inside the oval.
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Figure 4.14: The potential is infinity at both end walls and V; at the top of the

barrier. The width of a well is a and that of a barrier b.
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Figure 4.16: Convergence of Energy Solutions of the Symmetric Quadruple Well
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On the other hand we know from symmetry about zero that the solution is
either F cos(kz) or Fsin(kz), where F is a constant, depending on even or odd,
respectively. These solutions lead to quantization conditions.

For a double well potential we can find the ratio of A, and B; as

A 3k :

= - 4.63
- (463)
and since there is a barrier in the central domain, the wave function is either G cosh(gzx)

or G'sinh(gz), where G is a constant, for even or odd solutions, respectively. The

boundary conditions at the well-barrier interface lead to the elimination of G and to

the energy quantization.

For a triple well potential,

%f = e (4.64)
C, B g 390 [%L (i& + ]_) — g Bika (yg - 1)]
Dy e ;.;E _q 1) _ g~dika (% _: 1) (4.65)

and we choose either F cos(kz) or F'sin(kz) in the middle well and get quantization.

For a quadruple well potential, the ratios are

_;}__i_ = g Tika (4.66)
Y GRS i el R

B
Dy 4
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depending on the middle well or barrier.

| Therefore, for an N-well potential

%i = _ g—(@N-1ika (4.78)
Asart e—[2N—(2(2m+1)—1)]ika [%21: (zé_c_ 4 1) + ¢~ [2N—(2(2m+1)-1)]ika (% — 1)]
Bom i1 - G ('_q’s — 1) + e~ [2N—(2(2m+1)-1lga (% + 1) (4.80)

where m is an integer and 1 <m < %12— if Niseven, or 1 <m < #1if N is odd.
S and g’;’—:i are sequentially repeated until 2m or 2m + 1 reaches N — 1. Again,

1
Dom +1

the last boundary condition gives quantization.

4.5 Accuracy and Dispersion of Quantum Clocks

All the potential models considered above are examples of clocks of very small
size, great accuracy, and long running time. For a potential with IV wells, we can
construct N equally spaced energy levels as discussed above. We construct from the
N different stationary states ¢y, ¢a, ..., ¢n a superposition representing the state of

the clock wavefunction (2):

N
W(t) = Y appre " (4.81)
1
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Figure 4.17: This is the multi well potential with the same widths ‘a’ for the well and

the barrier. The wells are labeled A’s and B’s whereas the barriers C’s and D’s.
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equation and that do not appear in previous discussions of quantum clocks. The
first feature that appears naturally within Dirac theory is spin and the second is the
existence of negative energy solutions.

The quantum clocks can be extended using special relativity [5, 14]. The
quantum clocks mentioned so far are nonrelativistic devices. which are ﬁéed 't‘o stuély
systems obeying nounrelativistic dynamics. Eventually, clocks should be constructed
and operate in accordance with the postulates of relativity. For the_purpose of this,
a clock-interaction Hamiltonian 111 a Dirac equatioﬁ shouldrbe conéiderecf and the
explicit construction of a clock can be achieved by .extending Salecker and Wigner’s
clock to include relativistic dynamics. In thé following sectibr;s of this ch:a,pter, 1
briefly discuss the interaction of a relativistic particle with a clock and then I consider
relativistic models for clocks based on single and double well potentials in Dirac

theory.

5.2 A Dirac Particle and the Quantum Clock

The total Hamiltonian operator for the relativistic closed system (Dirac par-

ticle + clock) is in analogy with (3.11)

H=—ia-V+pmg+ Pg)H., (5.1)




CHAPTER 5. SPECIAL RELATIVITY AND THE QUANTUM CLOCK

L = ] A SN0
: ‘l
I : :I'l'l.aﬂi‘
| L 4

Figure 5.1: This is a relativistic single well potential. Potential is infinite at the end

walls and mygc? is the rest energy of a Dirac particle confined to the well potential.
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When the particle moves in the positive z direction with momentum %k, the

normalized solution of the Dirac equation (5.4) [9, 12} is

_ fE+mc® g, X
f/}k(Z)—\/ R . (5.5)

.E‘J'-F-ﬂ'u‘,()(.3 X

where E = \/ (hkc)? + m3c* is the energy of the relativistic particle and x is an

arbitrary normalized two-component spinor, i.e., x"x = 1. The spinor x can be

1
represented as x = for spin ‘up,” and as y = for spin ‘down,’” or any

0 1
linear combination of these two. Note that Equation 5.4 contains negative energy

solutions as well, such as E = -\/ (hkc)? + mict,

" In non-relativistic quantum mechanics the vanishing of the wavefunctions at
the end walls is a sufficient condition for finding eigenvalue solutions. However, in
relativistic quantum mechanics, the boundary conditions are different from those
in non-relativistic quantum mechanics because in relativistic quantum mechanics the
wavefunction is a spinor of four complex components coupled in a systern of first-order
differential equations. The spinor cannot vanish at the boundaries of the infinite well
potential because imposing this would make the wavefunction identically zero. In
this case one can impose the fact that the flux of probability is continuous at the end

walls of the potential. The wavefunction is not necessarily continuous however.

Therefore, the solution can be obtained by applying appropriate boundary
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-12-

Figure 5.2: The function tan{kL)(curve) and —kL{dotted line) are plotted separately
when L = n{‘-— The values of kI where the two functions intersect each other are

0c

the solutions. The dots on the horizontal axis are the reflections of the intersections.

The roots are found at 0, 2.028757838, 4.913180439, 7.978665712 and 11.08553841.
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Figure 5.3; This one dimensional double well potential is symmetric with respect to
its central vertical axis. The width of each of the potential well is @ and that of the
central barrier is b. The potential energy is V; at the top of the barrier, and myc® at
the bottom of the potential well, where my is the rest mass of a Dirac particle confined
to the potential well and c is the speed of light. Three regions are distinguished, from

left to right, ‘Region I,” ‘Region II,’ and ‘Region II1.’
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- at the two end walls of the potential. Since no current flows through the end walls,
(5.20) is the condition of impenetrability (7 = 0). On the contrary, the boundary

conditions at the two inner potential walls are

pr(—b/2) = pu(-—b/2) (5.21)

pu(b/2) = pu(b/2) (5.22)
and

Fr(-b/2) = Fu(b/2) (5.23)

Ju(6/2) = Jm(b/2). (5.24)

Note that at the inner walls the wavefunctions are continuous as well, just like in the

Schrodinger case; therefore,

i(=b/2) = Pu(-b/2) (5.25)

Yu(b/2) = Ym(b/2). (5.26)

i

For p and 7 are constructed from 1, (5.21), (5.22), (5.23), and (5.24) follow from
(5.25) and (5.26).
Since 7 = cytaeyp,
Jer = C'ﬁb}azwl

,’E"f—nl(](:?’

= c[are (1,0, P, 0) 4 Bremeh (1, 0, 2B, o) x
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22 . .
(1 -~ Frmdy j_’lm 062)2) (A" Be%meih 4 B APM) . (5.30)

Similarly,

_ pic’ " .
pir = (1+(E+%cz__%)2) (CC* + DD*)+

(1~ Gy (D DGR (53

and

e’ .
pr = (1+m) (FF*+ GG )+

2

By the symmetry consideration (similar to the Schrodinger case discussed in
Section 4.1, but in stead of 3§, p should be considered), parity equations can be written

pr(—2) = pm(2) (5.33)
pu(~2z) = pu(2), (5.34)

and from (5.20) and (5.33), we can find that A = G and B = *+F, and from

(5.34) C = ¢D where { is a real constant (I will find the possible value for ¢ later).

Therefore, (5.29) can be rewritten as

Jomr = (BB*-—ZE—CQ—-— AA*——2111—C~2—~) (5.35)

F+me E + mgc?
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By the symmetry of the well potential, it is enough to consider the boundary
conditions only for the right half of the well potential. Then, the boundary condition

for p at z = & is from (5.22)

o pac _
(1+ (E+m0c2-vo)2) (CC* + DD*)+

2
P3¢ * 1), "t
(1_ (E+W£cz_%)2) (C*De~mb/™ 1 D*Ce'™h)

_ pic?

= (1 + m) (AA* + BB")+

(1 - Tt ) f%nicz)z) (B* Ae™ /™ 1 A* B (5.41)

If we apply the MIT bag model boundary condition to ¥gr at z = e+ g, then
—if . m = Ym (5.42)

and we can find a relation between A and B as

P -1 —2ik1 (a+b/2)
— 1] o .4
B TIe (5.43)
- where P, = ﬁ%&g by using py = fik;. Since P is real, %::—%;‘;% has unit modulus. So
let
Pl e (5.44)

where

~ 2P,
§ = arctan (P12 — 1) , (5.45)
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If we divide (5.53) by (5.52), then we have

CPyci2t/2 — Dpye-itab2  2iF Pe™/*sin (%hb + g) 5.54
Ce"’““"’/z T De—ikgb/2 - 2F6ﬂ‘/2 cos (_!%Q + g_) ( . )

and (5.54) can be rewritten as

(C — D)Pycos (%) +#(C + D)Pysin (%) Ko T
(C+ D)cos (%) +i(C — D)sin (22) +F} e ( 5 t -2—) . (5.55)

Since the right-hand side of (5.55) is purely imaginary, the relations between C' and
D that make the left-hand side of (5.55) purely imaginary as well are only C = D

and C = —D. Thus, if C' = D, 9g(z) becomes

, X , X
du(z) = Cei + Qe (5.56)

Pyx —Byx

(e‘ikgz__'__e—-'ikgz)x’
- C (5.57)

P2(eikzz . e—ikzz)x

2cos(kz2)x
= C ’ (5.58)
21 P sin(ka2)x
and if C = —D, ¥y(z) becomes
. X : X
Yu(z) = Ce*# — Ce s (5.59)
Pyx —Fx

(eikgz — e—ikzz)x

_ ¢ (5.60)
Pz(eikzz + e—ikzz)x
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Y O . g _

_ (1 = mocz) tan ( : g) (5.69)
_ Vo 1 op \

= (1 Ermed 62) tan ( arctan ( P 1) 5) (5.70)
(1Y L _hk )

= (1 BT mgc2) tan (2 arctan ( moc) E) , (5.71)

hik
moc *

where & = kia, 1 = kea and P =

Similarly, if C = —D, we have

cot (g) = — (1 - m) tan (1 arctan ( Z:::) — E) . (5.72)

By using pic = hkic = /E? — mict and poc = hkye = [VE. ~ E)? —mict

(5.71) and (5.72) become

an a\/(T/g—*-EP—m%c‘* W(l———-——m—. Y )x
2he B E + mpc?
1 2 —mit\  ayE? —mict
tan (~2~ arctan (—~ oy ) - - (5.73)

(ax/(% Dl ) (1)

2hc E +moc?
[E2 — 24 E? — 2 4
tan -1—a.rctan — ey L e . (5.74)
2 m002 hic

and by introducing a factor {2 = %, (5.73) and (5.74) can be rewritten as

tan e

oyl -9 - 5 (i)
-]

) - mee”
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Figure 5.4: The plot of (5.75) when a = 0.004A = 4.0 x 10™%¥m, V, = 5MeV. The
solid curve is for the left-hand side of the equation and the dotted line for the right-
hand side of the equation. The intersections are the values of {2 which are projected

on the horizontal axis (big dots). They are from the smallest one 0.1146732981,

0.2936768933, 0.4872453509, 0.7063278448 and 0.9000000000.
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These equations are just a first step toward the general solution of the double
well problem. Qur study is limited to the spin ‘up’ case, one-dimensional motion, and
energy ranges such that £ > myc® and [V — E| > myc®. However, we believe that

the more general cases can be constructed using the results developed in this chapter

without too many difficulties.
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wavefunction be zero makes the wavefunction vanish everywhere. This is similar to
the impossibility of imposing boundary conditions on % and ¥’ simultaneously in
the Schrédinger case. Thus, the substitution for the boundary condition is that the
current or flux is zero at the wall of the infinite potential well, and that the probability

density is continuous.

I have explored the possibility of a ticking quantum clock by studying various
square well potentials. However, a perfect quantum clock will not be built soon.

There are still several obstacles to be overcome to produce a working quantum clock.

First, I considered only one-dimensional well potentials, and the ideal well
potentials are square-shaped. Real systems are neither one-dimensional nor square-
shaped. Moreover, they interact with their surroundings. Note also that for the
relativistic quantum clock, I neglected special relativistic effects between frames such
as time dilatiqn which is associated with fast moving particles. However, if we use
an approximation method such as WKB [13], we can study quantum clocks that are
more realistic. This task can probably be done by cooperation between physicists and
quantum engineers. Microscopic multi-well structures can now essentially be built to

any particular specification [15].

The second obstacle is the inherent limitation on the resolution of a quantum

clock that was pointed out not only by Salecker and Wigner but also by Peres. So
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tum mechanics after all. But for the concepts of time, I have to remind myself of St.

Augustine as quoted in my introduction, “What is time?-if nobody asks me, I know;

but if I try to explain it to one who asks me, I do not know” [10].
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