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CHAPTER 1

INTRODUCTION

Physics students learning quantum mechanics use the Schrodinger equation to study the
hydrogen atom. A solution of the Schrodinger equation consists in finding all energies and
corresponding wave functions. The energy spectrum determines the spectrum for optical
transitions which can be compared to experiment. This correspondence between theoretical
prediction and experiment determines the degree of validity or applicability of the
Schrodinger equation. In a similar way, this thesis applies an equation from relativistic
quantum mechanics to positronium. The applicability of the equation is determined by its
predictions.

Positronium is the bound state of the electron and its antiparticle, the positron. It is a
two-particle system like the hydrogen atom and, in fact, it is sometimes referred to as the
positronium atom. As in the case of the hydrogen atom, the Coulomb potential is

responsible for the interaction between the constituent charged particles. In this thesis,

* however, and in addition to the fact that the equation and constituent particles are different,

two major differences from the textbook study of hydrogen are significant. These
differences are that in the Coulomb potential, expressed in natural-units (A=c= 1} as
—qt/r, the fine structure constant ¢, where o = ¢’ /hc, or ¢ in natural units, is allowed to
increase from its physical value of about 1/137, and that the Coulomb potential is truncated
in order to avoid its non-physical singularity ai the origin. Chapters 3 and 4 are concerned
with the significance of varying o, while the truncating of the Coulomb potential, in
addition to its importance in Chapters 3 and 4, leads to Chapters 5 through 8 which are on
the subject of matching of the constants as a method of finding exactly solvable potentials

in the radial Schrédinger and Klein-Gordon equations.

1-1 Defining positronium. Positronium (Ps) is the bound state of the electron and
the positron. The electron and positron carry opposite charges and thus are subject to the
Coulomb force. Unlike the proton and the electron of hydrogen, however, the electron and
the positron of positronium have equal mass. This last fact is used to make a comparison
of the Bohr radius of the two atoms. Given that the reduced mass, (i, for a system of two

masses, m, and m,, s
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(I-D)

m, +m,

it can be shown that the reduced mass of hydrogen is approximately equal to the mass of

the electron, while the reduced mass of positronium is exactly half the mass of the electron.

i Finally, recalling that the Bohr radius, written in CGS units, is

hZ
HZe*

a, = (1-2)

and noting that the Bohr radius is inversely proportional to the reduced mass, we see that
the Bohr radius of positronium is about twice that of hydrogen. i
Though positronium is not as conmon as hydrogen, it is an atom that can be produced |
in the lab. Positronium production is described by Werth (Bassani, 1989, pp. 161-170)
and relies on collisions of low energy positrons in gases or on surfaces. To fill in one
detail of interest in positronium production, the conventional source of the positrons are the
radioactive positron emitters 22Na or 58Co. Werth also states that, as of 1989,
experimental knowledge of positronium was limited to atomic states of principal quantum
numbers of 7=1 and 7 =2 (Bassani, 1989, p. 161). This limitation is mentioned as a |
note of interest in positronium research and is not meant to be taken as a barrier to this '
work since our interest here is in the » =1 atomic state.
In fact, the specific atomic state of positronium that we study is the ground state of
parapositronium, where the prefix "para” indicates that the net spin of the electron positron
system is zero. Using the notation n***'L,, this atomic state of positronium is given as
1'S,, or more simply as the 1Sy state, keeping in mind that n=1.
There is also an "orthopositronium,” a name indicating that the net intrinsic spin of the

electron plus the positron of positronium is one. Orthopositronium decays into three

photons since there is no way that two photons can have a net spin of one, recalling that
photons have spin 1. On the other hand, parapositronium decays into two photons, such
that the two photons move in opposite directions and the spins cancel. The lifetime of
orthopositronium, due to its more complicated decay mode, is longer than that of
parapositronium. Referring to the ground state, the theoretical lifetimes are 1.4208 x 10°7
seconds for orthopositronium, and [.2525 x 1010 for parapositronium (Bassani, 1989, p.
161).



That the decay modes of positronium is being discussed in the first place is due to the

fact that matter (the electron in this case) combined with anti-matter (the positron) annihilate
each other. Matter annihilation is a relativistic phenomenon, made possible by £ = me’;
hence, to incorporate relativity into the mathematical description of positronium, we need to
use a relativistic quantum mechanical equation. The Schrédinger equation will not suffice,
at least when the energies become comparable to the rest masses. Furthermore, since two-
body relativistic wave equations are still very much an open area of research (Landau,
1990, p. 219), our primary focus in this thesis is actually a particular two-particle wave
equation and not positronium. Positronium just happens to be a clean and relatively simple

physical system with which to study this equation.

1-2 Why positronium? An important difference between positronium and
hydrogen is that the electron and the positron of positronium are leptons. In contrast, the
proton of hydrogen is not a lepton and is subject to the strong force, thus marring the
spectrum of hydrogen with uncertainties and making the comparison between experiment
and theory more difficult. On the other hand, positronium is an ideal system on which to
apply the theory of quantum efectrodynamics. Specifically, concerning positronium, "the
only significant interaction present at current levels of experimental and calculational
precision between the positron and electron is the electromagnetic interaction. This feature
has made Ps a sensitive testing ground for the theory of quantum electrodynamics (QED),
in particular, its formulation in the relativistic two-body equation as embodied by the Bethe-
Salpeter equation” (Nico, 1990).

~ In this thesis, however, a quantum ficld theoretical treatment of positronjum is not the
focus. We remain within the framework of wave equations and wave functions with their
single particle charge density interpretation, in which the negative-energy solutions are
reinterpreted in the Dirac sea and hole picture. These negative-energy solutions play a
crucial role in the study of annihilation and the lifetime of positronium, and they need to be
considered when determining physical values of the constants,

The lifetime of positronium, particularly the lifetime of orthopositronium, is an
important subject of research because of the small discrepancy that currently exists between
theory and experiment and which could indicate trouble for QED (Kinoshita, 199G, p. 10);
however, that issue does not concern us here. This research is not concerned with the
decay rate of positronium, but with the decay of the vacuum (Greiner, 1985). In particular,
strongly bound positronium, obtained by mathematically increasing the fine structure

constant, is being modeled with a two-particle relativistic wave equation for the purpose of
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predicting stability or instability with regard to real electron-positron pair creation.
Comparisons can be made with the corresponding predictions of stability from other wave
equations, ultimately for the purpose of knowing which of the equations agree with
experiment.

Looming in the background, but beyond the scope of this thesis, is the interest in
strong Coulomb fields and positronium for insight that may be gained in QED and quantum
chromodynamics (QCD) research (Bawin, 1990). In particular, heavy-ion experiments
have led to the conjecture of a new phase of QED in sufficiently strong Coulomb fields
(Fried, 1991, pp. 195-221). The overlap of this research and QCD can be seen in the fact
that positronium is similar to quarkonium inasmuch as both atoms are a bound state of two
equal mass, particle-antiparticle, fermionic (half-integer) particles. Therefore, a two-
particle relativistic wave equation that is appropriate for the positronium would be
applicable to quarkonium. In addition, although the interaction in quarkonium is different
from the interaction in positronium, recalling that there are no free quarks, a Coulomb type
potential may dominate at shorter distances (Fabiano, 1994); thus insight into short distance
QCD may be gained.

1-3 The interaction. In natural units the Coulomb potential for positronium is
written as —a/r, where & is the fine structure constant and represents the strength of the
interaction. In this work, « is allowed to increase from its physical value of about 1/137
to oo, and thus, a strong Coulomb field is produced. In a strong Coulomb field,
positroninm is referred to as "strongly coupled positronium,” a term used in succeeding
chapters. A difference between this mathematical exercise and heavy-ion experiments is
that the factor ¢ is increased instead of Z in the formula —Z¢/r; (Z =1 for positronium).
In either case, comparable strong Coulomb fields can be achieved via the Zq term of the
equation. In addition, one reason why we do not go beyond ¢ = 1.5 is that this value of &
corresponds to a heavy-ion having 205 protons. Incidentally, a second reason for not
going beyond « =15 is that, according to our present understanding of Quantum

Electrodynamics of strong fields, production of electron-positron pairs is expected to occur

_ in the external Coulomb field of a nucleus of charge Z when Z exceeds a critical value of

170 (Greiner, 1985). Therefore, extrapolating to positronium, we may expect to find
stability or instability with respect to spontaneous production of bound electron-positron

pairs, according to the equation that we use, to indicate itself without having to go beyond

o =13,



Increasing o affects the total energy of strongly coupled positronium because the
charged constituent particles become more tightly bound in a stronger field. In particular,
the energy is found according to the two-particle relativistic wave equation that is being
used, as a function of field strength, to see if there is a critical value of ¢, beyond which
the value of the energy indicates instability of strongly coupled positronium with regard to
spontaneous electron-positron pair creation. If no such ¢ is found, then the implication is
stability of spontaneous pair production.

In playing the game of increasing &, however, it is necessary to truncate, or regularize,
the Coulomb potential for another reason in addition to that of avoiding the non-physical
r singularity at r =0. Recall that regularization of the Coulomb potential is required when a
Klein-Gordon particle is in a strong field such that Za >1/2 to avoid loss of self-
adjointness, as discussed by Case (1950). In the case of a Dirac particle, regularization of
the Coulomb potential is needed for Zor > 1. Since the equation that is used in succeeding
chapters to describe strongly coupled positronium which is formally identical to the S-wave

radial Klein-Gordon equation, and since we have Z =1, regularization of the Coulomb
potential will be necessary for us to go beyond o =1/2.

In a recent paper by Bawin and Cugnon (Bawin, 1990), the same two-particle wave
equatton (specifically Eq'. (2-17) as it is introduced ir‘1 Chapter 2) that will be used in
Chapters 3 and 4 of this work predicted stability for all finite values of . Bawin and

Cugnon's prediction was made using the following regularized Coulomb potential, namely

V(r)= —« (r>ry) (1-3)
r

V(r)= 2 (r<ry) (1-4)
i ro

where ry is an arbitrarily small cut-off radius. The constant potential in the domain r < r,

avoids the non-physical singularity of the Coulomb potential at » =0, and corresponds {0
the potential of a spherical conductor of radius r, with uniform charge distribution on its

surface.

After recovering Bawin and Cugnon's prediction of stability as part of the discussion of
Chapter 3, a result that is in sharp contrast to the corresponding predictions from the Dirac
and Klein-Gordon equation (Bawin, 1990), the potential given by Egs. (1-3) and (1-4) is
replaced by the following potential:




Viy=—2%  (r>ry) (1-3)

.
3 2
V(r)=§%{%--r§} (r<ry) (1-5)
[

as the subject of Chapter 4. Once again, r, is an arbitrarily small cut-off radius. The
singularity of the Coulomb potential at » =0 is now avoided with a quadratic potential in
the domain r < r,. The quadratic potential, Eq. (1-5), corresponds to a sphere of radius r,
with a uniform charge distribution throughout its volume. As such, this model may be
more physical than the previous model of an electron that has a surface charge distribution
because of the precedent that the nucleus has a fairly uniform charge distribution. In
addition, Eq. (1-5) has a continuous first derivative and therefore it represents a continuous
electric field, unlike the potential energy of Eq. (1-4).

" None of the arguments for a particular model should be taken too literally, however.
We know that the electron or positron has no spatial structure above 107" meters, and that
nothing is known about Spatfal structure below this value. Classical prescriptions for
charge distribution models have problems from the point of view of relativity (rigidity,
crossing the speed of light) and from the point of view of quantum mechanics (trajectory,
interpretation of probability density). Therefore, the potentials themselves should be
interpreted as exhibiting some structure which could arise from quantum field theoretical
calculations. Wave equations with potentials are used here as a first step to understanding
more sophisticated theories.

The use of different truncations of the Coulomb potential should be viewed as a test for
the consistency of the theory behind the equation being used. In fact, for either choice of
truncating potential, the electron is modeled as a point charge in the limit as r,— 0, and
therefore it is expected that the prediction of stability or instability will be independent of
the choice of truncation. If different results for different models of the electron are found,
then this may be considered as a weakness of the approach behind the equation rather than
a final statement about a particular potential. In short, this thesis compares the prediction of
stability or instability from a two-particle wave equation with respect to spontaneous
electron-positron pair creation, depending on which of the two truncating potentials'is used

in the equation.



—

1-4 Matching of the constants. Details of the two-particle relativistic equation
that is used in this work have not, as yet, been given (they are found in Chapter 2). Thus,
information discussed up to this point could be applied to any one of the many two-particle
wave equations available in the literature—a degree of freedom that opens a door to future
research. Before a second topic of this thesis is introduced, however, it is necessary (o
mention that the equation to be used is formally identical to the S-wave radial Klein-
Gordon.

In the course of studying the two-particle wave equation with the potential of Eq. (1-3)
and (1-5), we were led to consider methods of finding exactly solvable potentials in
homogeneous, second-order, linear differential equations. In particular, methods of
finding exactly solvable potentials became an area of interest as the quadratic truncating
potential of Eq. {1-5) was substituted into the formally identical S-wave radial Klein-
Gordon wave equation and then solved using Frobenius' method. As will be seen in
Chapter 4, Frobenius' method yields expressions for which convergence is difficult to
ascertain and for which the solutions must be approximated in keeping the first few terms
of the infinite series. Finding a closed form solution, or even searching for other truncating
potentials with closed form solutions, led to an alternative method of solving the wave
equation besides assuming a power series solution, One method that was particularly
attractive to us for finding exactly solvable potentials was the method of "matching of the
constants” (Beker, 1993).

In the method of matching of the constants, a differential equation with a known
solution is transformed by replacing the independent variable of the equation’s solution
with an unspecified function of a new independent variable and then changing independent
variables of the differential equation to the independent variable of that function. Terms of
the transformed differential equation's invariant function (Birkhoff, 1978, p. 46) are then
matched with terms of the wave equation's invariant function, both equations having the
same independent variable. The generality of the method is that the function that is the
original independent variable of the differential equation is unspecified and is selected to
yield a constant term in the transformed equation’s invariant function such that this term can
be matched with the constant energy term in the invariant function of the wave equation.
Successful matching of the remaining terms derives expressions for the potential energy
and the energy.

Matching of the constants is backwards from the usual process of solving wave
equations in the sense that the solutions, in closed form, are assumed from the start, and it

is the potential that is derived, as opposed to substituting a known potential into the wave
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equation and then deriving the solutions. Matching of the constants amounts to a solution
begging for a problém.

The method of matching of the constants shall be used here to derive exactly solvable
potentials in the radial Schrédinger and Klein-Gordon equations. The Schrédinger
equation is used to demonstrate and practice the method on familiar grounds, while the
radial Klein-Gordon equation is used to tie in matching of the constant with the research on
strongly coupled positroniom. Although we did not foresee matching of the constants from
the outset of this research, developing techniques to find exactly solvable potentials is an
important area of research in itself. For example, perturbation theory in quantum
mechanics relies on having potentials with closed form solutions. In the very least, the
chapters on matching of the constants provide an alternative to Frobenius' method for
obtaining solutions corresponding with well known potentials and they provide a review of
other potentials found in the literature.

1-5 Overview. Chapter 2 reviews relativistic wave equations beginning with the

Klein-Gordon and the Dirac equations, leading to a presentation of the two-body wave
equation that we use to study strongly coupled positronium. In Chapter 3, we solve this
equation with the truncated Coﬁiomb potential of Egs. (1-3) and (1-4). A transcendental
equation is derived by matching the logarithmic derivatives of the two solutions at the
boundary of the two domains, from which the energy of strongly coupled positronium as a
function of ¢ is found numerically. Data tables are placed at the end of this thesis along
with a plot of the data.

In Chapter 4, Frobenius' method, (not used in Chapter 3) is used to solve the wave
equation now using the potential of Egs. (1-3) and (1-5). The physical solution that is
found corresponding to the quadratic potential of Eq. (1-5) is approximated by keeping the
first term of the power series solution. We also return to this point two more times and
keep the first two terms and then the first three terms of the solution. A new transcendental

equation is obtained but the algebraic results of Chapter 3 are again useful in finding the
energy of strongly coupled positronium as a function of «. Data tables and plots of the
data pertaining to each of the three approximations of the solution in the r < r, domain are
found at the end of the thests.

Chapter 5 is a change of topics from strongly coupled positronium to matching of the
constants as a method of deriving exactly solvable potentials. Matching of the constants is
mathematically introduced and illustrated. Chapter 6 applies the method of matching of the

constants starting with the confluent hypergeometric differential equation to derive three

8
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exactly solvable potentials in the radial Schrodinger equation. Chapter 7 features the
hypergeometric equation and the radial Schrodinger equation. Three more potentials are
derived. Chapter 8 looks for exactly solvable potentials in the radial Klein-Gordon

equation. Chapter 9 offers a conclusion to this work.




CHAPTER 2

RELATIVISTIC WAVE EQUATIONS

The Klein-Gordon and Dirac equations are two well-known relativistic equations
appropriate for spinless and spin-5 particles, respectively. Both of these one-particle
equations are also relevant to this work. The Dirac equation appears in the derivation of the
two-particle equation that is used here, which turns out to be an equation formally identical
to the S-wave radial Klein-Gordon equation. Therefore, both equations are introduced in
this chapter. Also introduced is the two-particle equation which will be solved later in
Chapters 3 and 4 in connection with this study of strongly coupled positronium.

The two-particle equation we use is due to H. W. Crater and P. Van Alstine and
derived in the framework of relativistic constraint dynamics (Crater, 1987). Roughly
speaking, because in a relativistic two-body problem there is not an absolute time, changing
to relative and center-of-momentum coordinates is not a textbook procedure as it is in the
non-relativistic two-particle problem, ‘Crater and Van Alstine's approach to deriving their
two-particle wave equation, however, has "seemed to reopen the door to manifestly
covariant (this time full four vector) canonical (in relativistic phase space) quantized
descriptions” (Crater, 1994). The "door" that is being referred to pertains to the difficuities
that arise in insisting that "relativistic interactions among point particles be realized
canonically with a common parametric time chosen as the time for each particle” (Crater,
1994).

One reason for trusting the Crater and Van Alstine equation is that a closed-form energy
spectrum is obtained that is in agreement with that of parapositronium through order o
(Crater, 1987). Another reason is that the Crater and Van Alstine equations correctly
reduce to the Dirac equation (with a Coulomb interaction) when one of the particle masses
becomes infinite (Bawin, 1990). On the other hand, since two-partticle wave equations are
still an open arca of research (Landau, 1990, p. 219), our goal here is to test the validity of
the Crater and Van Alstine two-particle equation, based upon the consistency or
inconsistency of its prediction of the strong field behavior of the energy of positronium, for

two different potentials.
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2-1 Klein-Gordon equation. The Klein-Gordon equation is a relativistic quantum
mechanical equation appropriate for spinless particles. It can be derived (using natural
units, f = ¢ =1) through the substitution of id/dt in place of E and ~iV in place of p in
the relativistic energy-momentum formula E* = p? +m®. In an external electromagnetic

field, through a relativistic application of minimal electromagnetic coupling, it becomes

(i—-a%—q(DTT(x,t) = [(%-— qA)2 +m2}P(X,t) (2-1)

where A is a vector potential and @ is a potential that transforms like the time component
of a 4-vector, and is referred to as the "scalar” potential. In all applications of Eq. (21}
throughout this thesis, it will turn out that gA = 0, a fact that simplifies the equation.
Another simplifying fact is that only an S-wave radial Klein-Gordon type equation is
needed for parapositronium. Therefore, the S-wave radial Klein-Gordon equation is now
derived from Eq. (2-1). Based on the potentials that we will be using (as introduced in
Chapter 1), the first step of the derivation is to set gA =0, and ¢®=V(r) in Eq. (2-1).
Next, using spherical coordinates, the method of separation of variables is initiated by

assuming a solution of the form

P(x,t) = 2 () Y, (0,8)e ™ (2-2)
r

Equation (2-2) is now substituted into and differentially operated on by Eq. (2-1), as
follows.
The right-hand side of Eq. (2-1), after setting ¢A = 0, has become
(- +m® )W (2-3)

The expression of the Laplacian, in spherical coordinates, is

V= i—‘?—[ﬂ —‘9_) L (2-4a)

rt ar r?

where L*, the angular momentum squared, is

11
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1 0 0 1 &
= | sing-Z |4 — 2 4
sin8 00 [5111 80)+ sin’ 8 3¢ (2-4b)

The first term of Bq. (2-4a) takes derivatives with respect to r only. Indicating the
number of derivatives taken with respect to » with primes, the first term only of Eq. (2-4a}

operating on ¥, leads to

—%KA&MKW (2-5)

while the second term of Eq. (2-4a), with I* given in Eq. (2-4b), operating on ¥, leads to

L6+ D, —iEr
L;_?’)_Y' ["(e’qb)e E (2"6)
Adding Bgs. (2-53) and (2-6) and remembering to include the m* of Eq. (2-3), the'right—
hand side of the Klein-Gordon equation, Eq. (2-1) becomes

{—i'” + [—‘g('e j D, mz}“—;}x 8.)e ™ (2-7)

s r

Turning our attention to the left-hand side of Eq. (2-1), the end result of operating on

Y is expressed as

(E-V)2y, (6,0)" (2-8)
¥

Equating the left-hand side to the right-hand side, or Eg. (2-8) to Eq. (2-7), and using the
! -+ factthatthe ¥, (6,¢)e”™ form a complete set of independent functions, the radial Klein-

Gordon equation is obtained:

w’+ [(E ~V) - ﬂ—;ﬂ«)« - mzjlu, =0 (2-9)

r

Finally, setting £ =0 in Eq. (2-9), the centrifugal barrier disappears and the S-wave

! radial Klein-Gordon equation becomes

i2




u”+[(E—V)2—m2]u=0 (2-10)

Solutions of Eq. (2-10) will be studied in Chapters 3, 4, and 8. Our immediate

attention is now turned to the Dirac equation.

2.2 Dirac equation. The Dirac equation is a relativistic wave equation that is used
to describe spin-1 particles, such as the electron, and the positron, In fact, the Dirac

equation is important historically because the positron was first predicted from this
5 ' equation,
The Dirac equation, for a free particle of mass m, in covariant form, is

v p, Y (x,1}=m¥(x,t) (2-11)

where summation over the Greek index is implied (,u =, 1,2,3), the Dirac 7y matrices are

found in Landau (1990, p. 246), and

Py = i(ﬁ%) = i(%,V) (2-12)

Thus, remaining in natural units, and rearranging slightly, Eq. (2-11) becomes

(7' pu—m)¥=0 (2-13)

Prior to writing the Klein-Gordon equation in Eq. (2-1), minimal electromagnetic
coupling was invoked in order to describe a particle in an external electromagnetic field.
That step is followed here by substituting

Pt - pf—gA* (2-14)

into the free particle Dirac equation of Eq. (2-13), where A* =(®,A), a four vector

consisting of the scalar and vector potentials, leading to
[y“(p#ﬁqu)wm]‘on (2-15)
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Our need for Eq. (2-15) is minimal, but the equation is included in this chapter for the
following two reasons. First, two coupled Dirac equations appear at the outset of the
derivation that leads to the two-particle wave equation used here (Van Alstine, 1986).
Thus, we need to be familiar with the Dirac equation to introduce the next section. Second,
the Dirac equation has been used to describe an electron in the external Coulomb field of a
nucleus of charge Z, and predicts the occurrence of spontaneous electron positron pair
creation beyond Z =172, This problem is found in Greiner (1985), from which Fig. 2-1
and Table 2-1 is taken. We note that the truncating potential that Greiner uses is that of a
homogeneously charged sphere—our truncating potential of Eq. (1-5). Therefore,
although we are using a two-particle equal mass wave equation for strongly coupled
positronium, we might be biased to also find instability in this work at a corresponding
value of o =~ 1.25. Conversely, since the Crater and Van Alstine equations reduce to the
Dirac equation when the mass of one of the particles becomes infinite, not finding
instability may be a difference in the strong field behavior of an equal mass system

compared with the unequal mass case (Bawin, 1950).

2.3 The Crater and Van Alstine equation. Crater and Van Alstine have
recently applied Dirac's constraint dynamics and supersymmetry to a system of two
spinning particles to derive two coupled Dirac equations that govern the quanium
mechanics of two spin- & particles interacting through world scalar and vector potentials

(Crater, 1987). For the specific case of electromagnetic structure, minimal substitutions are
made into free Dirac equations, such that p, > p,—A =x and p, —> p, - A =7,.

leading to two coupled Dirac equations written as
yi(m y +m)y=0 (2-16a)
Vo 72+ m )y =0 (2-16b)

where a chiral Dirac matrix representation is being used. As luck would have it, Crater and
Van Alstine use the convention of a plus in front of the mass instead of a minus sign as
written in Eq. (2-13). This difference in sign convention should not slow us down at this
point, however, because only m® terms appear in the two-particle equation, as will be

noted presently. Also in anticipation of things to come, we note for future reference that
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A = A, =(q®,qA) = (V(r),0), where V(r) is the potential energy term describing the

electromagnetic interaction.
Sefting these two equations aside momentarily, a list of the kinematic variables relevant

to the constraint description of the relativistic two-body problem, found in Crater (1983), is
now given here for the case of m, =m, =m;
(i} relative position, x, — X,
(i) relative momentum, p=%(p - p,)
(iii) total c.m. energy, W= x/:?
(iv) total momentum, P=p, + p,
(v) constituent c.m. energies, £ = &, = W/2
(vi) relativistic reduced mass and energy of the fictitious particle of relative motion,

m? W? —2m?
Tar Ey
%4 2W

In these expressions, x, p and P are 4-vectors and P is negative.

~ Returning to the two coupled Dirac equations above, a rough outline of how these
equations, in the c.m. frame, reduce to an equation that is formally identical to the S-wave
radial Klein-Gordon equation is now given. Mathematical details, which are not the focus
of this thesis, can be found in Van Alstine (1986). To begin, Eqs. (2-16a) and (2-16b) are
"squared” and then the two resulting equations are subtracted and added together. The
difference equation is equivalent to 2P- py =0 a condition that removes the relative time
in the center-of-mass rest frame, while the summed equation divided by two leads to an

equation that collapses for an equal-mass singlet wave function ¢ into the following

equation:

[0+ m ~ (84, V)| =0 2-17)
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The parameters £, and m,, have been defined above in (vi), but for convenience, they will

be referred to later with the following equations numbers:

W —-2m®

Ey :—-—Q,—H—/—— (2-18)
2
m, = i% (2-19)

For convenience in anticipation of solving Eq. (2-17), this equation is now put into the
invariant form of differential equations, as described by Birkhoff (1978, p. 46). Using
spherical coordinates, the differential momentum operator —iV replaces p, and, keeping in

mind that for the lS0 state we have @ = ¢(r), the following variable switch is made in Eq.

(2-17),

o(r)= 4} (2-20)
¥
leading to
L4 ey - V) ~m} ] uir)=0 (2-21)

dr’

Finally, note that Eq. (2-21), when compared with Eq. (2-10), is an equation that is

formally identical to the S-wave radial Klein-Gordon equation, where E, the energy of a
Klein-Gordon particle in Eq. (2-10), is analogous to &, the reduced energy of the

fictitious particle of relative motion in this relativistic two-particle application, and m in Eq.
(2-10), the mass of a Klein-Gordon particle, is analogous to my,, the reduced mass of the

fictitious particle in the two-particle problem. Equation (2-21) will be solved presently, for

the truncated Coulomb potential of Egs. (1-3) and (1-4), with the purpose of obtaining
W/2m as a function of & to determine whether there is an @ beyond which W/2m

becomes negative.
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FiG. 2-1. Instability of the Dirac equation in a strong field (Greiner, 1985, p. 85).

[re |

-;ﬂ posiive energy continuum

3
[3]
H

energy gap

MeG2e-500

mwwwd
— U —— negative enérgy continuy

Fig. 3.14.‘Energies of the Dirac equation for an electron in a Coulomb-central field. The dots indicate
the energies for point nuclei (fine-structure formula), which exist for 5,4 and p,,, states only up to

Z=137.(

discussed in Chap. 6 [Mi 72b]

TaBLE 2-1, Binding energies of the Dirac equation in a strong field (Greiner, 1985, p. 835).

) represent the energies for extended nuclei. The overcritical case (Z > Z;, = 172 is

Table 3.3. The binding energies of 15, electrons in keV as a function of the central charge Z, The
energies assuming a point nucteus (Sommerfeld’s fine structure formula) are compared with results
for extended nuclei. For this caleulation the potential of a homogeneously charged sphere with radius
R=124"Y3fm and A4 = 2,5Z was used

7 Egoim Elgx' z Ego'uu E_;x:

10 - 1.362 - 1.362 100 —161.615 - 161,166
20 - 5472 - 5472 110 - 206.256 — 204.8%0
0 - 12396 - 12.395 120 —264.246 - 259,693
40 - 22.254 - 22253 130 —1345.368 ~ 330,749
0 — 35229 — 35227 137 — 499,288 - 394741
60 ~ 51.585 — 51.578 140 - - 427,012
0 - 71.699 - 71.679 150 - - 563.062
80 - 96.117 - 96.062 160 - — 758.490
90 —125.657 -125.502 169 - —-1001.154
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CHAPTER 3

STRONGLY CCUPLED POSITRONIUM

—

Strongly coupled positronium in the 'S, state is studied using an equation that is

formally identical to the S-wave radial Klein-Gordon. This equation is presently solved for

a truncated Coulomb potential leading to a transcendental equation that contains the center-

of-mass energy. The numerical solution of the transcendental equation highlights this
chapter, as the center-of-momentum energy of the S, state of strongly coupled positronium

is found as a function of the coupling constant &. Finally, the prediction of stability or

instability from the Crater and Van Alstine equation is observed. Natural units with

h=¢=1 are used.

3-1 Solving the differential equation. We now solve Eq. (2-21)

d*u

recalling that

_ w? —2m?
W W
m*
mw = Hﬁf—

18

pa + [(sw - V}2 - mﬁ,] u(r)=0

@2-21)

(2-18)

(2-19)

(1-3)

(1-4)




First, the substitution of the constant potential energy of Eq. (1-4) into Eq. (2-21),

leads to the differential equation

du
ﬁ+ B2 u(r)=0 (3-1)

where K is a constant now defined as

I
et
=My —| &y +— (3-2)
Fy

Equation (3-1) is a well known equation, and its general solution is written immediately as
u(ry=c cosKr+c,sinKr (3-3)

where ¢, and c, are arbitrary constants. In order to have u(r)/r remain finite at the origin,

the constant ¢, is chosen as zero. Therefore, the physical solution to Eg. (3-1) is
u,(r)=c,sin Kr (3-4)

where the subscript 7 denotes Region I which is defined as the region in which r < .

Next, we turn to Region /I, or that region in which r>r,. Substitution of the

Coulomb potential Eq. (1-3)

V(r)m% (r>ry) : (1{-3)
into Eq. (2-21) leads to
dzu 9 3 Q.SWCC 052
— | gy + - L u(r) =0 (3-5)
dr r 7

Equation (3-5) is solved by transforming it into an equation with solutions that are

recognized. (As a second method of obtaining and verifying the general solution asserted
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here, Frobenius' method will be used to solve this differential equation in Chapter 4.) To

proceed with the transformation, a change of variables is made such that

p=2Kr (3-6)

where
K=(m}-ei)" 3-7)

In continuing to. make a change in variables, the chain rule of differentiation is used to

derive the following relationship

2 2
d—2=4K2 d -
dr dp

(3-8)

Substitutions are made using Eqgs. (3-8) and (3-6), leading to the transformation of Eq. (3-

5) into the equation

du |-1 k L-p’
e Bt e e =0 3-
Lo ek g 39)
where
k 28“’0‘0 v (3-10)
(mw 5fv)—
lmgﬂzaz (3-11)
4

Equation (3-9) is Whittaker's equation, with solutions that are Whittaker functions
(Arfken, 1985, p756). In mathematical terms, the general solution of Eq. (3-9) is

H(P) =, M, , (P) + C4Wk,p(p) (3-12)
where ¢, and ¢, are arbitrary constants, and

M, ,(p) = "p™" (4 + 1 —k1+2p) (3-13a)

where
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2
Fi(a,c;x) =1+21+M£~
cll cle+1) 2!

ey, c#0,—-1,-2,.0 (3-13b)

and
W, . (p) = e PPt U(%+ 1 - k. 1+ 2u;p) (3-14a)

where

. {—c¢ N, T
Ula,c;x)= T |: Fila,c;x) x ¢ Fla+l-¢2 c;X)

(a—C)!(C—l)!— (a_l)!(l—c)! jl (3‘l4b)

sin e

(Arfken, 1985, p. 753). The asymptotic expansions of Eqgs. (3-13b) and (3-14b) are also
found in Arfken (1985, p. 757), and are, respectively

() e {1+(1—a)(c—a)+(I—a)(Z—a)(c——a)(c—a+1)+.__} (3-15)

C(a) x° Ix 21x°
1 a(l+a—c) ala+l){l+a~c)2+a~-c) Ca
x_{ T " 21(-x)" * } (3-16)

From Eq. (3-15), we see that the exponential term of this expansion dominates as x — oo.
Therefore, in order to have u(r)/r remain finite at infinity, we pick ¢, =0, and conclude

that the physical solution to Eq. (3-9) in Region I is
uy(p) = e, W, (0) (3-17)

Having obtained the solutions to Eq. (2-21) in Regions / and I, the boundary
conditions on these solutions are now applied, which are that the two solutions and their
first derivatives match at = r,. Another way of describing this step is to say that the
logarithmic derivatives of the two solutions need to match at r=r,. Stated mathematically,

we have
¢, sinKry =, W, ,(p)| _ (3-18)
and
Ke,cos Kry = (dfdr)e,W, , (p)| (3-19}

r=ry

Dividing Eq. (3-19) by Eq. (3-18) gives
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(d/driW, . (p)
AT k) 3-20
W, (o) (3-20)

KcotKry=

r=ry

Equation (3-20) is a transcendental equation in W/2m, the center-of-mass energy of SCP
divided by the mass of the electron plus the positron. Solving Eq. (3-20) for W/2m as a

function of o is the work of the next sections.

3-2 Choosing the degrees of freedom. In this section, algebraic steps are
taken in order to write Eq. (3-20)

(AW, o) 520

KcotKry = (o)
by

r=ry

as an equation of the three variables W/ 2m, ¢, and mr,, where W is the energy of SCP
in the center-of-mass frame, m is the mass of the electron, r, is an arbitrarily small cut-off
radius, and ¢ is the coupling constant. This task is equivalent to writing K , k, it,and p
interms of W/2m, o, and mr,.

To begin with, g is straightforward as it depends only on ¢¢. Rearranging Eq. (3-11)
we find that

p=(i-a) (3-21)
Next, consider p = 2Kr, where
K=(mt-ep)" 3-7)
e, = WE -2m* (3-3)
2w
My, = %2 (3-4)

Multiplying and dividing Bq. (3-3) by 4m?, leads to
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2 _
Ey = m{—y /2:1
y

where y is defined as y=W/2m. From Eq. (3-4), we see that m, =m/2y.

find that

2y y

K = £m (LT_[MT Y

Expanding, simplifying, and keeping the positive root in Eq. (3-23), K becomes

TS AT IR S AR T

)

|
K= (m,zv - 83,,)/2 = m(l— yZ)A
i Therefore, with the help of Eq. (3-24), it follows that
p=2Kr= 2(1 - yg)mmr'

an equation expressing p in terms of y, and mr, when r is evaluated at .

Consider next &, one of the indices of the Whiltaker function:

PO
- 1
(i — &3 )"
Using Eqs. (3-22) and (3-24), we find that
)
=
y(1-57)

Finally, we obtain the corresponding expression of K:

23

(3-22)

Furthermore, by substituting this last expression and Eq. (3-22) back into Eq. (3-7), we

(3-23)

(3-24)

(3-25)

(3-10)

(3-26)



22
= [ma, - [ew + E] ] (3-2)
Fo

Using Bqg. (3-22) in order to make a substitution for &,, and with m, =m/2y, Eq. (3-2)

in terms of y, mry, and ¢, becomes

f{=m{(1—y2)— 2 e —( - ]T (327)

ymr, mr,

The lone factor of m in Eq. (3-27) does indeed match up with a factor of r; in the
transcendental equation, Eq. (3-20), as, by inspection, there is an r, that multiplies K
inside the argument of the cotangent, and, as will be seen later, there is an r, that will come
from the right hand side of Eq. (3-20) to combine with the K which is outside of the
cotangent.

In summary, the K , k, 1, and p, of Eq. (3-20), and therefore Eq. (3-20) itself, have
all been written in terms of W/2m, o, and mr,. We now choose to solve Eq. (3-20) for
W/2m by fixing mr, and allowing o to vary. The end result will be graphs of W/2m
versus o, with each curve being labeled for a given mr,. In order to solve Eq. (3-20)
using the software Mathematica, however, it will first be necessary to perform a few more

algebraic calculations.

3-3 The secant method and Mathematica. The following recursion formula
(Abramowitz, 1972, p. 507) is an important formula in solving Eq. (3-20) with

Mathematica:
PW, . (p) = (3P =KW, (P) = Weiu(P) (3-28)

The prime in this equation means the derivative with respect to p. The importance of this
recursion formula is that it can be used to express the right hand side of Eq. (3-20) in terms
of unprimed Whittaker functions. Implementation of Eq. (3-28) begins by dividing it
through by pW, ,(p) to obtain
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Wiulp) 1 [(% p—k)- M} (3-29)

Using the chain rule and recalling that p = 2Kr, we find that (d/dp) = (/2K )(d/dr), which
leads to the expression of Eq. (3-29) as

(d/f;ﬂ;p) (p) %[(%P ~ k)= M} (3-30)

This expression is exactly the right-hand side of Eq. (3-20) in terms of unprimed Whittaker

functions.
Since it is the confluent hypergeoretric function U{ag,c;x) of the Whittaker function,

(see Eqs. (3-14a) and (3-14b)) that is built into Mathematica, Eq. (3-30) in its most useful

form is

(d/dr)Wk.ﬂ(P)_l P _U(-“_k—yz,zﬂ“‘hp) )
—.ka,#(p) r|:( k) ] (3-31)

2 Ul —k+%.20 +1;p)

Note that after evaluation at r = r,, it is the 1/r term of Eq. (3-31) that combines with the
lone factor of m in Eq. (3-27) leading to an mr,, as discussed at the end of the previous
section.

Equation (3-31), evaluated at »r=r,, and K cotffr0 are now written in terms of
W/2m, o, and mr,, by using Eqs. (3-27), (3-26), (3-21), and (3-25) to make
substitutions for K, k, u, and p, respectively. We find that the bracketed quantity in Eq.
(3-31), in terms of W/2m, «, and mr,, is

2 | |
ey -2 Lo o namg -
s ey’ - %) ALY 2
M(1-') -y o aly’-%) 1 '
U (%_aZ)ﬁ ____2}54__,2(%_052)%+1,2M(1—y2)é
_ i-y)" 2 ]

(3-32)
where, for convenience in working with Mathematica, we have defined M =mr, and

y = W/2m. (Furthermore, the symbol o would have to be replaced by a symbeol such as
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a, as Mathematica lacks Greek symbols.) This equation is Eq. (3-32) and will also be
referred to as f.
Similarly, the left hand side of Eq. (3-20), K cot Kr,, multiplied by r,, is

P % 9 %
g-__M[(l_‘f)_%yi)u%} cot M[(l_yZ)_M_“_z}
(3-33)

The above equation is Eq. (3-33) and shall also be referred to as g.

The equations f and g are functions of the variables (&, y, M). We now choose to fix
o and M, and find y such that g(y)= f(y). The secant method, built into the software
package Mathematica, is used to find numerical values for y. Mathematica can also run a
Newton's method program. A review of Newton's method and the secant method, and the

commands to implement them on Mathematica is briefly presented here.
Tn the equation g(y)= f(»), an F(y) can be defined as

F(y)=f(»)-&(»)=0 (3-34)

In a Taylor series e;(pansion, the first two terms approximate F(y) as
F(y) = F(3o)+ (r = 30)F (%) (3-35)

Since F(y)=0, Eq. (3-35) can be rearranged as

£) (3-36)

Given an initial "root" as y,, Eq. (3-36) is used to compute y, which in turn becomes the
next y,, beginning a loop of calculations, Mathematica ends the loop when a specified

accuracy is reached. The command that is given to Mathematica to run Newton's method is

FindRoot[lhs == rhs,{y, y,}] (3-37)

where the initial "root" goes in the y, slot, f in the /hs slot, and g in the rhs slot.  The

downfall of Newton's method in this case, referring back to the expressions for f and g,
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is that the first derivative of F(y) with respect to y is required. Since Mathematica could

not compute the required derivative symbolically, we turn to the secant method.
The secant method, of course, circumvents the necessity of having the first derivative
as required by Newton's Method. To see this, the approximation

y) F ) F ¥
F'() - F)=Fln) (3-38)
Y=Y
is assumed, and substituted back into Eq. (3-36), leading to
F(3,)( = %)
e e Wy (3-39)
F(n)=F(3)
The command given to Mathematica to run the secant method is

FindRoot[lhs == rhs, {y, (7,7, 1] (3-40)

Two initial "roots" are required here, but once provided in the y, and y, slots and initiating
the secant method, Mathematica successfully returns y, for a fixed o and mr;. (One way
of obtaining numerical values for y, and y, in Eq. (3-38) is to have Mathematica plot f
and g on the same graph and then read off two labeled points from the horizontal axis that
are close to the actual root.) The data is given in Tables 3-1 to 3-6 and curves of W/2m

versus « for fixed values of mr, are plotted in Fig (3-1), all of which are compiled at the

conclusion of this chapter.

3-4 A prediction of stability. In Fig. (3-1), a vertical line is drawn at o =1/2,
dividing the graph into two regions for discussion. This line is significant because we may
not expect to see stability or instability only until after crossing this line in the direction of
increasing ¢. This expectation is based upon the problem of a Klein-Gordon particle in a
strong Coulomb field (Fried 1991, p. 52), from which Fig. (3-2) is taken. Specifically,
the Klein-Gordon equation, using the same interaction of Eqs. (1-3) and (1-4), but where
o is replaced by Zar, and with « reassuming its physical value, describing a pion in the
strong ficld of a heavy ion of variable charge Z, predicts that just after Z =68 therc is a Z

beyond which the energy of the pion dives below —m.
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Therefore, based upon the result summarized in Fig. (3-2), we may be biased in our
two-particle, equal mass problem, to find an & beyond o =12, such that W/2m dives

below 0. Inspection of Fig. (3-1) in the region of & >1/2, however, shows that there is
no such ¢, and that the Crater and Van Alstine equation of Eq. (2-21) stands in sharp
contrast with the result of instability obtained from the Klein-Gordon equation in the
problem described above. Furthermore, as mentioned in Chapter 2 and referring to Fig.
(2-1), "these results are in sharp contrast with corresponding results from the Dirac
equation, even though the CV equations correctly reduce to the Dirac equation when the
mass of one of the particles becomes infinite. Thus, the stability properties of a two-body
system with equal masses may be quite different from the unequal mass case, at least if one
trusts the CV equations in the nonperturbative regime" (Bawin, 1990), where CV denotes
Crater and Van Alstine.

In the region of & < /2 of Fig. (3-1), data points are noticeably missing, with the
exception of points at o = 65/137. Mathematica did return other values of W/2m in this
region, but as o decreased, the program indicated that such roots were not within the
prescribed accuracy after its default number of fifteen iterations. One way to avoid this flag
was to give Mathematica two new initial guesses that were in close agreement out to several
decimal places with the root that was returned with the flag. The expected behavior of the
roots in this region, however, have ultimately been estimated here with a dotted line in Fig.
(3-1), using end points of W/2m =1, for the free particle with o =0, and the root that
was reported for a bound state at & = 65/137. Diving below zero is not expected in this
region.

Our main result of this chapter is the derivation of Fig. (3-1), which recovers an earlier
plot of W/2m versus ¢ for fixed values of mry (Bawin 1990). We will now change the
truncating potential to see if such a change makes a difference in the prediction of stability

that was found here.
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TABLE 3-1

mr, = 0.005
o W/2m

65/137 0.955227
70/137 0.940571

75/137 0.91832

80/137 ().882261

85/137 0.822378
90/137 0.729538
95/137 0.601955
100/137 0.463908
105/137 0.342973

110/137 0.252598
115/137 0.189766
120/137 0.14656%
125/137 0.116359
130/137 0.0946685
135/137 0.0786647
1407137 0.06655235
145/137 0.0571745
150/137 0.0497665
155/137 0.0438103
160/137 0.0389464
165/137 0.0349196
170/137 0.0315451
175/137 0.0286863
180/137 0.0262409
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TABLE 3-2

mry, =0.001
@ W/2m
65/137 0.953764
70/137 0.936056
75/137 0.903075
80/137 0.828607
83/137 0.660836
90/137 0.41309
95/137 0.224924
100/137 0.128718
105/137 0.0808856
110/137 0.055022
115/137 0.0397794
120/137 0.0301354
125/137 0.0236771
130/137 0.01915
135/137 0.0158562
140/137 0.0133847
145/137 0.0114818
150/137 0.0099841
155/137 0.008783
160/137 0.00780394
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TABLE 3-3

mr, = 0.0001
a | W/2m
65/137 0.952633
707137 0.930682
727137 0.014596
747137 0.887845
T57137 0.867018
TIN37 0.796947
T8I137 0.739966
80/137 0.570407
817137 0.466949
827137 0.3667
837137 0.280924
85/137 0.163879
877137 0.100334
907137 0.0538241
O1/137 0.0449076
027137 0.037894
037137 0.032305
047137 0.0277974
057137 0.0241217
T00/137 0.01316
1057137 0.00816
107137 0.00552
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TABLE 3-4

mr, = (.00001
o W/2m
65/137 0.952092
T0/137 0.92591]
721137 0.900132
747137 0.834452
75/137 0.759611
76/137 0.631225
T1/137 0.453345
781137 0.283515
797137 0.169449
807137 0.103965
81/137 0.066808
82/137 0.0449294
83/137 0.03144906
84/137 0.0227828
85/137 0.0169964
86/137 0.0130038
87/137 0.010169
90/137 0.00540308
TABLE 3-5
mr, = 0.000001
x W/2m

65/137 0951831
70/137 (0.921203
717137 0.905084
T21137 0.874512
T3/137 0.803581
747137 0.626785
757137 (0.336896
76/137 0.141734
71137 0.0633911
T8/137 0.0318247
797137 0.0176212
80O/137 0.010547%
S1/137 0.00672048
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TABLE 3-6
mry = 0.0000001
@ W/2m
65/137 0.951705
70/137 0.916038
717137 0.888679
721137 0.804709
73/137 0.495539
T4/137 0.138974
75/137 0.039898
76/137 0.0145635
TN37 0.006373
TR/137 0.00318674
79/137 0.00176284
RO/137 0.00105493
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Fic. 3-1. Center-of-momentum energy versus field strength for a constant truncation of the
Coulomb potential (Crater and Van Alstine equation).
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Fig. 3-2. Instability of the Klein-Gordon equation in a strong field for a constant
truncation of the Coulomb potential (Fried, 1991, p. 53).

Efm

72 73 T4

Fig. 1. 15 bound-state energy spectrum for a Rlein-Gordon particle with interaction (1)-(2)

as a function of the external charge Z. The different curves (from upper right to lower lefl)

refer to a radius rg = 10-3, 109, 1013, 1021 and 10-27 fn, respectively, and to m = pion

mass. Note that our resuits hold for any mass, provided that the radius rp is rescaled in
. such a way that mry keeps a constant value.
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CHAPTER 4

A QUADRATIC TRUNCATING POTENTIAL

Strongly coupled positronium in the 'S state is being described by a differential

equation that is formally identical to the S-wave radial Klein-Gordon equation. This
differential equation is presently solved again for the Coulomb potential, but in this chapter,
a quadratic truncating potential is used in place of the truncating constant potential of
Chapter 3. A transcendental equation, resulting from matching the logarithmic derivatives
of the two solutions, will be solved to find the center-of-momentum energy of strongly
coupled positronium as a function of ¢, the fine structure constant, leading to a prediction

of stability or instability with regard to spontaneous, real, electron positron pair creation.

4-1 Trobenius' method and the Coulomb potential. Equation (2-21),

formally identical to the S-wave radial Klein-Gordon equation,

d’u 2
?%—[(BW—-V) ~miy|u(r)=0 (2-21)
is used here to describe the 'S, state of strongly coupled positronium. In this chapter, Eq.

(2-21) will be studied for the following potential:

V(r) :ir@ (r>r,) (1-3)
2
V(r)=§-%|:%~r§] (r<ry) (1-3)

where r, is an arbitrarily small cut-off radius, and & is the coupling constant.

The substitution of Eq. (1-3) first into Eq. (2-21), leads to

2 2 ’
L[mL%i} ur)=0 (-5)
dr r r
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In Chapter 3, Eq. (3-5) was solved by transforming it into Whittaker's equation, the two
solutions to which are, of course, Whittaker functions. For the purpose of demonstration
and to confirm that Whittaker functions are indeed the solutions, Eq. (3-5) is solved here

using Frobenius' method
To begin, Eq. (3-5) is examined in the limit r — eo. In this limit, Eq. (3-5) becomes

W' —Ku=0 r-—oo (4-1)

where
K =ml-¢ (4-2)

(The above definition of K? is made to be in agreement with Eq. (3-7), in anticipation of
the comparison of the solution of Chapter 3 with the solution obtained presently.) Of the
two solutions to Eq. (4-1), the one that does not blow up at r — o is exp(—Kr); therefore,

u(r) is now assumed to be of the form

u(r) = exp(~Kr) f{r) (4-3)

where

o0

flr)= Zanr”+A a, 0 (4-4)

=0

Having extracted the asymptotic behavior of u(r), Eq. (4-3) is substituted back into
Egq. (3-5), leading to the following differential equation for f(r):

2

F7_2Kf - [C:_z 22 J F=0 (4-5)

!

or

i[(n +A)(n+A-1)+a’ ]a" Pty i[zgwo: —2K(n+ M)]a, =0 (4-6)

=0 n=0

Equation (4-6) is satisfied by solving individual equations the terms of which are all of the
same power in r. The lowest order term in Eq, (4-6) is the r*7* term, and since there is

only one of these terms, we find that

(A =2+ o')a;r' =0 (4-7)
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In Eq. (4-7), since a, # 0, the quadratic equation in the brackets, known as the indicial

equation, must be equal to zero. Using the quadratic formula, the index A is determined to

be either one of the following values:

tp @-8)

where
p=i-o (4-9)

The above definition of ¢ is made intentionally to match Eq. (3-13).
The remaining higher order equations, contained in Eq. (4-6), that are in like power of
-, can be satisfied, in this case, in general. A general equation describing terms of order

m+ A —1 is the following:

[(m +A) m+A+1)+ az]a,mr’"**"' +[2e,0~2K(m+ A, ™+t =0 (4-10)

Equation (4-10) is satisfied if

2K[(m+ A)—k]a,

= 4-11
e [(m+/’t)(m+ﬂ.+1)+a2] “-10)
where
— ewa
k= @4-12)
(mw ey)

The definition of Eq. (4-12) is made to be in agreement with Eq. (3-10). Equation (4-11)
is a recursion relationship between coefficients in the power series solution, Eq. (4-4). We
now proceed by writing out the terms of «(r) for each of the specific values of A.

The positive root, A = (1/2)+ 4, is considered first and in addition to o = (/4 - u’
from Eq. (4-9), substitutions are made into Eq. (4-11), leading to

_a,(m+pu—k+i)2K

_ 4-13
w4l (m +1+2)u)(m+1) ( |

o

We use this recursion relationship and substitute Eq. (4-4) into Eq. (4-3) in order to rewrite
u(r) more compactly as
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)= Y a (4-14)

n=0

We find that the first few terms of u(r), in the case of 4 =(1/2)+ 1, are

2, ~k+)p  (H-k+i)u—k+3)p?
= A TALR | (u 2) P 2 )P -
dr)=ae’p {Jr (r2n) U (r2n)2+am) 21 (1)

where p=2Kr and the arbitrary constant a; has been defined as a, = cl(ZK)%“‘ . The
infinite series in the brackets of Eq. (4-15) is identified as the confluent hypergeometric
function, F (,u—k+§,l+2u;p), first encountered in Eq. (3-13b). Therefore,
suppressing momentarily the arbitrary constant ¢, we see that Eq. (4-15) is exactly the
Whittaker function, M, ,(p), of Eq. (3-13a).

We now recover the second Whittaker function. Switching from the positive root to
A =(1/2)— p, the negative root in Eq. (4-8), we find that the algebra outlined in the
paragraph above leads to analogous relationships with the only difference being that —f
ultimately 1'epiéces i everywhere in Eq. (4-15). Therefore, the Frobenius' meihod yields
M, _,(p) as our second solution to Eq. (3-5).

Since it is the Whittaker function W, , (p), first encountered in Eq. (3-14a), that is
preferred over M, _,(p) as the second solution to Eq. (3-5), the following linear
combination of M, ,(p) and M, _,(p) is used to construct W, ,(p):

w

k.

(p)= (=24 M " T(2u)

T p o) e O gy e P) (4-16)

(Abramowitz, 1972, p. 505). Thus, we recover the second solution claimed in Chapter 3.
In Summary, the 'S, state of strongly coupled positronium can be described by Eq. (2-

21). The Coulomb potential substituted into this equation leads to Eq. (3-5). In turn,

solving Eq. (3-5), this time using Frobenius' method, confirms the general solution as
u(p) =M, (p)+ e, Wy, (p) (4-17)

Furthermore, in Chapter 3 and using Eq. (3-15), we have seen that the constant next to
M, ,(p) should be set equal to zero in order to have u(r)/r remain finite as r—»co.
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Therefore, with ¢, = 0, we conclude that in the region in which r > r,, or Region II, the

solution to Eq. (2-21) is
u,(p) =W, ,(p) (4-18)

A quadratic potential, given in Eq. (1-5), is to be used as a truncating potential of the
Coulomb potential in the region r < ry, or Region I, where r, is an arbitrarily small cut-

off radius. The need for truncating the potential is to avoid the singularity of the Coulomb
potential at 7= 0 and to have access to & beyond 1/2. Equation (1-5) now replaces the
potential A(r)=-oy/r, of Chapter 3 as the truncating potential for the purpose of
determining whether this change affects the prediction of stability with regard to pair

creation.

4-2 Frobenius' method and a quadratic potential. In this section, Eq. (2-
21),

- :
% + [(Sw - V)2 - mtzv] u(r)=0 (2-21)

is solved with a quadratic potential, specifically

2
V(r)zsg—[%—rg] (r<ry) (1-5)

0

Substitution of Eq. (1-5) into Eq. (2-21), leads to

2
L‘; —+ 8t + +ﬁ}u(r) =0 (4-19)

2

where
052
§=—= 4-20
4r§ ( )
y=- EL 4-21)
2rg 41’3
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+ (4-22)

2 _ a2

=—{my — &y} +
p ( v W) 4rt Yo
Equation (4-19) is to be solved using Frobenius' method, and therefore, a power series

solution, of the form

5

w(r)=Y ar""* 4, #0 (4-23)

=0

is assumed, and substituted back into the differential equation. After the substitution, Eq.

(4-19) can be written as

oo

Py af(n+ A+ A1 S " pr']=0 (4-24)

n=0

Finding the lowest order term in r of Eq. (4-24), we see that the indicial equation is
A(A-1)=0, such that A =0 and A =1. Handling all of the higher order terms by
writing out a general equation, as done with the Coulomb potential, does not yield a two-
term recursion relationship between coefficients. This fact makes the problem messy,
algebraically speaking, in determining the coefficients because equations in the same power
of r will have to be generated from Eq. (4-24) and analyzed individually, and not all at
once in a two-term recursion relationship.

We select A =0 to analyze first. Terms of Eq. (4-24) are written out for n=1 up to,
say, 5. Then, terms of like power in # are collecied to give the following five equalities:

¥ terms;  Pa, +2a, =0 (4-25)

' terms:  Pa, +3-2a,=0 (4-26)

F* terms: 4, + fBa, +4-3a,=0 (4-27)
r*terms: o+ Pa, +5-4a5=0 | (4-28)

From Eq. (4-25), we have
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a, = ﬁao (4-29)

Substituting Eq. (4-29) into Eq. (4-27), leads to

1 2
a,= ;—3-[%— - V}“o (4-30)

Similarly, from Eq. (4-26), we have

o=—Fa (4-31)

Substituting Eq. (4-31) into Eq. (4-28), leads to

(B
as = 5.4(3'2 ’}/)al (4-32)

With coefficients ¢, up through a; in hand, Eq. (4-23) gives the solution of Eq. (4-19),

corresponding to A = 0, approximately as

2 1 : 4 3 1 : 5
u(r):a{lw«vgr +E(%~~—}’]r +---}+ al[r—fz F +5.4(£2~—7Jr‘+--}(4—33)

Note that Eq. (4-33) is an even series plus an odd series, and in this way, it is reminiscent

of the sine and cosine solutions associated with the truncating potential of Chapter 3.

It is redundant to analyze Eq. (4-24) with A =1 because the two acceptable values of
A differ by a positive integer, in this case, meaning that the smaller value, 4 =0, either
yields two independent solutions or no solutions in the form of a power serics (Hildebrand,
1976, p. 131). Thus, Eq. (4-33) is taken to be the general solution to Eq. (4-19). The
physical solution is found by demanding that u(r)/r remain finite at r=0. Therefore, the
constant a, is chosen as zero, and in Region I we have

L (B s
u’(r):a'[r_3l-}2r3+5-4[£2_y}‘%} .
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where
30 e,0
= 2L 4t 4-21
v (ng dr ] (@-21)
2
B=—(m}—el)+ o, e (4-22)
4r, Ty

As a final note in working with Eq. (4-34), we must now decide how many terms tb
keep in the series. Because in Region [ the variable r is arbitrarily small, and in the
interest of simplicity, u,(r) will first be approximated by

u,(ry=ar (4-35)

in the next section. The consequences of keeping the first two terms and the first three

terms of Eq. (4-34), however, are also discussed in this chapter. Equation (4-35) will now
be matched with w,(p) = c,W, ,(p) at the boundary r =7,

4-3 Finding the energy. Having a solution for Eq. (2-21) in Regions [ and I/,
the steps taken in Chapter 3 to determine W/2m as a function o for fixed values mr, are
followed here.

The boundary conditions on the solutions in Regions / and II are that the two
solutions and their first derivatives match at » = r,. Applying these boundary conditions to

the solutions, Egs. (4-35) and (4-18), leads to the following two equalities:

ary =W, P, (4-36)
and
a, = (dfdr)e, W, (p) _, (4-37)
Dividing Eq. (4-37) by Eq. (4-36) gives
L - _(d/dr)wk.ﬁ (p) (4-38)

g - Wk.ﬂ (P)

r=ry
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an equation analogous to the transcendental equation Eq. (3-20). Prior to solving Eq. (4-

38) for W/2m as a function of ¢ with Mathematica, the results of Chapter 3 are needed
here. First of all, Eq. (3-30)

(d/ f;ji;#) (p) _ ;1:[(_% p—k)— M] (3-30)

is used to write Eq. (4-38) as

Ulu—k~%,2u+15p)
1=|{tp—k)- 4-39
[(*“‘p J Ui~ k+ %20+ 1;p) (4-39)

Then, in order to express the right-hand side of Eq. (4-39) in terms of y(= W/2m), o, and
M(= mr,), the function defined as f in Eq. (3-32);

| 2y Ofyz—y 1 % 2\ ]
v oy =4 € )A_y((l_yz;/)‘5,2(%—062)/+1,2M(1_y-)/
’ ~
M(l*yz) _y(l—yﬂ)‘ B 0(( 2ﬁy) | | I
- y(l—y)' 2

(3-32)
is recalled, such that Eq. (4-38) becomes 1= f. The variable y can now be found for a

given value of o and M, using the secant method and the software Mathematica.
A computer file containing f is created, if one does not exist already from the research

of Chapter 3, and the secant method is implemented, for a given value for « and M, with

the command
FindRoot [1 == f, { y{ve-¥ }}] (4-40)

where numerical values close to an expected root are put in the y, and y, slots. The results
of using Bq. (4-40) are tabulated in Tables (4-1) to (4-6), which in turn are plotted in Fig.
(4-1). In Fig. (4-1), we see that there are only positive values of W/2m as a function of

o, indicating the same result of stability that was found in Chapter 3. It is also noted,
however, that the values derived here for W/2m have decreased compared with Chapter 3.
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This feature might have been expected since the truncation of the potential of Eq. (1-5)

provides a deeper potential well in comparison with the truncation of Eq. (1-4).

4-4 Keeping two terms. Before we reach final conclusions, the next step in this
work is to approximate «,(r) with two terms kept in the series, or

N I ]
u!(r)—-al[r 3.2r} (4-41)

The boundary conditions are again applied to u,, now given in Eq. (4-41), and u,,

which continues to be u;(p)=c,W, ,(p). In so doing, the steps just taken in deriving Eq.

(4-38) are followed, leading to a new transcendental equation:

B
=57 (djdr)W,,(p)

ry -———g——rg Wk,u(p)
3-2

(4-42)

r=ry

In order to express the left-hand side of Eq. (4-42) in terms of y, «, and M, first recall

that 3 was defined as

9o’ 3e,@

2
dry Yy

(4-22)

B=~(mi — i)+

Two substitutions are made into Eq. (4-22) using Eqgs. (3-22) and (3-24). After algebraic

computations, we find that

o2 .2 932%3"2"% _
ﬁ_m[(l y)+4M2+M( ; H (4-43)

Upon evaluating the right-hand side of Eq. (4-42) at r =r , note in reference to Eq. (3-31)
that there is an r_ that will be brought over and multiplied with the numerator on the left-

hand side of Eq. (4-42). Therefore, with thé help of Eq. (4-43), the left-hand side of Eq.
(4-42), multiplied by r , in terms of y, ¢, and M, is defined as the function A and

written as
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1- é{mz(yz —1)+90” + 12MO{Z—~——I/EJ]
y

h —

= —
1- 514»[41%2()»2 —1)+9a* + 12Ma[MH

(4-44)

y

Finally, after defining % in the computer, and specifying an « and an M, the
command used in Mathematica to find y = W/2m, is

FindRoot[ f== h,{y,{ Yoo }}] (4-45)

The results of using Eq. (4-45) are found in Tables (4-7) to (4-12) and plotted in Fig.
(4-2). From Fig. (4-2), we note that keeping two terms of the solution in Eq. (4-34) does
not lead to a change in the result that only positive values of W/2m as a function of ¢ are
. found, but the data does show a faster drop-off of W/2m for o >1/2 compared with Fig.
(4-1). This faster dropping off led to keeping three terms in Eq. (4-34), the results of
which are summarized in Tables (4-13) to (4-18) and plotted in Fig. (4-3). We observe
that the curves of Fig. (4-3) are intermediate with respect to the curves of Fig. (4-1) and
Fig. (4-2). This would suggest that convergence is taking place, such that keeping more
and more terms would only lead fo curves that are also intermediate with the extremes of
Figs. (4-1) and (4-2). In conclusion, then, the main result is that Eq. (2-21) has been
consistent, at least for the two choices of potentials in Chapters 3 and 4, in predicting
stability with regard to spontaneous pair creation.

After completing the research of this thesis, it has come to our attention, that Greiner
(1990, pp. 43-44), from which Fig. (4-4) is taken, has studied a pionic atom with the
Klein-Gordon equation, using the potential of Eq. (1-3) and (1-5) to describe the
interaction between the pion and a heavy nucleus. Greiner's study, in comparison with a
study by Bawin in Fried (1991, p. 52), from which our Fig. 3-2 is taken, where the Klein-
Gordon equation and the Coulomb potential with the truncation of Eq. (1;4) was used, is in
agreement with the prediction of instability. Therefore, the Klein-Gordon equation is seen
to be consistent with its prediction of stability for the unequal mass case, using either
truncation of Eq. (1-3) or Eq. (1-4), whereas the Crater and Van Alstine equations
represented by Eq. (2-21), has also been consistent with its prediction of stability in the

equal mass case, for these two truncations.
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At this point, we abruptly shift from our study of strongly coupled positroninm using
Eq. (2-21) to the subject of finding exactly solvable potentials--particularly potentials in the
radial Klein-Gordon equation due to its relationship with Eq. (2-21)--using a method called
matching of the constants. This change of subjects was made in an effort to find a closed
form solution of the differential equation of Eq. (4-19), or even to derive another potential
that has closed form solutions, and then to use it in place of the quadratic truncating
potential. In hindsight, the solution of Eq. (4-19), found using Frobenius' method (Eq.
(4-34)), was probably not as objectionable as it first appeared to be for use in this work.
Nonetheless, the method of matching of the constants proved to be educational, applicable
to strongly coupled positronium by way of Eq. (2-21), and important in its own right.
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TABLE 4-1

mr, =0.005
o | W/2m
557137 0.973229
G037 0.065445
657137 0.954012
T0/137 0.939718
75137 0.015010
807137 0.875511
857137 0.804942
007137 0.691486
05/137 0,542559
100/137 0.393755
105/137 0.277687
110/137 0.198892
1157137 0.147279
120/137 0.112935
125/137 0.0803352
1307137 0.0725563
1357137 0.060246
T40/137 0.0509608
145/137 0.0437867
1507137 0.0381260
155/137 0.0335802
1607137 0.0298603
165/137 0.0267932
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TABLE 4-2

mry, = (0.001
o W/2m
60/137 0.964997
657137 0.953577
TO/137 0.935345
757137 0.899908
R0/137 0.813717
857137 0.611633
00/137 0.343213
957137 0.173462
1007137 0.098396
105/137 0.0616612
1107137 0.0418975
115/137 0.0302914
1207137 0.0229578
1257137 0.0180488
1307137 0.014608
1357137 0.0121043
140/137 0.0102253
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TABLE 4-3

mry = 0.0001
> W/2m

60/137 0.964739
65/137 (.952545
70/137 0.930078
72/137 0.9131]
74/137 (0.88375
75/137 0.860039
77137 0.776817
78/137 0.707623
BO/137 0.508044
81/137 0.396945
82/137 0.298961
83/137 0.222253
85/137 0.125935
87/137 0.0763954
90/137 0.0408381
91/137 0.0340622
92/137 0.0287382
93/137 0.0244986
94/137 0.021081
95/137 0.0182948
100/137 0.00998768
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TABLE 4-4

mr, = 0.00001

o Wi2m
65/137 0.952049
70/137 0.925341
72/137 0.897864
747137 0.822572
75/137 0.732195 -
76/137 0.578074
71/137 0.383123
78/137 0.224364
79/137 0.130218
80/137 0.0790911
81/137 (.0506488
82/137 (.0340209
83/137 .0238044
84/137 0.0172432
85/137 0.0128644

TABLE 4-3
mr, =0.000001

4 | W/2m
65/137 0.95181
70/137 0.920608
714137 0.903529
721137 0.86967
73/137 0.786053
74/137 (0.573158
75/137 0.271451
76/137 0.108323
777137 (.0480104
78/137 (0.024066
79/137 0.0133224
80/137 0.00797514
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TABLE 4-6

mr, = 0.0000001

o | W/2m
657137 0.951605
707137 0015343
7137 0.385839
T3] 0.787748
73137 0.426003
TAI137 0.10613
751137 0.0301644
761137 0.0110038
T3 0.00481571
T8I37 0.00240844
7737 0.00133255
807137 0.000797581
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Fic. 4-1. Center-of-momentum energy versus field strength for a quadratic truncating
potential (Crater and Van Alstine equation), keeping one term of #,(r).
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TABLE 4-7
mr, =0.005
o W/2m
55/137 0.973081
60/137 0.965036
65/137 (0.953706
70137 0.935837
75/137 0.902119
80/137 0.824251
85/137 0.646569
90/137 0.392044
95/137 0.209976
100/137 0.120174
105/137 0.0760103
110/137 0.0521879
115/137 0.038143
120/137 0.0292424
125/137 0.0232677
130/137 0.0190671
135/137 0.0160002
140/137 0.01369
145/137 0.0119036
150/137 0.0104911
155/137 0.00935269
160/137 0.00842
165/137 0.00764472
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TABLE 4-8
mr, = 0.001
24 W/2m
60/137 0.964808
65/137 0.952858
70/137 0.932018
75/137 0.879493
80/137 0.678754
85/137 0.279088
00/137 0.0982156
95/137 0.0445379
100/137 0.02449
105/137 0.0153158
110/137 0.0104742
115/137 0.00764289
120/137 0.00585491
TABLE 4-9
mry, = 0.0001
e W/2m
60/137 0.964676
65/137 0.9522
70/137 0.927145
72/137 0.904564
747137 0.854544
75/137 (.803711
TT/137 0.590685
78/137 0.432092
8O/137 0.184696
81/137 0.120942
82/137 0.0819571
83/137 0.0575613
85/137 00311917
87137 0.0186874
o0/137 0.00994881
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TABLE 4-10
mr, = 0.00001
24 W/2m
65/137 0,951883
70/137 0.922469
21137 0.883289
74/137 0715515
75/137 0.487544
76/137 (0.245436
T7/137 0.114925
T8/137 0.0582317
79/137 0.0323122
RO/137 0.0193534
81/137 0.012334
82/137 0.00826926
83/137 0.00578146
w4/137 0.00418656
85/137 0.00312318
TABLE 4-11
mr, = 0.000001
& W/2m

65/137 0.95173
T0/137 0.917483
71/137 0.894026
T2/137 0.832447
T3/137 0.622604
747137 0.241198
757137 0.072897
T6/137 0.0267204
T1/137 0.0116978
T8/137 0.0058494
79/137 0.00323568
80/137 0.0019363
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TABLE 4-12

mr, = 0.0000001

& W/2m
65/137 0.951656
70/137 0.911526
T1/137 0.866057
72/137 0.629305
73/137 0.136187
74/137 0.0261812
75/137 0.00734135
76/137 0.00267456
777137 0.00116999
78/137 0.00058497
79/137 0.000323574
80/137 0.000193631
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Fic. 4-2. Center-of-momentum energy versus field strength for a quadratic truncating
potential (Crater and Van Alstine equation), keeping two terms of «,(r).
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TaBLE 4-13

mr, =0.005
a W/2m
55137 0973153
60/137 0.965245
65/137 0.954359
70/137 0.938096
75/137 0.910876
80/137 0.859639
85/137 0.760653
90/137 0.398915
95/137 0.413283
100/137 {.268586
105/137 0.178643
110/137 0.125234
115/137 0.0924373
120/137 0.0712533
125/137 0.0568965
130/137 0.0467549
135/137 0.0393369
140/137 0.0337503
145/137 0.0294383
- . 150/137 0.0260405
155/137 0.0233155
160/137 0.0210973
165/137 0.0192687
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TABLE 4-14

mr, =0.001
o4 W/2m
60/137 0.964905
65/137 0.953248
707137 0.933976
751137 0.892912
80/137 0.775596
857137 0.493254
907137 0.223314
95/137 0.106391
1007137 0.0592507
105/137 0.0372566
110/137 0.0255599
115/137 0.0186913
1207137 0.0143434
1257137 0.0114263
1307137 0.009377
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TABLE4-15

mr, = 0.0001
o | W/2m
60/137 0.964708
65/137 (.952388
70/137 (.928895
72/137 0.90995
747137 0.874265
751137 (.842999
77137 0.723798
78/137 0.623075
80/137 0.371797
81/137 0.265261
82/137 0.18764
83/137 0.134576
85/137 0.0741617
- 87/137 0.0447185
90/137 0.0239296
91/137 0.0199834
92/137 0.0168836
03/137 0.0144151
94/137 0.0124245
95/137 0.010801
100/137 0.00595265
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TaBLE4-16

mr, = 0.00001
a wjam |
65/137 0.951973
T0/137 0.924204
727137 0.892819
74137 0.791873
751137 0.659391
76137 0.450998
TI137 0.252578
| 787137 0.135152
] 797137 0.0761591
i 807137 0.045869
_ 81/137 0.0293145
82/137 0.0196918
837137 0.0137897
84/137 0.0100003
85/137 0.00747054
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TABLE 4-17

mr, = 0.000001

o W/2m
65/137 0.951774
TO/137 0.919396
717137 0.900138
72/137 0.858008
737137 0.73946
TAI137 0.444954
757137 0.166632
767137 0.0628303
TI3T 0.0276437
787137 0.0138521
797137 0.00767483
807137 0.00459963
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TABLE 4-18

mr, = 0.0000001

@ W/2m
65/137 0.951677
70/137 0.913897
717137 0.879271
72/137 0.742554
737137 0.290238
747137 0.0613926
757137 0.0173061
ToI137 0.00631605
777137 0.00276716
TRI137 0.00138556
797137 0.000767545
80/137 0.000459981
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FiG. 4-3. Center-of-momentum energy versus field strength for a constant truncating
potential (Crater and Van Alstine equation), keeping three terms of #,(r).
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FIG. 4-4. Instability of the Klein-Gordon equation in a strong field for a quadratic
truncation of the Coulomb potential (Greiner, 1990, p. 43).
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Energy eigenvalues for a ™ meson in the Coulomb potential of an
extended nucleus. The charge distribution of the nucleus is assumed o
be a Fermi distribution [see (10)]
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CHAPTER 5

MATCHING OF THE CONSTANTS

The radial Schrédinger and Klein-Gordon equations are homogeneous, second-order
linear differential equations. In this chapter, a method of solving second-order linear
differential equations called "matching of the constants” is introduced. The method
compares a general differential equation with a known solution, to either of the radial
equations, The method is of interest here because the potential of the wave equation can be
left unspecified. Therefore, since the solution is assumed in advance, when a potential is
found it can be deemed as an exactly solvable potential. Instead of specifying a potential

and looking for a solution, the solution is specified, and the potential energy is sought.

5-1 Standard and invariant form of differential equations. A

homogeneous, second-order linear differential equation in its most general form is

o d

) R () B0 ) =0 e

A shorter way of writing second-order differential equations will be adopted:

|Fy ) Fyly=0 (5-2)

Equation (5-1) is put into standard form by dividing it through by F,. Defining
F =F,/F, and Fy = F,/F, the standard form of Eq. (5-1) in the short-hand notation is

LE,Fly=0 (5-3)
[LFLF]

In addition to having the function multiplying the second-order differential operator
equal to one, the invariant form of a sccond-order differential equation also has the function
multiplying the first-order differential operator equal to zero. To put Eq. (5-3) into
invariant form, a substitution is made for the dependent variable y. This substitution is
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y(x) = exp| -4 [ B dx |y () (5-4)

The function F, is the first-order differential operator coefficient of Eq. (5-3). The
substitution of Eq. (5-4) into Eq. (5-3), results in a new differential equation that has y as

its dependent variable

[LOI(x)]w=0 (5-5)

(RY (EY
1) = F, - (?J _ (?J (5-6)

with the prime on the middle term indicating differentiation with respect to x. The function

where

I(x) is referred to as the invariant function, and Eq. (5-5) represents a differential equation
in invariant form.

In future applications, a given equation in standard form will be transformed to an
equation in invariant form by computing the invariant function with Eq. (5-6) first, and
then naming a new dependent variable, realizing that it is related to the old dependent
variable by Eq. (5-4) The usual process would be to make the appropriate variable switch
first, from which the invariant form of the differential equation is derived. An example

follows.

5-2 The radial Schridinger equation in invariant form. To demonstrate
Equations (5-4) and (5-6), the radial Schrédinger equation, with a central potential V{ r),

2 2 z
[_h (1 d rj+h§(f+1)+V(f‘)_E]R(r)=0 (5-7)
m

T 2
2m\rdr r

will be written in invariant form. First, Eq. (5-7) is put into standard form:

’ 2

|2, TUEED 2y 2 E]R =0 (5-8)
r r ht h

To write Eq. (5-8) in invariant form, /{ r) is found according to Eq. (5-6), such that
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pA
o S G

2r 2r

—E 4 2
(r;'" D27y (5-9)

Thus, in terms of a new dependent variable, say u(r}, the radial Schrodinger equation in
invariant form, is the familiar
[1 0, €(€+1) 2m 2m

> —?V( )+%—E}u() 0 (5-10)

where, applying Eq. (5-4), we have
Rzexp[%'jgdr]uzlu (5-11)
r r

such that the relationship between the old dependent variable R, and the new variable u, is
found to be # =rR.

With the invariant function of the radial Schrédinger equation written out explicitly in
Eq. (5-9), we observe that this invariant function can be written as the sum of a function of
the independent variable plus a constant. In general, if a given differential equation in the
form of Eq. (5-5), has an invariant function that can be expressed as a function plus a
constant, I{x)= g(x)+ &, and has a corresponding solution, y,, then that equation is

associated with a Sturm-Liouville problem,

d

Al Y _ .
dx[p(x) dx}+[q(x)+lw(x)]q/ 0 (5-12)

specifically,
[LO.g(x)+¢€lw, =0 (5-13)

recognizing that p(x) =1, and, with I(x) = g(x)+ €, that the weighting function, w(x), is
unity. As is apparent in Eq. (5-10), the radial Schrodinger equation is also of the form of
Eq. (5-13), and thus, it is recognized here as a standard example of a Sturm-Liouville

problem. We will see that the method of matching of the constants involves writing other,
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solved, differential equations into the form of Eq. (5-13) for the purpose of matching them

with the radial Schridinger equation.

5-3 Preliminary algebra. Before introducing the method of matching of the
constants, it will be beneficial to derive a general result for later use. Assume that a solved,
second-order linear differential equation, written in invariant form, is given. This given
equation, with a specific invariant function and known solutions, is represented here in

general terms as

d2
[dG2 + I(G}} YWG)=0 (5-14)

The independent variable is G, a symbol! that is used to denote that this variable is a
general, initially unspecified, function of x. The requirement on the function G is that
G’(x) must obey the rules of weighting functions of Sturm-Liouville theory (Beker,
1990). The rule of weighting functions of Sturm-Liouville theory is that w(x)> 0.
Weighting functions are also assumed to be real functions.

A switch in the independent variable of Eq. (5-14) is now made from G to x. The
resulting differential equation will then be put into standard form and then transformed into
an equation that is in invariant form. To begin this process, the chain rule of differentiation

is used to find that

dG? G dx

2
&1 d(__l__d_)z_______ 5.15)
G’ dx :

The prime in Eq. (5-15) denotes differentiation with respect to x. The right-hand side of

Eq. (5-15) is used to replace d*/dG* in Eq. (5-14), and the subsequent differential

equation, with x as its independent variable, is

1 -G”
L e G = 5-16
[G'Z’ o ,I(G)]y( )=0 (5-16)

Before transforming Eq. (5-16) into invariant form, it is first put into standard form.

Multiplying Eq. (5-16) through by G”*, gives
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[1,-'-(—(;;,021((;)]};((;) =0 (5-17)

With Eq. (5-16) written in standard form, it is ready to be transformed to an equation that is
in invariant form. Using F, =G"*I(G) and F, =~G”/G’ in Eq. (5-6), the invariant
function of the transformed equation, which will by denoted by 7(G), is calculated to be

!

I (G)=G'21(G)_[—2g'] _(;g,:)z

e ”eo
167 367, GG (5-18)

As an aside, Eq. (5-18) contains the Schwarzian derivative which is defined in Kulkarni
(1980) as

{G.x}= G'(x) Z[G’(x)] (>-19)

Equation (5-19) can be used to write 1(G) in a more compact form:

1{(G)= é{G,x} + G (G) (5-20)

A switch is now made in the dependent variable of Eq. (5-14) from y to a new
variable, ¥. Application of Eq. (5-4), using F, =-G"/G’, defines the relationship

between the new variable y with the old variable y:

’”

y(G)=exp[-;—' = dx] w(G) (5:21)

Because y is assumed to be a known solution of Eq. (5-14), it is opportunistic to write ¥
in terms of y . After integration and algebra in Eq. (5-21), ¥ in terms of y, is found to
be
G
W(G) :% (5:22)
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With Equations (5-18) and (5-22) in hand, the invariant form of Eq. (5-16) can be

written as

1 Gm 3 GHZ y(G)
1,0, —— ==+ G*I(G) | 5=2%=0 5-23
[ 2 G! 4 GI‘Z ( ) |G,I ( )

The prime denotes differentiation with respect to x, and G stands for G(x). The beauty
of Eq.(5-23) is that it is written in terms of known functions--the invariant function I(G),
and the solution y(G) of Eq. (5-14). The function G(x) is unspecified and is derived in
such a way that a constant term appears in the invariant function of Eq. (5-23) for the
purpose of matching this term with the constant term in the invariant function of the
Schriédinger equation.

In order to use Eq. (5-23) and thus apply the method of matching of the constahts,
solved, second-order differential equations must be supplied. In the next section, a
classification of differential equations will be discussed, leading to a handful of differential

equations that will form a pool of solved equations.

5-4 Classification of differential equations. In the method of matching of the
constants, a known, solved differential equation in invariant form with parameters and
independent variable, G{x), left unspecified, will be matched with the radial Schrédinger
equation in invariant form with the energy and the potential energy left unspecified. Instead
of specifying a potential and looking for a solution, the solution is specified and the
potential energy is sought. The pool of solved differential equations to be matched with the
Schrédinger equation and Klein-Gordon equation in the next sections, will be given,

One way to classify homogeneous, second-order linear differential equations is by the
behavior of their invariant functions. Specifically, functions may be classified according to
the nature (removable or essential), number and position of their singularities on the real
line. The following table is a classification of differential equations based on the number
and position of the singularities of the equation’é invariant function (Beker, 1990). The

nature of the singularities are not specified.
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TABLE 5-1

# Position Differential Equation Name

0 - [L,0,0]ly=0 —

1 0 [1,.4.,_91.}}, -0 Euler
X' X

2 0,1 [x(1~x),y — (1 + o+ B)x,—af],F, =0 HGDE

2 0,"co" [x,7—x—o)F, =0 CHGDE

Concerning the Euler equation in Table 5-1, this equation is also called the
equidimensional linear differential equation, the homogeneous linear equation, and
Cauchy's equation (Hildebrand, 1976, p. 12). In addition, the abbreviations HGDE and
CHGDE refer to the hypergeometric and confluent hypergeometric differential equations,
respectively. CHGDE is obtained from the HGDE by a scale transformation which takes
the singularity at x=1 to x=f and then causes it to conflow into the singularity at x = o,

The singularities of the differential equations that are listed in the above table come from
the behavior of the respective invariant functions and hence are on the finite domain. The
singularity at infinity of the differential equations themselves is not part of the classification
of equations in Table 5-1. This is perhaps due to the fact that the singularity at infinity is
inherent in each equation.

To illustrate a singularity at infinity of a differential equation, consider the first entry in
the table: [1,0,0] y=0. The invariant function of this equation is zero, causing the equation
to be classified as having an invariant function with no singularities. However, by

replacing x with I/z, such that

—+27— (5-26)

the equation [1,0,0]y = 0 becomes
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&y 2dy
LY, 29 5-27
7’ 7z dz (5-27)

In the limit z — O, a regular singular point at x = eo becomes evident.

As a second iHlustration of a differential equation's singularity at infinity, consider the
equation [1,0,—k2]y= 0. The invariant function of this equation is —k*, an arbitrary
constant having no singularities, thus putting the equation in the same class as [1,0,0]y =0
in Table 5-1. To determine the nature of the singularity of [1,0,-k2]y =0 at infinity, the

dependent variable is switched from x to 1/z, leading to

d* 2d K
[E?"LZEE_?}’:O (-28)

In the limit z — 0, an irregular singular point at x = oo becomes evident, and distinguishes
[1.0,-k*]y =0 from [1,0,0]y = 0.

Table 3-2 is constructed from a summary of solved second-order differential equations
that are classified according to their singularities (Morse, 1953, pp. 667-74). Unlike Table
5-1, Table 5-2, which is found at the end of this section, takes into account all of an
equation’s singularities, not just those of its invariant function, and states whether a
singularity is regular or irregular, Thus, the equation [1,0,—k2]y = 0, noticeably missing in
Table 5-1, is now distinguished from [L,0,0]y = 0, and appears in Table 5-2. ‘

The purpose of Table 5-2 is to assemble solved second-order differential equations that
can be used in conjunction with the radial Schrédinger and Klein-Gordon equations in the
method of matching of the constants. It is not the intention in constructing Table 5-2 to
limit future study to only these six equations.

The first three equations, transformed to an equation in the form of Eq. (5-23), have all
led to deriving a constant potential when matched with the Schrédinger equation. The
Mathieu equation will be used to conclude this chapter as a means of demonstrating Eq. (5-
23), and the method of matching of the constants. The confluent hypergeometric and

hypergeometric differential equations are the focus of later chapters.
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TABLE 5-2

Regular Irregular
Singular Singular Differential Equation Name
Points Points
One:
o0 None [1,0,0]y=0 —_
One: Linear Oscillator
€
None o [1’0’_k2 ]y =0 if k is imaginary
Two: A B
(),00 None [I’E’?}y =0 Euler
Two:
None 0,00 [1,0,a - 2gcos2x]y(x) =0 Mathieu
Three:
0,1,00 None [x(1-x),y -+ o+ fx,—af],F, =0 HGDE
One: One:
0 50 [x,7—x,-a}F, =0 CHGDE

5-5 Mathieu equation. To demonstrate the method of matching of the constants, a
generalized Mathieu differential equation will be derived and matched with the radial

Schrodinger equation.
The Mathieu differential equation is

[1,0,a - 2gcos2x]y{x)=0 (5-29)

The solution to Eq. (5-29) is the Mathieu function, denoted here by y(x). Properties of

Mathieu functions can be found in Abramowitz (1972).

The independent variable x in Eq. (5-29} is now taken to be a function, say x = G(r),
and a switch in independent variables from G to r is promptly made. Since Eq. (5-29) is
already in invariant form, the resulting equation from our switch is derived by substituting

the invariant function and solution of Eq. (5;29) into Eq. (5-23),

1’ 22 ’
1,0,1G——5G,1 +G"(G) ¥6) =0 (5-23)
26 4G” 1G]

as follows,
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173 ”l
1,0,_1_G_ 3G -
2G 4G

+Ga~G"2gc0s 2G} X6 (5-30)

N

Equation (5-30) is the generalized Mathieu equation which we now match with the radial
Schrédinger equation, Eq. (5-10):

—4(0+1) 2 2
{1,0,%—%&/@”%@5} w(r)=0 (5-10)

In anticipation of matching of the constants, the presence of the energy term in Eq. (5-10)
requires G(r) to be chosen such that a constant term also appears in the invariant function

of Eq. (5-30). One simple condition on G(r) in which a constant term is obtained is to
demand that G’ = a constant. According to this condition, we choose G = ¢, +c,, where

¢, and ¢, are arbitrary constants. Furthermore, we set ¢, =0, and with G=c¢,r, the

invariant function of Eq. (5-30) becomes
I(r)=c¢’a—c¢ 2qgcos2er (5-31)

The terms of Eq. (5-31) can be matched with the terms of Eq. (5-10) as follows:

—4(e+1)

=0 (5-32a)
__2;"_’{‘;_("_): — ¢ 2gcos2er (5-32b)
2}’;E =c’a (5-32¢)

The first of these equations, Eq. (5-32a), suggests that we set =0, Upon taking
¢ =0 in this and other such problems, the Morse potential for example, Eq. (5-10) may
from that time forward be considered as the one-dimensional Schrédinger equation. In
such cases, it becomes appropriate to replace r with . as the symbol for the independent
variable, and to denote the eigenfunction as ¢(x) instead of u(r). With this in mind, Eq.

(5-32b) can be rearranged such that
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V(x) - C12qh2

(5-33)

2cos2cx 2m

With the left-hand side of Eq. (5-33) equated to a separation constant, defined as V, the

potential energy is derived:

V(x)=2V,cos2¢x (5-34)
Finally, an expression for energy is obtained from Eq. (5-32c). We find that
E=—=c"a (5-35)

By equating the right-hand side of Eq. (5-33) to V, and solving for ¢], the energy in terms
of V, is

E=Vv,= (5-36)
q

Quantization of energy is found by selecting paramcters that lead to square integrable
eigenfunctions. The unnormalized eigenfunction is obtained merely by reading it off from
Eq. (5-30). Thus, with G = ¢,x, we find that

w(x)=1ﬁfc—{-? (5-37)

Equation (5-37) is unnormalized and y(c,x) is a Mathieu function.

We do not pursue this problem any further (Liboff, 1980, p. 576} since our goal here
was to demonstrate the method of matching of the constants by deriving an exactly solvable
potential, Bq. (5-34). The derivation of Eq. (5-34}) is in itself significant because it was
derived without any prior knowledge of its existence on our part which suggests that the
method of matching of the constants can uncover unexpected exactly solvable potentials.
On the other hand, attention is now turned to deriving potentials that are expected from the
outset. This will allow us to gain experience with the method of matching of the constants,

quantization of energy will be demonstrated in most of the cases, for the ultimate purpose
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of using this experience to derive an exactly solvable potential that may be used as a

truncating potential in the study of strongly coupled positronium.
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CHAPTER 6

CONFLUENT HYPERGEOMETRIC EQUATION

The method of matching the constants is used to match the radial Schridinger equation
with an equation that starts out as the confluent hypergeometric differential equation
(CHGDE). Three potentials will be derived--the Coulomb potential, the harmonic
oscillator potential, and the Morse potential for £ =0.

6-1 Confluent hypergeometric equation. To further demonstrate the method of
matching of the constants, the invariant function of a generalized confluent hypergeometric
differential equation will be matched with the invariant function of the radial Schrodinger

equation.
The confluent hypergeometric equation, CHGDE, is

[%,7 - x,—),F, (6, 7:x) = 0 (6-1)

The solution of Eq. (6-1), denoted by F,(a,7;x), is the confluent hypergeometric

function, or Kummer's function (Abramowitz, 1972, p. 504), a series of the form

oax ola+l)x’

y 1 y{y+1) 2! (62)

Fle,vix)=1+

In Eq. (6-2), y=0,—1,-2,... will not be allowed. Furthermore, if &= 0,-1,-2,...,
then, the otherwise infinite series of Eq. (6-2), truncates into a polynomial. A definition is
made for convenience, V=—¢, and for future reference, Eq. (6-1) has square integrable
solutions for v=10,1,2,... (Beker, 1950}

The standard form of Eq. (6-1) is

{L y“x,i}lfﬂ(—v, yix) =0 (6-3)
X X
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Using Eq. (6-3) as a starting point, an equation that is in invariant form will now be
derived. The invariant function of this equation is calculated by applying Eq. (5-6), leading

1o

’

f(x)mz_(y“x) _(’V*XT

X 2x 2x

= 1_7_2 _1_+(.Z.+V)_.l__l (6_4)
2 4 ) 2 x 4

Deriving Eq. (6-4) presupposes that a switch has been made, in accordance with Eq.
(5-4), in the dependent variable of Eq. (6-3). Defining the new dependent variable as
w(x), we now make the switch, such that

=V yx) = eXP[—% I 1;— }W(x) (6-5)

Integrating, and finding y(x) in terms of | F,(—v, ¥,x), leads to
w(x)=e x™ F(-v,7x) (6-6)

Substituting Egs. (6-4) and (6-6) into Eq. (5-5) gives the CHGDE written in invariant form

as

I\ 1 11,
{1,0,(%—%J;{+(%+ V]";"’E:|€'!2xmlFl(—V, ¥;x)=0 (6-7)

At this point, it is desired that the independent variable, x, is taken to be a function,
G(r). The algebra required to change independent variables from G to r in a second-
order differential equation was the subject of Sec. 5-3 in the previous chapter, and
produced Eq. (5-23) as a general equation for making this switch. Applying Eq. (5-23) by
substituting Egs. (6-4) and (6-6), as the invariant function and the solution, respectively,

results in the following equation, referred to as Eq. {6-8):
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" ' 2 2 22 ‘G/g V
103G 20 2O (L) Lo |8 )=

2G 4G7 \2 G’ G 4 led
(6-8)
The prime in this equation indicates differentiation with respect to .

Equation (6-8) is matched with the radial Schrodinger equation, and later, with the
radial Klein-Gordon equation, in deriving exactly solvable potentials whose eigenfunctions
involve the confluent hypergeometric function. Its importance cannot be emphasized
enough, as it is the starting point for research beyond what is given in this work.

Matching terms of the invariant function of Eq. (6-8) with terms of the invariant
function of the radial Schriddinger equation, requires the presence of a constant term in the
invariant function of Eq. (6-8). Obtaining a constant term is accomplished in the judicious
selection of the unknown function G(r). The selection of G(r) that leads to the derivation
of the Coulomb potential, the subject of the next section, is made by solving the differential
equation G’* = constant. Two other conditions on G{(r), also in the form of differential

equations, are the subjects of the following seclions.

6-2 Coulomb potential. Equatibn {6-8),

" 22 2 & ‘% %
{1016 36 +[7 }’JG +(I+V]G —lG’ZFW—iIF.(WJ;GFO

26 467 \2 4G 2 G 4 leq
(6-8)
is to be matched with the radial Schrédinger equation,
1,0, A _2my 2’”15} =0 (5-10)
r? i A

by requiring that G(r} satisfy the condition G’* = constant. The general solution to such
an equation is G = t¢,r +¢,, where ¢, and ¢, are constants. The constant ¢, is set equal
to zero and a choice is made to keep the positive sigh in front of ¢, which leads to a
G=c¢r.

With G = ¢r, the invariant function of Eq. (6-8) is calculated as

2 2
I(r):[gml’:{J%+(%+ v]%‘—%‘ (6-9)
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Equation (6-9) is now matched with the invariant function of the radial Schrodinger

equation. The constant terms, and the 1/ r* terms, match, respectively, as follows:

2mE _ —c]
=—1L 6-10
R 4 (6-10)

—t(£+1) =[2’__7_2ji (6-11)

¥ 2 4 )

The 1/r term of Eq. (6-9), matched with the V(r) term of the Schrédinger equation, gives

—2mV(r)_[1 )EL ]
=S (6-12)

As we begin to analyze Egs. (6-10} through (6-12), the following quadratic equation in
7 is obtained from Eq. (6-11):

¥ ~2y—40(¢+1)=0 (6-13)

The roots of this quadratic equation are ¥ =2(¢+1) and ~2¢. The positive root is chosen
over the negative root, This choice is made because the factor of G in the solution of
Eq. (6-8), where G =¢,r, would blow up at r =0 for y=-2¢.

Substitution of ¥ =2(£+1) is now made into Eq. (6-12). After the constant factors are

separated from the two factors that have r dependence, the following equality is derived:

2

V()= ;‘—m(e Fl+v)g (6-14)

The right-hand side of Eq. (6-14) is constant; therefore, the left-hand side of the equation is
also equal to a constant. In anticipation of solving for the Coulomb potential, the
separation constant is called ¢’. Setting —rV(r)=¢’, the potential energy is derived:

2

V(=% (6-15)

¥
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The energy is found, simply enough, from Eq. (6-10):

R '5'12
=—— 6-16
2m 4 ( )

The constant ¢, is determined by setting the right-hand side of Eq. (6-14) equal to e

After algebra, we have

2me’
o= 6-17
LR+ v) (©-17)

Substituting Eq. (6-17) into Eq, (6-16), gives the energy as
~me*

| R — 6-18

2R+ 1+ v) (6-18)

To determine quantization of energy, the eigenfunction is now considered. The

unnormalized eigenfunction, from Eq. (6-8), is

HGh

M(F)——W IFI(—V,}",G) (6-19)

Recall that for v=0,1,2,..., that the CHGDE had square integrable solutions and
therefore, v is now defined here as such. Furthermore, if we define n={({+1+ V),
leading to v =n—(£+1), then we demand that n 2(£+1). In addition, since the smallest

value of ¢ is zero, we note that n=1,2,3,... is required.
With the definition that n = (£ 1+ V), the energy is rewritten as

me4

E =-¢
! 25%n?

(6-20)
and Eq. (6-19), the unnormalized radial eigenfunction (recalling too that G=¢r) is

rewritten as

= 141
u(r):i—ir)—— ,F](—{n—(£+1)},2£+2;c,r) (6-21)

€
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with ¢, = 2me’[nh*.

Finally, to finish this section, the confluent hypergeometric function can be found in

terms of the associated Laguerre function from the following relationship:

" i)
Ln (JC) = ( n]m]) ]Fl(_n9m+ l,X) (6—22)

(Arfken, 1985, p. 755). Therefore, putting Eq. (6-19) in terms of the associated Laguerre
function, the final form of our eigenfunction is

-y

u, () =Ape * (er)" L5 (o) (6-23)

-t -1

The constant ¢, is given in Eq. (6-17), and A, is a normalization factor (Liboff, 1980, p.
397). We recognize, thus, the energy, Eq. (6-20}, and the wave function, Eq. (6-23), of
the Schrddinger hydrogen atom, as we now turn our attention to the harmonic oscillator

potential.

6-3 Harmonic oscillator potential. Equation (6-8),

rr "2 2 +2 2 “% %
[Lalgi— 36 -+GZ—Z{}1—+{Z+VJG ml{?ﬂf——g;ﬂfﬂ—myiﬂ=0

2G 46T \2 4)G" \2 /G 4 1
(6-8)
is again to be matched with the radial Schrdinger equation,
—{£+1) Zm 2m
\il,O,——(r'é*—)—?V(r)'l'?lz—E:lu:O (5-10)

In this section, however, the condition on G that will provide a constant term in the
invariant function of Eq. (6-8),is G /G= constant. The equation

12
%:& (6-24)

where ¢, is an arbitrary real constant, can be written as
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dG
_[—\E = ¢, dr (6-25)
which leads to
i 2
GzLﬁgﬁL (6:26)

The integration constant ¢, is chosen to be zero, and for convenience, we define
A=c? /4, and thus we have
G(r) = Ar? (6-27)

Equation (6-27) is used to calculate the invariant function of Eq. (6-8) in terms of r. The

result of the calculation is

1(r) = (1"—3+ 27— yz]iﬁ[l-f_ v}m—m2 (6-28)
4 r 2

The terms of Eq. (6-28) are promptly matched with the terms of Eq. (5-10). We find that

%3 +2y— ¢ = =4I +1) (6-29)
A = —‘2_”;”(” (6-30)
(1 + v}él-A = 2mk (6-31)
2 h
Equation (6-29) is a quadratic equation in ¥ whose roots are
—E+é‘md “—L’+l (6-32)
14 7 ¢ 14 2

The second value for ¥, —£+ £, causes the solution of Eq. (6-8) to blow up at r=0 for
all values of ¢ with the exception of £=0. Both roots, with £ =0, are valid and lead to
odd and even Hermite polynomials, respectively, as solutions to Eq. (6-8) for this choice
of &.
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Equation (6-30) is rearranged as

= (6-33)
m

A separation constant, which anticipates deriving the harmonic oscillator potential, is
defined as @w*m. The right-hand side of Eq.(6-33), when equated with the separation

constant, gives the potential energy as

Vir)= —21-*a)2m r (6-34)

The left-hand side of Eq. (6-33), when equated to the separation constant, gives the

constant A as

A= Thﬂ’- (6-35)

To derive the energy, Eq. (6-35) is substituted into Eq. (6-31), and solving for £ leads

to
E=no2v+7y) (6-36a)
E=ho(2v+{+3) with y= .e+% (6-36b)
E=ho(2v-+§) with y= % (6-36¢)

Having derived the potential and the energy, the eigenfunction will now be considered

to determine quantization of energy. The general form of the eigenfunction of Eq. (6-8) is

e“% G%

u(r) = —pme= F =V, 7.0 (6-37)
(r) \WG’l ( V.Y )

Substituting G = Ar® along with ¥ = £+3/2 into Fq. (6-37), and after some algebra, we

find that the radial eigenfunction can be rewritten as
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-Ar i+

wry=Ne * (AP} F(-v,0+3;Ar%) (6-38)

N is a normalizing constant into which most of the previous constant factors have been
absorbed. In order have Eq. (6-38) square integrable, we demand that v=0,1,2,..., a
requirement that also means the energy, Eq. (6-36b), is quantized. However, we choose to
write the energy and radial eigenfunction in terms of n, such that n=2v+¢. Under the
restriction on v, v=40, 1,2,...., we sce that n2 /. Finally, the energy and the radial

eigenfunction in terms of » are

E=ho(n+3) (6-39)
and
—Ar? 41
ury=Ne > (A?)7 \F(-4(n-0,0+3;Ar%) (6-40)

keeping in mind that A = ma/# and N is a normalization constant in Eq. (6-40).

If we return to Eq. (6-32) and set £ =0, then the values of ¥ are 3 or 4. These roots
lead to odd and even Hermite polynomials, and this derivation is included here to end this
section.

With £=0, it is preferable in this problem to think of Eq. (5-10) as the one
dimensional Schrédinger equation and replace r with x in Egs. (6-8) and (5-10), and u(r)
with @(x) in Eq. (5-10). With these replacements in mind, Eq. (6-38) would be derived

as
— At

@(x)=Ne * +Ax F, (—— v,%;sz) (6-41)

Again, in order to have a square integrable eigenfunction, we demand that v=0,L2,....
Furthermore, Eq. (6-41) compares favorably with the following relationship between odd

Hermite polynomials and the confluent hypergeometric function (Arfken, 1985, p. 755):

2(2n+1)!

2l pfon i) 6

Hy,.{x)=(-1)

Therefore, Eq. (6-41), again keeping in mind that A=mam/h and N is a normalization

constant, can be rewritten as
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—Ax®

¢(x)=Ne 2 H,,(VAx) (6-43)

and the energy, Eq. (6-36b), can be recast as
E=ho((2v+1)+1/2) (6-44)

To recover the even Hermite polynomials, ¥ =1 is substituted in Eq. (6-37), with

G = Ax?, leading to

~Ax?

o(x)=Ne 2 |F(-v,3;Ax") (6-45)

Once again, to have a square integrable eigenfunction, we require that v=0,1,2,.... The
relationship between even Hermite polynomials and the confluent hypergeometric equation

is

FACUR S (6-46)

(Arfken, 1985, p. 755). Therefore, Eq. {6-45) can be written as

-t

p(x)=Ne * H,(Ax) (6-47)

with A =mao/h and N, a normalization constant. The energy remains unchanged from
Eq. (6-36c), E=(2v+1/2).
To end this section, and for comparison's sake with Liboff (1980, p. 189), the energy

of the one-dimensional harmonic oscillator is

E =(n+1/2) for n=0,1,2,... (6-48)

the eigenfunction is
ﬂ_\-l M
Wr!(x) = Ai? 6 o HH( TxJ (6_49)

and the normalizing factor is given as
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1 w v
A, =( 1’3—] (6-50)

2'nt\ Arx

6-4 Morse potential. In this section, the Morse potential will be derived using the
method of matching of the constants. For reference, Eq. (6-8) and the radial Schrédinger

equation are restated here:

e 72 2 2 2 -Gy %
l:l,o,-'l—G _EG +[1_L)G +(Z+V)G —'I‘szjli_—G—lFl(_v’y;G):O

26 467 \2 46 \2 G 4 G|
- 2
[1,0,—{@ - —h’—:I-V(r) + 2’” E}u =0 (5-10)

The Morse potential will be derived under this condition on G(r):

2
(éz = ¢? (6-51)

where ¢, is a real, positive constant. Equation (6-51) is equivalent to

dG
= [ #e, dr (6-52)
an equation from which G is found. Integrating Eq. (6-52) gives

In|G| = £¢,r + ¢, (6-53)
leading to one choice of G, namely
G=e"e¢ = Ae™” (6-54)

where these definitions are used: A=¢" and a=¢,. We are keeping the negative sign

instead of the positive sign as the factor originally found multiplying ¢,, knowing that this

choice leads to deriving the Morse potential.

89




The higher derivatives of G are now calculated and substituted into Eq. (6-8). The

invariant equation of Eq. (6-8) becomes

I(r)= [“——l + L ﬁJaz + (—}: + v)aer"”’ I (6-55)
4 2 4 2 4

Furthermore, adding and subtracting a constant term to Eq. (6-55) is an option that is

exercised in this problem in order to derive a Morse potential that is in keeping with

Johnson (1986, p. 319). Since we have not exercised this option-in previous examples,

this section now illustrates a new flexibility that one should keep in mind when using the

method of matching of the constants,
The constant term is defined has Ca®/4, and Eq. (6-55) becomes

. 2 242 “tar 2 2
17)=| e XX (1+ vjaer‘“’ A Lo L@ gs6)
4 2 4 2 4 4 4

In matching Eq. (6-56) with the invariant function 6f Eq. (5-10), we first set £ =0 in
Eq. (5-10). In so doing, we treat this as a one-dimensional problem with —ee < r < e,

The next step, then, is to match the constant terms of the two invariant functions:

_ 2 2
Zm;E = [_1 + L 7_}12 , Ca (6-57)
i 4 2 -4 4

The potential energy term of Eq. (5-10) is matched below with all of the remaining terms of

Eqg. (6-56):
. 2 42 —Zar 2
me(r) _ (1+ Vjaer"”" @A™ Ca (6-58)
h 2 4 4
Equation (6-38) is solved for the potential, leading to
V(r)= E{Aze‘z‘” ~2(y+2v)Ae™ + C} (6~59)
Bm

At this point we could claim success in deriving the Morse potential. However, Eq. (6-59)

will now be put into a form that compares more closely with Johnson (1986).
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In order to specify the constant A, the particular value of r, which shall be called r,,

that corresponds to the minimum value of the potential, is found. We take the derivative of
Eq. (6-59), set it equal to zero, and then solve for r,. In mathematical terms, from the

equation
av h2a2 2 —2ar —ar
o e {-2a4%7" +2a(y +2v)Ae "} =0 (6-60)
it is derived that
r, = lln 4 (6-61)
a |y+2v

Solving Eq. (6-61) for A leads toA=(y+2v}e™, an expression which is promptly
substituted into Eq. (6-59), resulting in the following equation:

_wad

{m

v(r) {(y +2v) e oy 42w e 4 c} (6-62)

If constant C is chosen such that C =y +2 v)?', then Eq. (6-62) becomes
~alr—+,) 2
V(r)=D{e ' -1} (6-63)

where D is a positive, real constant defined as

2,2

D=h

2
- (}'+2V) (6-64)

Equation (6-63) is the Morse potential in the form matching Johnson (1986, p. 319).
Next, the energy derived from Eq. (6-57) is '

_ K’
am

E (1+27-7"+C) (6-65)

After some algebra and vsing C=(y+2 v)z, Eq. (6-65) can be written as
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£ hal
2m

(v+1/2)(y+v-12) (6-66)

From Eq. (6-64), the parameter y can be expressed in terms v and the constant D.
Therefore, for a given D, Eq. (6-66) depends only on v, and if the requirement
v =0,1,2,... is to be imposed as a consequence of requiring the eigenfunction to be square
integrable, as it has been in the first two examples of this chapter, then the energy, Eq. (6-
66), will be quantized. The eigenfunction is now considered.

The general form of the eigenfunction is read off from Eq. (6-8) and in this case with

Glr)=Ae™ =(y+2v)e™ "™ (6-67)

the eigenfunction, with N introduced as the normalization factor, becomes

y-I

_ )r-u(rwrﬂ) ¥l -«
u(r):Nexp|: (”2‘2" :|[(’y+2v)e_”“_"”)] 2 ,FI(—v,y;(y+2v)e“""""")) (6-68)

Note that 7 =1 is required to keep Eq. (6-68) from blowing up in the limit as r —eo. In
addition, in order to have a square integrable eigenfunction, the requirement that
v=0,1,2,... is now implemented.

In order to express Eq. (6-68) such that ¥ does not appear in it explicitly, Eq. (6-64) is

used to the derive this expression:

2+/2mD (6-69)

Zv)==%
(y+2v) -

The positive root in Eq. (6-69) is taken, a choice that is made since ¥ 21 and v 20, and

substitutions are made into Eq. (6-68), leading to the final expression for the eigenfunction:

VIT"D-“( V+1J
at 2
u(r) =N exp —ﬂgeﬁ"““’“ 2+2mD ({_“”"r”)
ha ha
o p Ly 22mD o, 22mD e 670)
ha fia
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An expression for vy, derived from Equation (6-69), can also be used to rewrite the

now quantized energy, Eq. (6-66), as

E

(6-71)

2m 2 ha B 5

_hzaz( 1}{2«/@?{5 1J
= V+— -

6-5 Summary. In this chapter, the confluent hypergeometric equation, transformed
into Eq. (6-8), has been matched with the radial Schrodinger equation. The purpose was to
demonstrate the method of matching of the constants as a method of deriving exactly
solvable potentials. The conditions on G that led to deriving the Coulomb, harmonic
oscillator, and Morse £ =0 potentials are given in Table 6-1 along with G, and the
potential and energy derived from the given G,

A very important result of this chapter is Eq. (6-8). It is important because, as
mentioned above, other conditions on G, different from the three listed in this chapter,
may lead to new exactly solvable potentials in later research. In addition, Eq. (6-8) will be

used again in Chapter 8 where it is matched with the radial Klein-Gordon.

" 22 2 22 - r2 —% %
Lot 28 YT §7+(—7—'+ v)G Lo |28 p(-vpG)=0
2¢ 467 \2 4,6 \2 )G 4 G

TABLE 6-1
2 ,2 72
G"* =constant =constant 7 =constant
G(}") _C|" Ar2 Ae-—ar
2 ] bt (1l & 2
V(r) e lma)zr2 D{e (r=re) _ 1}
r 2
E —me4 ﬁa)(n+l) ﬁzaz 1 2«/27:5 1
— 27’-{? 2 V4 — - Y-
n 2 2 ha 2
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CHAPTER 7

HYPERGEOMETRIC EQUATION

The method of matching the constants is used to match the radial Schrédinger equation
with the hypergeometric differential equation (HGDE). Three exactly solvable potentials
are derived, the Wood-Saxon, Péschl-Teller, and Hulthén potentials.

7-1 Preliminary algebra with the hypergeometric differential equation.

The hypergeometric equation is
x(1-x)y"(x)+{c—(a+ b+ Dx]y’(x)—aby(x)=0 (7-1)
y{x)=,F(a,bic;x)

_ ' 2
148 b;r_+a(a+l)b(b+1)x_+m (7-3)
¢ I cle+1) 21

In Eq. (7-2), note that a and b are interchangeable, such that ,F{a,b;c;x)=,F,(b,a;c; x),
and that the infinite series is truncated for @ or 5 =0,1,2,.... Furthermore, ¢=0,1,2,... is

to be avoided.
From the outset, rather than waiting to make this switch until a later step in the algebra
like we did in Chapter 6, G(r) replaces x in Eq. (7-1), and vsing the shorthand notation

introduced in Chapter 5, the HGDE is written as

[G(1-G).c—(a+b+1)G,~ab] ¥(G)=0 (7-3)

Standard form of Eq. (7-3) is

c—(a+b+1)G  ~ab
T G(l-G) 'G(1-G

J ¥(G)=0 (7-4)
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From standard form, an equation that is in invariant form is obtained. A substitution is
needed for y(G), and according to Eq. (3-4), this substitution is

c—{a+b+1)G
G(1-G)

y(G)=exp[%' J dG}/f(G) (-5)

The integral can be found using the method of partial fractions. Equation (7-5) is then
solved for w(G), in terms of y(G), to find that

(a+b+1)—c

w(G)=|Gf* 1-G| 2 ,F(a.bcG) (7-6)

Equaﬁon (7-6) is the solution to the differential equation that is in invariant form. Note the
replacement of ,F,(a,b;c;G) for y(G) in going from Eq. (7-5) to Eq. (7-6).
The invariant function of the differential equation we seek is found by substituting
—ab = c—(a+hb+1)G
and F|=
G(1-G) G(1-G)

some algebra, this invariant function can.be written as

FO = into Eq. (5-6). After one differentiation and

c(2-c¢) +20(a+b~—1)—4ab 1-(a—bY

TiG(-6F | 4G(-GF | 41-GY @D

I(G)

Having the invariant function, Eq. (7-7), and the solution, Eq. (7-6}, the HGDE

transformed to an equation in invariant form is

c(2-¢) 2c(a+b-1)—4ab 1-(a—b)
,05 2 2 + 2 + 2
4G (1 - G) 4G(] - G) 4(1 - G)
V da+hti—e
x|GP2 1= G 2 ,F(a.b:c:G) =0 (7-8)

A switch in variables from G(r) to r is now made. Equation (5-23) gives the end
result of such a switch. Applying Eq. (5-23), using the invariant function and solution of

Eq. (7-8), the following equation is derived:
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16" 3G o2-0)6" [elatb-1)-2ab]G" [1-(a=b)]G"

L] ,— + -
26 4G 4G (1-GY 2G(1-GY 4(1-G)*
% 1 Ga+b+]—c
< 19] —|G’|| — F(abic;G) =0 (7-9)

Equation (7-9) is important because it is a solved equation, What we seek in this equation
is G, which is to be determined by the need of wanting a constant term in the invariant
function. The successful outcome of matching Eq. (7-9), for a given G, with the radial
Schrédinger or Klein-Gordon equation, is a derived potential and energy, and a specific

eigenfunction whose form we already have.

Three separate conditions on G that lead to a constant term in the invariant function of
Eq. (7-9) are as follows:

(lfé)g =’ (7-10)

G_(%ZE;'F =c’ (7-11)

G"*(?jc;)2 =a 71

In each of these equations, until otherwise specified, ¢, is an arbitrary, positive, real

constant. Equation (7-10) will be subject of the next section. ‘

7-2 Wood-Saxon potential, Solving Eq. (7-10) for G begins the process toward ‘
deriving the Wood-Saxon potential. After taking the square root of both sides of Eq. (7- :
10), and using G’ = dG/dr, we find that Eq. (7-10) is equivalent to the integral

J' dG

e =#[c,dr (7-13)

Integrating both sides of Eq. (7-13) and exponentiating, leads to
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]_ +p .
e =e_6!r+(.2 7_14
’1 =G (7-14)
In dropping the absolute value sign, our choice is to take the denominator of Eq. (7-14) as
G —1. Furthermore, in the exponential, the negative sign will be kept over the positive
sign. These choices are made because they lead to the derivation of the Wood-Saxon

potential.
With the above choices in mind, ¢ is algebraically derived form Eq. (7-14) as

G =1+ (7-15)

Substituting the appropriate derivatives of Eq. (7-15) back into Eq. (7-9), which is

rewritten below for convenience,

1 Gm —g Gu2 N C(E-C)G’z +[c(a+b—1)—2ab]G’2 [1~(a—b)2]Gf2ji .

1,0,= +
26" 4G* 4GY(1-G) 2G(1~G)’ 4(1-GY
% B a+b+l~c
X i Igll : Fi(a.beG)=0 (7-9)

leads to an invariant function of

c(2-c)el N [c(a+b—1)-2ab]c] z(a - b)z

ey 2leer) 2 (7-16)

I(r)=

The terms of Eq. (7-16) will now be matched with the terms of the invariant function of

the Schridinger equation. The radial Schrédinger equation in invariant form is

[I,O,M——ZL?V(?’)-}—Z—?E{I u(r)=0 (5-10)
r n A

As the matching begins, we set ¢ =0, and equate
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2
23E=—&(“"b] (7-17)

_ c(2-c)et + [C(a +bh-1)- Zab](,‘]z
41+ 7Y 2(L+e™)

(7-18)

We set ¢=2 in Eq. (7-18) (observing that ¢=0 is not an option because that choice
would cause Eq. (7-2) to blow up)} and solve for V(r)}, which gives

n i
V(ir)=-| —(a+b-1-ab)c} |——— 7-19
(r) (zm (a a )Cl ]l_l_eclr—cz ( )

In order to compare Eq. (7-19) with the Wood-Saxon potential, as given in Fligge (1971,
p. 162), the following definitions are made:

KVO - zi (Cl + b :21 - ab) (7“2021)
m c
C = é (7-20b)
a
C, = -]_E (7-20c)
[4]

The constants @ and R are introduced to coincide with the physical parameters a and R
found in Fligge (1971, p. 162). Equation (7-19) now becomes

V(ry= o

l+e @

(7-21)

A

With the Wood-Saxon potential derived by means of matching of the constants, an
expression for the energy is also found. Using the definition for ¢, given in Eq. (7-20b),

and some algebra, Eq. (7-17) becomes




Quantization of the energy is yet to be established as attention is now turned to the

eigenfunction.
The unnormalized eigenfunction, in its most general terms, can simply be read off from
Eq. (7-9) as
% 1- a+h+l-c
u(r)= 19" |g,|| _ F(abcG) (7-23)

Putting Eq. (7-23) into a form that is comparable with Fliigge (1971, p. 163) requires the

application of the following relationship:

,Fla,b;c,G)= M(-G)"’QFI [a,l —c+al—-b+ a;l)
T'(p)(c—a) G
+ Do)a—b) (—G)“”zﬁl(b,l —c+hl- a+b~,i) (7-24)
C(a)T{c-b) G
(Abramowitz, 1972, p. 559). Using G =1+¢""™7 recalling that ¢ =2, and with the
definitions
v=f%£,and p=8tb_, (7-25)

it is an algebraic exercise to write the unnormalized solution as

i

T
u(r)=A( 1:'-!6} ‘ Py zFl[#+V1ﬂ+V+i;2V+1;_£FJF]
1+ 1 T

+e 7 l+e *

ed

i

-y R
+B( 1,._R] e,._R 2F{,u—v,,u—v+l;l—2v; 1;--1:] (7-26)
1+ I

1+e @
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where A and B are constants. The second solution, with a —v instead of a + v, is
rejected if r — oo is a boundary condition.

Quantization of energy is not established by taking pu+v or p+v+l=-n,
n=0,1,2,.... Doing so would be incorrect because ¢ is imaginary. To see this, Egs. (7-
22) and (7-20a) are rewritten in terms of v and £, such that

2mE
;_:‘2 a=—v 7-27)
2};:;/0 l’:_I — VZ _#2 (7—28)
Next, Egs. (7-27) and (7-28) are added together, leading to
2md p
S (E+ V)= (7-29)

Finally, since the left-hand side of the above equation is positive, y must be strictly
imaginary. A transcendental equation which ultimately relates £ and V;, found in Fliigge

(1971, p. 165), will not be pursued here.

7-3 Poschl-Teller potential. The next potential to be derived with the method of
matching of the constants is the Pdschl-Teller potential. To begin, recall Eq. (7-11):

G!Q )
R 7-11
G(I—G)z G ( )

This equation is square rooted prior to integrating, leading to

dG
j"__@(l —6) = jic, dr (7-30)

The integral on the left hand side of the equation was found using the software
Mathematica. It can also be found in Gradshteyn (1980, p. 71). After integration-and
exponentiating, Eq. (7-30) becomes
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1+ ’\/5 _ eir:,r+cz
1-4G

(7-31)

In dropping the absolute value signs, the right-hand side of this equation could be taken to
be positive or negative. We choose to take the positive. An additional choice is made such
that the constant of integration ¢, is equal to zero. Furthermore, by defining o = %¢,, the
choice between +¢, and —c¢, is deferred until later. Solving for G now leads to

G:{‘e;ﬂ = tanh’(%74)) (7-32)

Higher derivatives of Eq. (7-32) are taken and substitutions are made into Eq. (7—9):

e 772 _ ’2 -1 = 72 = (l-—bz(;!2
{1010 367, o2-0)G? [clatb-1)-2ab]G"  [1-(a=b)'] }

-= +
2 G 4G* 4G(1-G) 2G{(1-G)* H1-GY
/ ‘2]l —e
|G| L ’g,l] Fila,b;e;G)y=0 (7-9)

After the use of standard identities and algebra, we obtain an invariant function of

e [e- ), fa=brifa-b-i)] &,
1r)= [smh *(arf2) T cosh”(ar/2) } 4 la+b=c)

This equation will be referred to as Eq. (7-33). At this point, a choice is made to take
o =-+c, = 2i@, and Eq. (7-33) promptly becomes

z(r):—a{(c—f)(“%) plazbrife-b )}+a(a+b—c)2 (7-34)

sin’(@r) cos*(ar)

In comparing Eq. (7-34) with the invariant function of the Schrodinger equation,

I‘
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we see the necessity of choosing ¢ =0, and in matching the remaining terms such that

T (e
Ee %("”f )(a +bo)f (7-36)

In Eq. (7-35), the Poschl-Teller potential is derived. Quantization of Eq. (7-36) will be

seen in the following paragraphs.
Specifying the eigenfunction begins, as it did in the last section, with the following

equation:

u(ry= ,Fila,b;c;G) (7-23)

With o =2ig substituted into Eq. 7(7—32), we find that G = —tan’(@r), which in turn is
substituted into Eq. (7-23). With the use of an identity found in Abramowitz (1972, p.
559), we find

JF{a,b,c;G)=(1-G) ", F, (a,c - b;c;%) (7-37)

Eq. (7-23) now becomes

u(r)= N(sin@r) *(cos@r)" ™" ,F,(a,c - byc;sin® Gir) (7-38)

N, a normalization constant, has been introduced.

In order to cut the series in the hypergeometric function, and find quantization of
energy, we define ¢~b=-n(n=0,12,...). Two additional definitions are made for
convenience, c— /2=y and a—b+1/2=A. Equation (7-38), using the definitions,

becomes

~ u{r)= N(sin@r)*(cos ar)' ,F, (—n,x + A +nyx + Y;sin’ “o?r) (7-39)
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Furthermore, the potential and energy are rewritten as

V(r)=l(h2§2)[x(x“l)+ 1(1—1)] (7-40)

20 m sin? @r  cos’ ar

2==2
E= l(hn‘: }(xm +2n)? (7-41)

2

Further discussion of the Péschl-Teiler potential is found in Fliigge (1971, pp. 89-93),
including a restriction on x and A, such that ¥ >1 and A >1. In fact, to be more in

keeping with Fliigge (1971), after setting £ =0 at the beginning of the matching process,

we would treat the problem as strictly one dimensional, replacing r with x as the
independent variable, and then, in Eqs. (7-40) and (7-41), define V, =h2?x—2/m. A

restriction is placed on x in Eq. (7-40), such that 0 £ &x < 7/2.

7-4 Hulthén potential. The final condition on G that is to be studied in this
chapter is
G!'l "

m :Cl (7-12)

After taking the square root of both sides, Eq. (7-12) is equivalent to the following:

dG
——— =] d 7-42

_[ GU-0) _[c, dr ( )
The integral on the left-hand side can be found using partial fractions. The end result of

integrating both sides and exponentiating is

G Lorbe
I Toprdes 7_43
‘I_G ¢ (7-43)

In dropping the absolute value signs, some choices are made before solving for G. These
choices are to reverse the denominator of Eq. (7-43) to G 1, to take ¢, =0 and, with
¢, > 0, to keep the negative sign over the positive. Equation (7-43) then becomes
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G _

= 7-44
o1 (7-44)
Upon solving Eq. (7-44) for G, we have
G=—"_ (7-45)
l—-e™

Having an expression for G, the invariant function in Eq. (7-9),

16" _3G"  c2~)G”  [dlatb-1)-2ab]G"” | [1-(a-b)]G"

1,0,— +
226G 4G* 4G(1-G) 2G{1-G) 41-G)
% 3 @+bh+1-¢
PG T p by =0 (7-9)

GI

can now be calculated. It is easier in computing derivatives to use & = 1/ (1 - e""') and the

following result reflects this rewriting of Eq. (7-45}:

. i -

»:Z]"z ct [2c(a +b—1)~ 4ab]

0 By gl [L-t@-by]

)

2
¢

b 746
) (7-46)

In comparing Eq. (7-46) with the invariant function of the Schrédinger equation,
[1,o,i(ﬂi'i)~%’f-v(r)+%ig] u(r) =0 (5-10)
r

we again see the necessity of choosing ¢ = 0. Furthermore, if we take a—& ==, killing
the term on the end of Eq. (7-46), then the remaining two terms of that equation match the

remaining two terms of Eq. (5-10) to give the potential energy and total energy as

hi CIZ e*‘-’l"
V(r)= e [2c(a+b-1)-4ab] — (7-47)
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‘"hz 2((‘ - 1)2
E="t [0 48
sl s (7-48)

In Eq. (7-47), the Hulthén potential is derived. Quantization of energy remains to be seen.
The unnormalized eigenfunction once again begins with the equation

d+b+t-c

_lon-gf
G

w(r)

F(a,b;c;G) (7-23)

In conjunction with the following identity found in Abramowitz (1972, p. 559),

JF (a,b;c,G)=(1 - G, F, [a,c -bic; G(-}— J (7-49)

and using G = 1/(1 ~ e"l"), Eq. (7-23) becomes

o= , I+a—b

u(r) =" )2 (1-e™) 2 F(ac-boe™) (7-50)

In order to truncate the hypergeometric function of Eq. (7-50) into a polynomial, the
following condition is imposed: a=1-n(n=1,2,3,...). Making a choice to take a—b =1,
and defining & = (¢ —1)/2, Eq. (7-50) now becomes

w(r)=e (1= ), F (20 +1+n1-m20-+Le™") (7-51)

~Equations (7-47) and (7-48) are examined in terms of #» and @ in order to show

quantization of energy. In so doing, we now have

V(ir)=-Vy—— (7-522)
l—-e™
with
hz .1 2
V,=| |2 (7-52b)
2m
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such that 8* =2c(a+b—1)—4ab =n"+2an. The energy, now in terms of V,, n and

B, is

E= ~v0(ﬁ _”2) (7-53)

Further reading on the Hulthén potential is found in Fliigge (1971, pp. 175-8).

7-5 Summary. In this chapter, the hypergeometric equation, transformed into Eq.
(7-9), has been matched with the radial Schrédinger equation. The purpose was to
demonstrate the method of matching of the constants as a method of deriving exactly
solvable potentials. The conditions on G that led us to the Wood-Saxon, Poschl-Teller,
and Hulthén potentials are given in Table 7-1, in addition to the potential and energy

derived from the given G.

The important result of this chapter is Eq. (7;9), and thus it is rewritten below for
emphasis. This equation is important because different choices of G, other than the three

listed in this chapter, may lead to new exactly solvable potentials. In addition, Eq. (7-9)
matched with the radial Klein-Gordon equation remains to be studied, and is the subject of

the next chapter,

LG 367 c2-c)G? [cla+b=1)-2ab]G" [1-(a- b)z]G’Z}

sy T + +
2 G 467 4GM(1-G) 2G(1~G)* 4(1-G)
% d+h+i—c
NS _lg’tl L FlabcG)=0 (7-9)

Table 7-1 is found on the following page.
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2 Gi2 G;z
=constant =constant — e = onstant
(1-G) G(1-G) G*1-G)
G(r) | 4 gt ~ tan(ox) 1‘61 :
— |
’ ,_'"V _ A0~ ec:,r
v 7 e e Vo m
[+e @
E 1 Sfa-bY 1 e’ G Asan] [
2m N\ 72 2\ T ¥ o\ 2pn

107




CHAPTER 8§

RADIAL KLEIN-GORDON APPLICATIONS

Three exactly solvable potentials are found for the radial Klein-Gordon equation. Two
of the potentials derived here are the Wood-Saxon and the Hulthén potentials, both of
which were first discussed in Chapter 7 in association with the hypergeometric equation
and the radial Schrodinger equation. Also, the two topics of this thesis, pertaining to
strongly coupled positronium and matching of the constants, especially overlap in deriving
the third potential, the Coulomb potential.

8-1 The hypergeometric and Klein-Gordon equations. In the first section of
Chapter 7, the following equation was derived:

1G” 36" c(2-0)G”  [clatb--2ab]6” [1-(a=b)|G"

1101_ 5 +
26 4G* 4G*(1-G) 2G(1-G)* 4(1-GY*
% B bt l-e
GPI=O2 b biesG) =0 (1-8)

&

This equation is important because it is the working equation in finding exactly solvable
potentials with hypergeometric functions as solutions, in using the method of matching of
the constants. In fact, three exactly solvable potentials were found in Chapter 7 for the

radial Schridinger equation, one for each of the following three conditions on G

G!2
-y = T
G.'Z ) ' )
T = 7-11
GI-GF (b
G/2
Gu=er = 712
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where ¢, represents an arbitrary constant.

In the first two sections of this chapter, Eq. (7-10) followed by Eq. (7-12) are used to
determine the function G{r), enabling matching of the constants to take place between the

radial Klein-Gordon:
_He+1)

[1,0, V(r)* —2EV{r) = (m” ~ Ez)}u(r) =0 (8-1)

and Eq. (7-8). We note the use of natural units in Eq. (8-1), and that although this
equation was first encountered as Eq. (2-9), it is written here in the shorthand notation of
Chapter 5.

8-2 Wood-Saxon potential. The condition on G given above in Eq. (7-10), is

satisfied for
G=1+¢"V™™ (8-2)

where ¢, and ¢, unspecified constants. The required derivatives of Eq. (8-2) are taken and

after substitution, the invariant function of Eq. (7-8) becomes

' c(2-c)c N [c(at+b-1)~2ablc] _Cz[a_bjz .
1+ ) 21+ee) "2

The following definitions are made for convenience:
x=14e""" (8-4a)
o= (24" %) (8-4b)
g = c(a+b;1)~2ab (8-4¢)

2
5=(“"2‘b] (8-4d)




such that Eq. (8-3) can be written in a more compact way:

2 2
ag ., al_ps (8-5)
X X

I =

The terms of Eq. (8-5) are now matched with the invariant function of the radial Klein-

Gordon equation.
The radial Klein-Gordon equation, written again here for easy reference, is

[1, 0,V(r)’ —2EV(r)- £t :“ D (m* ~ Ez)}u(r) =0 (8-1)

r

We set £ =0 and match terms with Eq. (8-5) in the following ways:

Z
V=i (8-6)
2
Ey =8P (8-7)
X
—(m2 - EZ) =—¢'§ (88

Defining a separation constant as &, Eq. (8-7) can be rearranged such that

2
o288 (8-9)
2E

Solving the equality on the left in Eq. (8-9) for the potential, leads to

V(r)="— = e (8-10)

Furthermore, comparing Eq. (8-10) with Eq. (8-6) implies that & = ¢}, allowing Eq. (8-
10) to be written in terms of the constant ¢,, and the hypergeometric function parameter, ¢
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with the help of Eq. (8-4b). Either way, Eq. (8-10) is of the same form as the Wood-
Saxon potential given in Eq. (7-21).
Having derived the potential, an expression for the energy is found. From the right-
hand equality in Eq. (8-9), we find that
ot

_ap -
E=20 (8-11)

Squaring both sides of Eq. (8-11), followed by the substitutions k*=clc
and¢’ = (m2 o )/ &, this latter expression having been derived from Eq. (8-8), leads to

expressing the energy as

2 m
E* = v (8-12)
1+ 7
In terms of the defining parameters of the hypergeometric function, we have
E* = m (8-13)

c(2—c)a-bY
[e(a+b-1)-2ab]

Quantization of energy, as we have seen, comes from imposing square integrability on the

solution, which is in the general form of Eq. (7-23):

¢ a+h+l-e

G- s
u(ry= y
|G

,F(a,b;c;G) (7-23)

The problem will not be pursued beyond this point, but the physical solution is needed,
however, if the Wood-Saxon potential were to be used as a truncating potential of the

Coulomb potential.

8-3 Hulthén potential. The second condition on G that is examined, is
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G.PZ
G- “ 12

In Sec. 7-4 of Chapter 7, it was shown that Eq. (7-12) is satisfied for

-y

G=—5_
1_e c]r

(7-45)

From Eg. (7-45), the invariant function in Eq. (7-8), an equation also given at the
beginning of this chapter, can now be calculated. In practice, it was easier in computing
derivatives to rewrite Eq. (7-45) as G = 1/ (1 - e”"). The resulting invariant function is

—c] ¢l [2c(a+b-D)—dab-1] c?[l~(a~b)']

I(r) = c—1) + + L (8-14a) |
() 4 ( ) 4 (1_ec|r) 4 (1-3”"')2

|
|
2 2 |

:fi%ﬁlf-—cfa (8-14b)

where

x=1—g (8-15) :
5 ;

OC=M (8-16)
4 !
wl)z |

5= 8-18

1 ( )

In matching terms of Eq. (8-14b) with terms of the invariant function of the radial

Klein-Gordon equation,

[1,0,1/(;02 —2EV(r)- e s _ (m* - Ez)jlu(r) =0 (8-1) ?

r
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the algebra of the last section can be used again by noting that the form of Eq. (8-14b) is
identical to the form of Eq. (8-5). Therefore, for £=0, the potential and energy can be
written down immediately as

V(r)= —co _ Cl\h__ (a=b) (1 e ] (8-19)

= , : 8-20
40d 4(c-1)'[1-(a—b) (8-20)
1+ -

[2c(a+b-1)—4ab—1]

Equation (8-19) is in the form of Eq. (7-47) which, in turn, was recognized as the Hulthén
potential in Chapter 7. This potential would not make a good truncating potential to the
Coulomb potential in the study of strongly coupled positronium in that it also is singular at
r=0. Quantization of energy and the physical solution has not been found in this

research.,

8-4 Coulomb potential. We now set aside Eq. (7-8), the working hypergeometric
equation, to be replaced by Eq. (6-8),

16" 367 (v ¥\6* (v \6* 1_,|e%c%
1:0:___“_“””77_“}_ D _2+(_+V} "'_G/Z '—___'_IFl(_V,y;G)ZO
16 4d6® \2 4)Ja 27 6 ]

the working confluent hypergeometric equation. The above equation shall now be matched
with the radial Klein-Gordon equation. Three particular conditions on G led to three
exactly solvable potentials for the radial Schrédinger equation in Chapter 6.

In this section, the condition that G’* = constant is imposed, and for G=c¢r+c,,
where ¢, and ¢, are constants, it is easy to verify that the condition this satisfied. A choice
is now made to take the constant ¢, equal to zero and with G =¢/r, the invariant function

of Eq. (6-8), becomes
2 2
y v\l (1/ )cl ¢
)= L -t | 4| Lyt 2L 821
(r) [2 4]# 2 Y T @-21)
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Equation (8-21) is matched with the invariant function of the Klein-Gordon equation,

which is again written here for easy reference:

{1,0, V(r) - 2EV(r)~ ‘?(ij b_ (m* - E )]u(r) =0 (8-2)

Matching of terms is made in the following ways:

He+1 : '
vy - A =g_7’7]ri (8-22)
2BV = [-;’- ; vj% (8-23)
—(m* - E*) = - (8-24)
4

All three of these equations are immediately put to use. First, Eq. (8-24) is used to

solve for the constant ¢,*:
¢’ =4(m’ - E7) (8-25)

Next, the constants of Eq. (8-23) are all grouped together to give the following equality:

—rV(r) = 20—1'1(-271 + v) (8-26)

The right-hand side of Eq. (8-26) is constant, and therefore, the left-hand side of the
equation must also be constant. In anticipation of the deriving the Coulomb potential, a
separation constant is defined as Zor, where Z is the atomic number and o reassumes its

role as denoting the coupling constant. When the left-hand side of Eq. (8-26) is equated to
Zox , the potential is easily derived:

V(r)= (8-27)
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The energy is derived by equating the right-hand side of Eq. (8-27) to Zoa,. After
squaring both sides of the equality, and making a substitution for ¢,* according to Eq. (8-

25), we find that

m2

(za)
L+ (%f‘vr

Equation (8-28) is not the final equation for the energy, as ¥ can be derived from Eq.
(8-22). Specifically, Eq. (8-27) is substituted into Eq. (8-22), leading to the quadratic

equation,

E* = (8-28)

v* =27 +4[(Zar) - (0 +17]=0 (8-29)
The roots to this quadratic equation are
132 2 yZ
y=1£2(¢+4) - (Za) ] (8-30)

Substituting the positive root of Eq. (8-30) back into Eq. (8-28) gives

2
E* = i (8-31)

- AZa)
1+ AN
(v—~§+[(,€+}§)—(2a)2]/zJ

If we take the square root of Eq. (8-31), put back ¢? to have agreement in units, and also
define v=n~(£+1), then Eq. (8-31) is identical to the following expression from Landat

(1990, p. 279):

E= _ e yz (8-32)

(Zar)’
(n—-ﬂ~—§+[(.€+%)—(2a)2]yzj

1+
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In Chapter 6, it was stated that v=0,1,2,... is required in order to have square
integrable solutions. Therefore, in proceeding to make the definition that v = 5 — (£+1) in

Eq. (8-31), we note that » is the principal quantum number, inasmuch as 72 £+1 would
be required. Thus, in this manner, which is due to square integrability, quantization of

energy is obtained.
The remainder of this section will be used express the solution of Eq. (6-3), namely

%
w(r) = ——-
G|

F(-v,7:G) (6-37)
in terms of Whittaker functions. The substitution of G = ¢,r into Eq. (6-37) gives

Fi(~v,7:er) (8-33)

An algebraic exercise now begins by first deriving v from Eq. (8-28) such that

_E(Za) v

Vet — = (8-34)
vm® - E* 2
The positive root is taken insure that v 20, and the following definitions are made:
E(Za)
k = —m—mt (8-35)
vm? ~ E*
p=f(e+1Y - (zar)’ (8-36)
Next, the substitution of Eq. (8-36) into Eq. (8-30) gives

y=1+2u (8-37)

and the substitution of Eqs. (8-37) and (8-35) into Eq. (8-34) leads to an expression for

—V as
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—v=-§-i,u~k (8-38)

Prior to substituting Egs. (8-37) and (8-38) into Eq. (8-33), the expression for u(r),
the square root of both sides of Eq. (8-25) is taken such that

¢ =2Nm’ - E? (8-39)

Keeping the positive root by requiring ¢, to be positive, and defining K =vm?> - E*, a

final definition is made, namely
p=cr=2Kr (8-40)
Finally, Eqs. (8-37), (8-38) and (8-40) are all substituted into Eq. (8-33), leading to

—eg%p]iz,u

ul(r) —W,F,(%:tpwk,lizu;p) (8-41)

As can be seen from the fOllOWiIlg for IIIUla,
M ‘) = e_%UHZ'u F ‘L+u‘”k 14 2“,' -42
ko ( ) [ | (2 H l :p) (8 )

{Abramowitz, 1972, p. 505), and ignoring the constant factor of 2K in the denominator,
Eq. (8-41) is exactly the two Whittaker functions 4/, ,(p) and M, _,(p). Furthermore, a

specific linear combination of M, ,(p) and M, _ (p), namely

W

ki

( ):—r%_%Mk.y( ) I«(?&%)’Mk.—y(p) (4-16)

constructs the other Whittaker function, W, , (p), which is also the physical solution in the

event that r — o is a consideration. See Eqs. (3-23) and (3-24).

8-5 Conclusions on matching of the constants. In this chapter, the two ends

meet between maiching of the constants as a method of deriving exactly solvable potentials

and our original topic on strongly coupled positronium in the Crater and Van Alstine
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formalism. The connection is officially made by setting Z =1, £=0, and by replacing E
with &,, and m with m, in Eq. (8-1), the radial Klein-Gordon equation, leading to Eq. (2-
21), the Crater and Van Alstine equation. Therefore, matching of the constants
(specifically what was done in Sec. 8-4) has provided a third method of solving Eq. (2-21)
for the pure Coulomb potential, inasmuch as this problem was solved first by a
transformation to Kummer's equation in Chapter 3, and then by Frobenius' method in
Chapter 4.

In addition, matching of the constants, based on the work of Sections 8-2 and 8-3,
respectively, indicates that the Wood-Saxon potential and the Hulthén potential are exactly
solvable potentials in the radial Klein-Gordon equation. Determining quantization of
energy for these two potentials, however, remains as the subject of future work. If
physical solutions were obtained, particularly for the Wood-Saxon potential, then this
potential could serve as a truncating potential to the Coulomb potential in the strongly
coupled positronium research. On the other hand, mathematical convenience would appear

to have been lost and not gained in this quest for an exactly solvable potential.
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CHAPTER 9

CONCLUSION

A two-particle relativistic wave equation, developed by Crater and Van Alstine (Van
Alstine, 1986), has been used to study strongly coupled positronium with the purpose of
obtaining this equation's prediction of stability or instability with regard to the spontaneous
creation of real electron positron pairs. Stability, according to this equation, has been
found for two potentials, In addition, the solution of the wave equation for one of these
potentials did not yield a closed form solution using Frobenius' method to solve the
equation. A method of finding exactly solvable potentials, matching of the constants, has
been detailed, demonstrated and applied. This method can now be used to search for
alternative potentials or potential truncations in the stability study of strongly coupled

positronium.

9-1 Strongly coupled positronium. In Chapter 3, the ground state energy, in
the center-of-momentum frame, of strongly coupled positronium as a function of the fine
structure constant was obtained from an equation like the S-wave radial Klein-Gordon
equation, using a regularized Coulomb potential. We recover the reéult of Bawin and
Cugnon (Bawin, 1990), as represented in Fig 3-1, which indicates that this energy remains
positive for increasing values of the fine structure constant, indicating stability.

To obtain this result, it was necessary to numerically solve a transcendental equation.
The software package Mathematica was used to obtain roots to this equation. The
transcendental equation was not solved, however, until an identity was found and used in
which a primed Whittaker function could be written in terms of unprimed Whittaker
functions, and until the secant method was used instead of Newton's method on
Mathématica. The work done in Chapter 3 that finally lead to obtaining roots with
Mathematica was followed once again in Chapter 4 where the change of truncating potential
resulted in a different transcendental equation, Thus these sections in Chapter 3 could
conceivably be useful again in solving future transcendental equations resulting from future
potential choices.

In Chapter 4, a different potential was used. Specifically, a truncation of the Coulomb

potential was accomplished with an r* potential. Frobenius' method was used to solve the
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wave equation, confirming the solution for the Coulomb potential claimed in Chapter 3

where the differential equation was transformed into Kummer's equation, whose solutions
are known to be the Whittaker functions. For the r? potential, the solutions are written as a
power series in r. The solution, therefore, has an infinite number of terms, and we
approximated the physical solution by keeping one, two and then three terms. For all three
approximations, the ground state energy of strongly coupled positronium remained
positive, indicating stability in real pair production. This prediction is consistent with that
which was found using the potential of Chapter 3. On the other hand, it can be shown, see
(Greiner 1990, p. 43) from which Fig, (4-4) is taken, that the Klein-Gordon equation,
using the same potential of Chapter 4, has been solved and predicts instability with regard
to pion pair creation in a strong field. Therefore, not only is the Crater and Van Alstine
equation consistent with its prediction of stability for the two potentials studied here, it is
also consistent in being contrary to the corresponding prediction from the Klein-Gordon
equation, This consistency would certainly not weaken the trust one might place in the
equation of Crater and Van Alstine as one of the many equations available in the literature

used to describe relativistic two-particle systems.

9-2 Matching of the constants.- Not having a closed form solution of the S-wave
radial Klein-Gordon equation for the r* potential inspired the research in finding exactly
solvable potentials using the method of matching of the constants. Three exactly solvable
potentials were found for the Schrédinger equation in Chapter 6, starting the process with
the confluent hypergeometric differential equation. Three more exactly solvable potentials
were found in Chapter 7, this time starting the process with the hypergeometric differential
equation. These six potentials were named in Beker (1993) as potentials that can be
derived with the method of matching of the constants, and those two chapters provided
mathematical details in the derivations., The search for exactly solvable potentials is not
exhaustive in this work, however. Two equations were established: Eq. (6-8) in Chapter 6
from the confluent hypergeometric differential equation and Eq. (7-9) in Chapter 7 for the
hypergeometric differential equation, both of which provide a sound starting point for
looking for exactly solvable potentials by considering-other conditions on G in these
equations.

On the other hand, the potential V{(x)= 2V, cos2¢,x, derived in Chapter 5 starting from
the Mathieu equation, was a potential for which Beker had not made any conjecture. This
was an intriguing derivation of the research because it demonstrated that matching of the

constants could uncover unexpected exactly solvable potentials. The same success could
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not be repeated when working with the first three equations of Table 5-2. After
transforming any one of those three equations, the constant potential was derived in
matching terms with the Schrédinger equation. Deriving the constant potential is of note,

but was not included here, because matching of the constants proved to be too involved to.

be the simplest and best way of handling the problem.

In Chapter 8, the ends meet between strongly coupled positronium research and
matching of the constants because it is in this _chapter that exactly solvable potentials are
derived for the radial Klein-Gordon equation., The Coulomb potential was derived,
providing a third opportunity to solve this problem in the course of this work. The three
methods, namely transforming to Kummer's equation, Frobenius' series solution, and
matching of the constants, illustrate the richness of the 1/7 potential in quantum theory. In
addition, the Wood-Saxon and Hulthén potentials of Chapter 7 were derived again as
exactly solvable potentials for the Klein-Gordon equation. Further work is needed,
however, with these potentials in the sense that square integrability of the solutions, and
hence quantization of energy, was not explicitly pursued. It should be noted too that
square integrability of solutions and quantized energy were not obtained here for the
Mathieu problem of Chapter 5, or for the Wood-Saxon problem of Chapter 7, either, but
with the difference that references where these potentials are solved for the Schrédinger
equation were known to us and were given.

The r* potential of Eq. (1-5) was indeed sought as an exactly solvable potential for the
radial Klein-Gordon equation using matching of the constants. Since this potential is like
the harmonic oscillator potential of the Schrédinger equation, the condition on the function
G in the transformed confluent hypergeometric differential equation of Eq. (6-8), that led
to matching in the Schridinger case, was followed without success in the Klein-Gordon
case. Other possibilities on G were not pursued. Tn fact, after completing the research for
this work, we found the potential of Eq. (1-3) that is used in Chapter 4, in Greiner (1990,
p. 43), where it is substituted into the radial Klein-Gordon equation. The solution that is
obtained by Greiner is comparable to the solution in Chapter 4; therefore, we probably
were not going to find a closed form expression of the solution from the outset of research
into matching of the constants, _

Finally, in the topics of strongly coupled positronium and in deriving exactly solvable
potentials via matching of the constants, we have been involved in two important problems
in theoretical physics. The first is that of relativistic two-particle equations. The literature
in this area is very important and no consensus has been reached yet. Our main
contribution is the illustration of the stability of the Crater and Van Alstine two-particle
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equation for a particular potential.. The second topic of exactly solvable potentials in wave
equations also has associated with it a large amount of literature in which there is no
definitive answer. Our contribution is to have illustrated for several equations and several
potentials the power of a particular method of finding exactly solvable potentials, that of
matching of the constants.
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POTENTIALS
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ABSTRACT

The topics of strongly coupled positronium and matching of the constants as a method
of deriving exactly solvable potentials, are subtopics of two important problems in
theoretical physics. The first topic, pertaining to strongly coupled positronium, is that of
relativistic two-particle equations. Our main contribution to this topic is the illustration of
stability from the Crater and Van Alstine two-particle wave equation for a Coulomb
potential with a homogeneously charged spherical truncating potential, with regard to
spontancous, real electron-positron pair creation. The second topic is that of finding
exactly solvable potentials in wave equations, Qur contribution to this topic is to have
illustrated the power of a particular method, that of matching of the constants, by deriving
previously known exactly solvable potentials for the radial Schrédinger and Klein-Gordon

equations using this method.
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