

Applications of carbon nanotubes

David Allred Dept of Physics & Astronomy, BYU 734-0418, 422-3489

Multiwall tubes

CVD system adaptation and qualification.

Differences at BYU

- 1. Furnace length and number of zones
- 2. Gas control via MFC- We calibrate.
- 3. Tube Diameter same

CVD system adaptation and qualification.

Differences at BYU

- 1. Furnace length and number of zones
- 2. Gas control via MFC- We calibrate.

CVD system adaptation and qualification.

Differences at BYU

- 1. Furnace length and number of zones
- 2. Gas control via MFC- We calibrate.

High Aspect Ratio Microfabrication by Chemical Infiltration of Carbon Nanotube Frameworks

MRS 2009 Talk by Prof. Robert C. Davis Department of Physics and Astronomy Brigham Young University

allred@byu.edu

CNT MEMS Researchers

BYU Physics

- David Hutchison
- Brendan Turner
- Katherine Hurd
- Matthew Carter
- Nick Morril
- Jun Song
- Adam Konniker
- Ricky Wymant
- Taylor Wood
- Dr. Richard Vanfleet
- Dr. Robert Davis
- Dr. David Allred

BYU Mechanical Engineering

- Quentin Aten
- Dr. Brian Jensen
- Dr. Larry Howell

National Science Foundation

Brigham Young University Environment for Undergraduate Mentoring Grant

Partial funding provided by Moxtek Inc.

VACNT growth details

30 nm Al₂O₃ (Barrier Layer)

SEM - VACNT forest

30000X - edge

VACNT growth process

o Photolithography & lift-off

Dependence on Fe Thickness

Good repeatability

Rate strongly dependant on thickness

2 nm Fe on Al2O3

 Small voids (< 200 nm across)
 Sharp features (few stray tubes); Sidewall roughness < 200 nm

High growth rate ~50 µm/min

TEM Grid

Bistable Mechanisms

Nanotube "forest" growth

	 Height: up to 1mm+ Feature size: a few microns Speed: 10-100µm/min Density: 		
((U))/((V))	Material	Density (kg/m ³)	((U))/ \ <i> </i>
	Air Silica aerogel: lowest density Measured density	1.2 1.9 9.0	{{\ /\\\
KINKYK	Silica aerogel: usual density range Expanded polystyrene	5 – 200 25 – 200	<u>XINK I K</u>

Vertically Aligned Carbon Nanotube (VACNT)Growth

Individual nanotubes wander but...

...forest grows perpendicular to growth substrate

Extraordinary growth among materials growth systems

High Aspect Ratio Micromachining

Deep Reactive Ion Etching (Si)

"Vertical Mirrors Fabricated by DRIE for Fiber-Optic Switching Applications," C. Marx et al., J. MEMS **6**, 277, (1997)

SU-8 / C-MEMS (photoresist / carbon)

VIAs 1.0kV 3.2mm x150 9/24/03 16:5

"C-MEMS for the Manufacture of

3D Microbatteries," Wang et al., Electrochem.

Solid-State Lett. 7 (11) A435-8 (2004)

MARIO Process (Titanium)

"High-aspect-ratio bulk micromachining of titanium," Aimi *et al.*, Nature Mat. **3**, 103-5 (2004)

LIGA process (photoresist)

"Micromechanisms," H. Guckel, Phil. Trans. R. Soc. Lond. **353**, 355-66 (1995)

VACNT: Extreme Aspect-Ratio Microstructures <1 micron roughness • Tall... up to several millimeters 20 µm Acc.V Spot Magn 5.00 kV 3.0 300x Det WD Exp SE 5.7 17 200 µm DAVIS

3 μm hole pattern 400 μm tall

Patterned forest structure

- Lateral feature size: down to 1 micron
- Speed: 10-100 µm/min
- Density:

Material	Density (kg/m ³)
Air	1.2
Silica aerogel: lowest density	1.9
Measured density	9.0
Silica aerogel: usual density	5 – 200
range	25 – 200
Expanded polystyrene	

Low density, weakly bound material

As-grown forests are flimsy and tear off the surface at the slightest touch

Dense Nanotube Structures

Liquid Induced Densification

Submerged nanotube structures

Dried structure

Vapor Condensation Induced Densification -- Lines

Longer exposure to vapor Shorter exposure to vapor

Surface forces dominates

Unequal angles become equal angles. Final structure depends on initial structure surface forces Difficult to control what results!

Horizontal Aligned CNT films

AIST Japan group working on in-plane aligned CNT MEMS

SI-pillars

SWNT water

Yuhei Hayamizu, Takeo Yamada, Kohei Mizuno, Robert C. Davis, Don N. Futaba, Moto Yumura, & Kenji Hata **Nature Nanotechnology** 3, 241 (2008).

Microstructured VACNT Composites

Leave the nanotubes vertical?

VACNT Composites

Filling in with Si by LPCVD

Nearly complete Si infiltration

Microstructure: Poly-Si

Properties: Poly-Si

Properties: Poly-Si

Si

VACNT Composite MEMS Process

VACNT Templated Microstructures

Bi-stable Mechanism

M2U00075.MPG

Comb Drive

Bistable Mechanisms

Thermomechanical In-Plane Microactuator (TIM)

Solid High Aspect Ratio Structures

Acc.V Spot Magn Det WD Exp

SE 9.4 17

DAVIS

5.00 kV 3.0 258x

200 µm

A variety of materials?

Filled with amorphous Si:

Filled with amorphous C:

High aspect ratio structures in a variety of materials? Si, SiNx, C and SiO2

FROM: Chemical Vapor Deposition, ed. Jong-Hee Park, ASM International (2001)

- Isolated nanotubes: Can exhibit ballistic conduction over distances of several microns
- Undoped poly-Si: $\rho \sim 10^2 \ \Omega \ cm$
- Si-coated nanotubes: ρ ~ ?
- Coat tubes with insulator → Conductive MEMS made from insulating materials?

Sheet resistance versus thickness for silicon-filled forests (red circles), silicon nitride-filled forests (green squares), and 20 nm of silicon followed by filling with silicon nitride (blue diamonds) reveals the expected inverse proportionality relationship. The solid line is calculated for an infinitely thin sample with resistivity of 3.6 Ω cm.

Sheet conductivity versus thickness

$$R_{sheet} = \frac{K_1}{t + K_2} \approx \frac{K_1}{t}$$

 $K_1 = 42.6 \ \Omega \ m$ $K_2 = 0.04 \ \mu m$

Resistivity of Si-coated forests

 $\rho_{forest} \sim 4 \ \Omega \ cm$

 $ρ_{poly-Si alone} \sim 10000 \ \Omega \ m$

Resistivity of Si-coated (blue) and SiN-coated (red) forests

Approximately the same resistivity as previously reported for other CNT-composites

Mechanical Characterization

Filled forests are solid and well adhered (can withstand the scotch tape test)

Beam Bending Measurement of Elastic Modulus

38um

Reported bulk polySi modulus ~ 140-210 GPa, dependent on deposition conditions

Actuated device: thermomechanical in-plane microactuator (TIM)

Developing Engineering Design Rules

• Height to width ratio for dimensional stability

- Maximum feature width for filling of forest interior
- Role of geometry LPCVD fill-factor

Si

VACNT Composite MEMS Process

VACNT Templated Microstructures

Bi-stable Mechanism

M2U00075.MPG

Comb Drive

Bistable Mechanisms

Thermomechanical In-Plane Microactuator (TIM)

Other infiltration materials

Filled with amorphous C:

Fills most completely

Filled with Silicon nitride:

Forms stable high aspect walls

Developing Design Rules

• Height to width ratio for dimensional stability

- Maximum feature width for filling of forest interior
- Role of geometry LPCVD fill-factor

Nanostructured Materials as templates for fabrication

Dense Nanotube Structures

Liquid Induced Densification

Submerged nanotube structures

Dried structure

Vapor Condensation Induced Densification -- Lines

Longer exposure to vapor Shorter exposure to vapor

Difficult to control the structure!

Surface forces dominates

Unequal angles become equal angles. Final structure depends on initial structure and surface forces

Horizontal Aligned CNT films

AIST Japan group working on in-plane aligned CNT MEMS

SI-pillars

SWNT water

Yuhei Hayamizu, Takeo Yamada, Kohei Mizuno, Robert C. Davis, Don N. Futaba, Moto Yumura, & Kenji Hata **Nature Nanotechnology** 3, 241 (2008).

Complementary logic gate geometry

