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Fundamentals of numerical relativity
for gravitational wave sources
Bernd Brügmann*

Einstein’s theory of general relativity affords an enormously successful description
of gravity. The theory encodes the gravitational interaction in the metric, a tensor
field on spacetime that satisfies partial differential equations known as the
Einstein equations. This review introduces some of the fundamental concepts
of numerical relativity—solving the Einstein equations on the computer—in simple
terms. As a primary example, we consider the solution of the general relativistic
two-body problem, which features prominently in the new field of gravitational
wave astronomy.

T
he basic equations of general relativity are
the Einstein equations, first published in
1915 (1). However, even today there are
large gaps in our understanding of the
physics implied by the Einstein equations.

Stated in general terms, a major goal of research
in general relativity is to solve the Einstein equa-
tions for the physical situations of interest.
Fundamental analytic solutions of the Einstein
equations include the flat Minkowski spacetime
known from special relativity, the Schwarzschild
andKerr spacetimes describing single black holes,
and the simple Big Bang cosmologies. Also pre-
dicted by general relativity are gravitationalwaves,
which for weak fields can be obtained as analytic
solutions of the linearized Einstein equations.
However, the few known analytic solutions de-
scribe only very special situations, and approx-
imation methods fail in the regime where the
nonlinear, strong-field effects of relativity play
a crucial role. If we are interested in the truly
relativistic regime, we must turn to computer
simulations to obtain numerical solutions to
the full Einstein equations.
Solving the full Einstein equations on the

computer is the subject of numerical relativity,
which could also be called computational gen-
eral relativity. Computers also play a role in
algebraic computations and in approximation
schemes, and such calculations are important
topics in numerical relativity. But the distinguish-
ing feature of numerical relativity is that, in
principle, the Einstein equations in full generality
can and must be solved numerically.
Numerical relativity spans a large range of dif-

ferent topics including mathematical general
relativity, astrophysics, numerical methods for
partial differential equations, computer prog-
ramming, and simulation science. Current re-
search in numerical relativity is in a transition
from a self-contained topic in theoretical physics
to a physical theory with numerous connec-
tions to observational astronomy (2, 3). Gravita-
tional wave astronomy holds much promise for

the future, as recognized by the 2017 Nobel Prize
in Physics, and numerical relativity is provid-
ing key theoretical predictions and analysis
tools for the ongoing gravitational wave ob-
servations (4).

The general relativistic
two-body problem

As a primary application of numerical relativity,
we consider the gravitational two-body problem.
The two-body problem in Newtonian gravita-
tional physics can be formulated for two point
massesmoving in theirmutual gravitational field.
A particular solution of the Newtonian two-body
problem is a Keplerian elliptical orbit. However,
in Einsteinian gravity, such orbital motion gen-
erates gravitational waves that carry away energy
and momentum. Binary orbits therefore decay,
and the motion of the two bodies follows an
inward spiral that eventually terminates with
the collision and merger of the two objects. In
most astrophysical situations, the energy loss
due to the emission of gravitational waves is so
small that a binary orbit decays only on time
scales of millions or billions of years. However,
for compact objects such as neutron stars or
black holes in very tight binaries, general rel-
ativistic effects such as gravitational wave emis-
sion play a major role (5).
Research in this field seeks to provide a theo-

retical framework for the physics of binary black
holes, neutron stars, and gravitational waves.
Such an endeavor must rely on numerical sim-
ulations in general relativity and general relativ-
istic hydrodynamics. But a reasonably complete
framework still requires substantial progress in
numerical relativity and related fields. Currently
there are serious limitations in our ability to
model the entire range of relevant physics, from
the nuclear physics of neutron star matter to the
large-scale, strong-gravity effects encountered in
binary neutron star mergers (6). The different
dynamical phases of the binary evolution—known
as the inspiral, the merger, and the evolution of
the remnant—are accompanied by characteristic
gravitational wave signatures (Fig. 1). For binaries
involving at least one neutron star, depending on
the specifics of the system, key features include

the disruption of the star(s) before merger, the for-
mation of a hypermassive neutron star, the prompt
or delayed collapse to a black hole, the dynamics
of the accretion torus plus the central merged
object, and the creation of unbound material,
the ejecta. Before discussing simulations of these
systems, we introduce the mathematical founda-
tion of numerical relativity.

Mathematical foundation

Combining space and time into spacetime can
be considered a triumph of human thought, al-
lowing us to perceive the true nature of relativ-
istic and gravitational physics (7). However, this
does not mean that we cannot or need not
consider space and time separately. Somewhat
ironically, after working hard to unify space
and time, the mathematical setup of numerical
relativity starts by splitting spacetime again
into space and time and by making gauge
(coordinate) choices (8) in order to reformulate
the Einstein equations as a well-posed mathe-
matical problem.
General relativity is the theory of a metric

tensor on a four-dimensional manifold, plus
matter described by additional tensor fields.
A manifold M endowed with a metric gab is
called a spacetime (M, gab). The metric mea-
sures lengths, here in four dimensions. The
infinitesimal line element

ds2 ¼ gabdx
adxb ≡

X3

a;b¼0

gabdx
adxb ð1Þ

provides a generalization of the Pythagorean
theorem. Repeated indices are summed over,
following the Einstein summation convention.
The metric is symmetric (gab = gba), has a Lorentz
signature of – + + +, and there exists an inverse
metric gab defined by gabgbc ¼ dac , where dac is
the identity matrix. A special example is the
Minkowski line element ds2 = –c2dt2 + dx2 +
dy2 + dz2, where c is the speed of light, t is the
time coordinate, and x, y, and z are spatial co-
ordinates. The components of the Minkowski
metric are constants, but in general gab is a field
with nonconstant components.
The field equations of general relativity are

the Einstein equations,

Gabðg; @g; @ 2gÞ ¼ 8pTabðg;FÞ ð2Þ

where Gab is the Einstein tensor, which depends
on themetric and its first and second derivatives,
and Tab is the stress-energy tensor constructed
from thematter fieldsF and in general also from
the metric. For numerical implementations, the
first step is to write the Einstein equations as a
well-posed system of partial differential equations
(PDEs) for the metric. Equation 2 represents 10
coupled, nonlinear PDEs for the 10 independent
components of the metric, but without further
adjustments these equations are in no known
sense hyperbolic (i.e., well-posed as an initial
value problem).
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The differential operator acting on the metric
in the Einstein equations is given by the Ricci
tensor,

Rab ¼ � 1

2
gcdð@c@dgab þ @a@bgcd

� @c@agbd � @c@bgadÞ þ R1
abðg; @gÞ ð3Þ

The first term by itself, gcd@c@dgab, which is
often denoted g□gab (where □ is the d’Alembert
operator), has the form of the principal part of
a simple hyperbolic wave equation, but note
that the metric appears in two places: as the
wave field gab and as the inverse metric gcd in
the wave operator. The other second-derivative
terms are not standard wave operators. The
best we can say about the complete principal
part in Eq. 3 is that it is quasi-linear in themetric;
that is, it is linear in the highest-order derivatives
but with coefficients that depend (nonlinearly)
on the variable itself. The lower-order terms
R1
abðg; @gÞ are quite involved as well, with ty-

pical terms of the form g–1g–1@g@g. Approach-
ing the problem in this way makes it difficult
to recognize that these equations are describ-
ing the simple geometric concept of curvature
and that there is a time evolution being de-
fined. Further, their well-posedness properties
are quite unclear.
The so-called 3+1 decomposition—for example,

in the formof Arnowitt, Deser, andMisner (ADM)
(8)—assumes that the manifold (at least locally)
allows a split into time and space, M = R × S.
Physics is then describable by time-dependent
tensors on three-dimensional hypersurfaces S,
which correspond to t = constant slices of M,
resulting in a “foliation” of spacetime in terms
of three-dimensional spaces. Geometrically, we
obtain a normal vector na to S that allows the
decomposition of tensors in directions normal
and tangential to the hypersurfaces. These are
the time-like and space-like directions, respec-
tively. For concreteness, we can assume coor-
dinates xa = (t, xi) = (t, x, y, z) with a time
coordinate x0 = t and spatial coordinates xi,
where i = 1, 2, 3 and a = 0, 1, 2, 3.
Decomposing the Einstein equations is accom-

plished by projectingGab andRab in the directions
parallel and orthogonal to na. We discover that
the differential operator Eq. 3 leads to two types of
equations: (i) evolution equations containing
time derivatives, and (ii) four constraint equa-
tions that are essentially elliptic equations,
highlighting the indeterminate type of Eq. 3. The
constraints are the Hamiltonian constraint and
the momentum constraints. The latter are re-
miniscent of the Gauss law constraint of elec-
trodynamics, where the divergence of the electric
field gives the charge density.
Given the evolution and constraint equations

as PDEs, we still must choose a spatial and tem-
poral domain with boundary conditions. For
problems in astrophysics such as the two-body
problem of black holes and neutron stars, we
consider isolated systems where at large dis-
tances gravitational fields become weak and

spacetime becomes asymptotically flat (in con-
trast to typical cosmological models). Because
gravity is universally attractive and long-range,
it is not natural to restrict a system to a finite
box, especially given that the goal is to compute
waves traveling to infinity. Nonetheless, a ty-
pical configuration for numerical simulations
is a finite-size spatial domain (e.g., a sphere)
with boundary conditions at some finite radius
that implement the proper fall-off of the fields
and an outgoing-wave boundary (9).
Features unique to numerical relativity are

various aspects of black hole spacetimes, in par-
ticular the causal structure associated with black
hole event horizons and the possibility of space-
time singularities. This latter aspect can be
viewed as the problem of specifying additional
boundaries that represent black holes within the
simulation domain.

Building blocks of numerical relativity

To define a particular strategy to solve the
Einstein equations, we consider the following
building blocks that define the anatomy of a
numerical relativity simulation, with a focus on
the compact binary problem. The following items
are certainly relevant to any evolution problem
in computational physics: initial data, evolution,
analysis, and numerics. We must specify the ini-
tial conditions, integrate the equations of motion
to obtain the evolved data, and perform an
analysis of the evolved data to extract physical
information. The numerical treatment of each
item may require the implementation of specific
numerical techniques.

Evolution

Formulation: Choose one of many inequivalent
formulations (i.e., choose variables and rewrite
the Einstein equations to obtain a well-posed
initial value problem). Choose the order of time
and space derivatives; make structural choices
about the gauge and the constraints.
Reformulating the Einstein equations as a

well-posed initial value problem has been the
subject of much research (10, (11). To give an
example, the result of the generalized harmonic

gauge (GHG) formulation (12) can be cast in a
standard first-order PDE form as

@tu
m þ Aim

nðuÞ@iun ¼ SmðuÞ ð4Þ

Here, the state vector um collects all 10 com-
ponents gab, the 40 first derivatives @cgab,
and a few additional fields depending on the
formulation. In addition, there may be variables
for the matter fields. Equation 4 for GHG is
strongly and even symmetric hyperbolic (12) and
is well suited for numerical implementation.
Another standard way to proceed is the classic
ADM formulation that makes the geometry
of the 3+1 decomposition in time and space
more explicit. Basic variables are the 3-metric
gij and the extrinsic curvature Kij, which is es-
sentially the first time derivative of the metric
(8). The ADM equations are only weakly hyper-
bolic and are not suitable for numerics. How-
ever, closely related systems, the so-called BSSN
and Z4c formulations (10, 11), are strongly hy-
perbolic. Most current simulations in numerical
relativity rely on either the GHG or BSSN/Z4c
families of formulations.
Constraint propagation: Maintain the con-

straints during evolution. Perform free evolutions
and monitor the convergence of the constraints;
use, for example, constraint damping to maintain
the constraints explicitly.
Analytically, the constraints propagate; that

is, if they are satisfied initially, they remain sat-
isfied during a well-posed evolution. Numerically,
even small rounding errors can trigger divergence
from the constraint-satisfying solution, which can
lead to a catastrophic failure of the simulation.
How the constraints are controlled is a dis-
tinguishing feature of each formulation. A key
ingredient in stable binary black hole evolu-
tions (13) is the constraint-damping scheme (14).
The Z4c formulation improves BSSN in the way
the Hamiltonian constraint is treated, which
leads to improved conservation of mass for
neutron star simulations (15). Apart from in-
stabilities, constraint violations in 3+1 rela-
tivity signify a problem with four-dimensional
covariance. The 3+1 decomposition breaks
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Fig. 1. Binary neutron star mergers emit gravitational waves. The waves reveal unique
information about extreme gravity and extreme matter—information that can be unraveled with
the help of numerical relativity. Shown is a waveform and snapshots of the neutron star matter for
the inspiral, merger, and remnant. The amplitude of the gravitational wave is plotted versus time.The
merger occurs at t = 0.IM
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covariance of the full theory by choosing a
foliation, but the constraints ensure that four-
dimensional covariance is maintained.
Gauge: Choose a coordinate condition—for

example, in terms of lapse and shift or in terms of
gauge source functions. Construct coordinates
that avoid physical and coordinate singularities
and are suitable for the black hole problem.
The main point about the gauge choice is that

not only do we have the freedom to choose co-
ordinates, but it is necessary to choose nontrivial
coordinates. For example, even for the simplest
black hole spacetimes, a foliation can fail by
running into the physical singularity, and the
hypersurface (or slice) may become badly dis-
torted by slice stretching when points start fal-
ling into the black hole. The topic of how to
dynamically construct good coordinates that
lead to stable evolutions, cover spacetime with
a regular foliation, avoid coordinate singularities,
and avoid physical singularities inside black holes
has become its own area of interest. In that
context, the 3+1 decomposition is about “space-
time engineering” becausewe not only evolve the
metric variables, but also build up the spacetime
slice by slice in coordinates that are constructed
dynamically during the evolution. The GHG for-
mulation relies on the harmonic gauge to obtain
hyperbolicity (12). For BSSN, the moving punc-
ture gauge is essential to obtain long-term black
hole evolutions, preventing slice stretching (16)
and allowing the black hole punctures to move
freely (17, 18).
Boundary conditions: Specify outer boundary

conditions appropriate for outgoing waves and
asymptotic flatness. Specify inner boundaries for
black holes; choose between black hole excision
and black hole punctures. Handle coordinate
patch boundaries.
Although approximate boundary conditions

are possible, for a clean treatment, strong or
symmetric hyperbolicity is required for well-
posedness (11). We can then specify boundary
conditions in terms of the ingoing and outgoing
characteristic fields. The outer boundary condi-

tions in numerical relativity tend to be substantially
more complicated than the Einstein equations
themselves, because outgoing-wave boundaries
are typically constructed by taking additional
derivatives of the right sides of the equations
(10). The Einstein equations share with other
nonlinear wave equations the feature that there
is backscattering by waves off themselves (and,
for binary systems, also due to the gradient in the
gravitational well). This is a fundamental prob-
lem for boundaries at finite radius, because in
principle we must account for all future back-
scattering from outside the domain. Consistent
boundaries at finite radius have only been ad-
dressed quite recently, considering the long his-
tory of the Einstein equations (19, 20).

Initial data

Formulation: Rewrite the constraints as elliptic
equations, identifying suitable free and dependent
variables.
To give an indication of what the formulation

of the constraints entails (8), consider a conformal
rescaling of the metric, gab ¼ y4�gab , which
conveniently transforms the Hamiltonian con-
straint into a scalar elliptic equation for y. We
have the freedom to specify a conformal metric,
�gab, that is not physical because it does not solve
the constraints, but by solving the elliptic equa-
tion for y we find a physical solution gab that
solves the constraints. The conformal transverse-
traceless decomposition (8) is widely used for the
full set of constraints; for neutron star initial
data in particular, the conformal thin-sandwich
construction (21, 22) is used, where typically an
additional elliptic equation is added to initialize
the gauge condition.
Physical content: Solve the constraints for

data that containmultiple black holes or neutron
stars with arbitrary mass, spin, and momentum.
Because the constraints are nonlinear, we

cannot simply “add up” the metric tensors of,
for example, two Schwarzschild black holes to
obtain binary data, although that can be a useful
approximate initial guess. As a result, some as-

pects of the initial data construction are in-
direct. For example, we can start with two single
black hole solutions for particular masses, which
will be combined to forma binary. But solving the
constraints for the binary leads to a change in the
individual masses of the black holes because of
the conformal rescaling. In some cases we have
to perform evolutions to determine whether the
initial data were constructed appropriately for a
particular dynamical situation.
There is a growing variety of initial data con-

structions for binaries that correspond to the
variety of physical configurations. For black holes,
there are excision-type data,where the interior of
black holes is removed (23, 24). Alternatively,
black hole puncture data handle the black hole
interior with a coordinate singularity at a point
(25), which sometimes is called automatic ex-
cision. The thin-sandwich formulation is well
suited for quasi-equilibrium data of black holes
and/or neutron stars, which, for example, can
approximate the state of a binary system during
a quasi-circular inspiral (26). Only quite recently
have methods been developed for neutron stars
that generalize the quasi-equilibrium, quasi-circular
construction to eccentric orbits (27) and to neutron
stars with spin (28) (Fig. 2). Solving the constraints
for electromagnetic field configurations is another
recent topic of investigation (29).

Analysis

Black holes and neutron stars: Determine all
physical parameters during evolution. Find hor-
izons of black holes. Analyze the rich phenome-
nology of neutron star mergers with the remnant,
torus, jets, and ejecta. Connect to multi-messenger
astronomy.
In any binary simulation, a wide range of de-

tailed information is of interest, especially when
matter is involved. The “relativity” in general rela-
tivity means, however, that many quantities have
no direct physicalmeaning. In general, any tensor
component (such as gtt or gxy) is not meaningful
by itself; we have to construct proper gauge-
invariant quantities. For example, mass and spin
must be carefully defined because their local
meaning at a point is problematic. For black
holes, special methods are required to find the
event horizon, which is a global concept in space-
time and therefore expensive to compute. See
Fig. 3 for examples. Instead, black hole excision
relies on the apparent horizon [e.g., (13)].
Gravitational waves: Compute gravitational

wave emission; control numerical and systematic
errors. Produce gravitational wave templates in a
form that is ready to use for gravitational wave
detectors. Treat both waveform prediction and
waveform analysis.
Gravitational waves are propagating varia-

tions in the metric tensor, and the challenge is
to separate the physical waves from various
coordinate effects. In the weak-field limit, we
can define gravitational waves as small perturba-
tions around a background metric, and a first-
order gauge-invariant formalism can be used to
eliminate leading-order gauge effects (30). Such
methods are applicable because we assume that
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Fig. 2. Binary neutron star evolution with spin and precession. As a result of the general
relativistic frame-dragging effect, a binary of neutron stars with (unaligned) spin will not move within
a fixed orbital plane. (A) The orbital motion, indicated by two different colors for the two stars.
(B) The angular momentum. Both can show precession and nutation effects, which will also be
visible in the gravitational wave signal. The axes indicate spatial coordinates (A) and vector
components of the spin (B).
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the detectors are located far from the source
where an asymptotically flat background is
available. In simulations, the numerical grids
often include extra patches for the far zone
[e.g., (9)], possibly at lower resolution (see below).
A major effort in numerical relativity is di-

rected toward obtaining accurate waveforms
with controlled error bars for long time inter-
vals. For the signal-to-noise ratio of current ob-
servations, a sufficiently accurate waveform
model may begin with a post-Newtonian approx-
imation (assuming nonrelativistic speeds) for
the initial inspiral, matched to 10 to 20 orbits
up to and including the merger from numerical
simulations of the full Einstein equations. Ini-
tially, the goal was to filter the signal out of the
noise by matching against theoretical wave-
forms. However, as the quality of the signals is
improving, the main goal of gravitational wave
astronomy is to estimate unknown source pa-
rameters. For example, we need detailed wave-
form models to distinguish black hole mergers
from neutron star mergers, determine masses

and spins, etc. The first detection of gravita-
tional waves by Advanced LIGO (2) was ac-
companied by a theory paper describing how
the properties of GW150914 were deduced from
the observational data (4). Only by combining
data with theory was it possible to arrive at the
interpretation of GW150914 as the signature
of a binary black hole merger, with specific pa-
rameters and credibility intervals. Two families
of models were used, the EOBNR and Phenom
families of waveforms (2) (Fig. 4). To analyze
the data stream from the detectors, various pa-
rametrized waveform models are being devel-
oped for high-speed template matching (e.g.,
reduced-order surrogate models) (31).

Numerics

Discretization: Choose a discretization in space
and time. Introduce adaptive mesh refinement
(AMR) in space and time to efficiently represent
different physical length scales. Choose coordinate
patches and transformations to adapt coor-
dinates to the underlying physics.

Once a suitably hyperbolic form of the PDEs
of general relativity has been derived, we have
access to several standard discretizations from
applied mathematics. The recent trend has been
toward high-order discretizations, with different
choices for the geometry and thematter fields. In
vacuum or where the matter is smooth, the geo-
metry is smooth as well. For smooth metrics,
fourth- to eighth-order finite differencing in space
is applied routinely, as well as pseudospectral
methods for exponential convergence. Neutron
star matter is represented by general relativistic
fluids, and handling relativistic shocks becomes
important. Several high-resolution shock-capturing
(HRSC) fifth-order methods are available (6),
as is work on smoothed particle hydrodynamics
(32, 33).
The physics of a binary involves several phy-

sical scales. The wavelength of gravitational
waves near merger is about 100 times the size
of the black holes, and the simulation domain
is typically chosen to be at least 1000 times the
size of the black holes to accommodate several
wave cycles. Simulations in three spatial dimen-
sions therefore become several orders of mag-
nitude more efficient with AMR, often of the
Berger-Oliger type with refinements not just in
space, but also in time. Many codes use several
coordinate patches to transition from two (or
more) central objects to spherical shells near
the outer boundary.
Scientific computing: Implement parallel al-

gorithms for high-performance computing. Invest
in professional software engineering for a collab-
orative computational infrastructure.
Numerical relativity has been very successful

with the hybrid MPI (message passing interface)
plus OpenMP (open multiprocessing) or a similar
parallelization strategy. Still, a typical numerical
relativity simulation for a binary coalescence,
representing just a single data point in a tem-
plate catalog, may take roughly 1 month on 1000
to 10,000 cores of a supercomputer. The numerical
relativity community is working on improving the
efficiency of these methods, including spectral
methods and improvedAMRschemes,which tend
to be a bottleneck for massive parallelism. Most
efforts in numerical relativity are group efforts
with a long-term investment in an evolving
code base. These efforts include SpEC (34),
SACRA (35), Whisky/THC (36), Pretorius (37),
HAD (38), BAM (39), and the community code
Einstein Toolkit (40). Some codes approximate
general relativity but provide more advanced
neutron star physics (32, 33). Although similar
in some regards—after all, the same or similar
physics is studied—the different projects vary
greatly in the range and the specifics of the
physics modules, the flexibility and extensibility
of the codes, the level of software optimization,
and the collaboration and code-sharing models.
The main challenge common to all these pro-

jects is that they are implementing a “moving
target,” as formulations and basic equations
are still changing and more physics is added
to the simulations. Simultaneously, they must
handle the trend in technology towardmassively

Brügmann, Science 361, 366–371 (2018) 27 July 2018 4 of 6

Fig. 3. The twisted pair of pants. (A and B) Spacetime plot
of the event horizon of two inspiraling black holes that merge
and ring down: equal (A) and unequal (B) masses, time t
running up, horizontal x-y slices of the event horizon (80).
(C) Pair of pants computed numerically in the 1990s for
axisymmetric, head-on collisions, time t running up, horizontal
slices in z-r coordinates (81).
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parallel computers and heterogeneous hardware,
which is challenging given the complex algo-
rithms required for numerical relativity.

Short history of binary simulations

The first simulations of black holes in vacuum
were attempted in 1964 (41). By the 1970s, many
concepts of the 3+1 ADM formulation had been
brought into numerical relativity (42), which led
to the seminal numerical work on head-on
(axisymmetric, 2+1-dimensional) black hole col-
lisions and gravitational waves (43, 44). It took
until the early 1990s (45, 46) to revisit the head-

on collision with improved numerics, which con-
firmed the early results on gravitational waves
(46). Numerical relativity in 3+1 dimensions be-
gan in 1995with the evolution of a Schwarzschild
black hole on a Cartesian grid (47) and the evol-
ution of gravitational waves (48), followed by the
first fully 3+1-dimensional simulation of a black
hole binary (49, 50). All the early black hole sim-
ulations mentioned so far were numerically un-
stable, with barely enough evolution time to start
with two separate black holes that promptly
merged. The first full orbit was achieved in
2004 (51). In 2005–2006, the last missing in-

gredients for long-term stable black hole evolu-
tions were found in two different approaches,
one based on a harmonic gauge formulation and
excision (13) and the other based on the BSSN
formulation and black hole punctures (17, 18, 51).
By 2010, the robustness and flexibility of these
methods had been established. Improvements in
the formulations, the boundary conditions, etc.,
are still ongoing today (11, 12, 15).
Neutron star simulations were pursued in

parallel with the black hole simulations. The
Valencia formalism of general relativistic hydro-
dynamics (GRHD), now the primary approach,
was developed in the 1990s (52). The first fully
general relativistic binary neutron star simula-
tions were published in 2000 (53), with enor-
mous progress inmany groups since then. As far
as the geometry of general relativity matters in
these simulations, it turns out that the methods
established for stable black hole simulations
carry over to neutron star simulations (gauge,
boundaries, initial data formulation, etc.). How-
ever, GRHD introduces its own challenge of
relativistic shocks, and the range of different
physics phenomena makes this a much more
complex problem than black holes in vacuum.

Outlook

Numerical relativity is developing rapidly in
several directions, and we highlight a few repre-
sentative examples.

High-order methods

High-ordermethods to address the ever-increasing
demand for even more accurate and detailed sim-
ulations are a major topic of current research.
Among the different high-ordermethods to solve
partial differential equations, the discontinuous
Galerkin (DG) method has emerged in recent
years as a particularly successful general-purpose
paradigm (54). It can be argued that the DG
spectral-element method subsumes several of the
key advantages of traditional finite-element
and finite-volumemethods. In particular, the DG
method works with element-local stencils, which
is a great advantage for parallelization and the
construction of complicated grids. Furthermore,
DG methods offer easy access to hp-adaptivity,
where both the size of the computational ele-
ments (or cells) and the order of the polynomial
approximation within each element can be
adapted to the problem.
There are threemajor efforts to useDGmethods

for general relativity and/or GRHD (55–57). The
first simulations of a single neutron star were
achieved recently (55, 58), and simple binaries
are awork in progress.With regard to high-order
approximations, there is no doubt that if expo-
nentially convergent spectral methods such as
DG (or pseudospectral methods) are applicable,
they will constitute a big improvement over
finite-difference approximations, which give only
polynomial convergence. High-order methods
can provide breakthroughs by reaching accu-
racies that make new physics possible (e.g., for
magnetic field amplification due to small-scale
turbulence) or by reducing numerical errors to
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Fig. 4. Numerical waveform catalogs anticipated the first gravitational wave observations. Shown
are examples for template construction for gravitational waves frombinary black holemergers. (A) Various
numerical waveforms computed by different research groups forming an international collaboration.
(B) Combining post-Newtonian models for the inspiral with numerical relativity. In (A) and (B), the
amplitude of the gravitational wave is plotted versus time.Themerger occurs at t = 0. In (B), the numerical
waveform is preceded by a post-Newtonian waveform to cover more orbits of the inspiral. Such
waveforms, which were purely theoretical, became real with the first observation of gravitational waves
in 2015 [compare to figure 1 of (2)], making it possible to interpret the first signals as themerger events of
two black holes.
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make gravitationalwave analysis possible. Viewed
differently, we can reach a given error criterion
with much lower computational resources, mak-
ing simulations feasible that are otherwise too
computationally expensive.

Multi-physics

The spectacular first observation of both gravita-
tional waves (3) and electromagnetic radiation
(59, 60) from a neutron starmerger represents the
beginning ofmulti-messenger astronomy includ-
ing gravitational waves. To model such systems,
we need to perform “multi-physics” simulations.
Modeling electromagnetic fields in GRHD

can be accomplished by coupling the Max-
well equations to the GRHD equations, for
which the prevalent approach has been ideal
magnetohydrodynamics (IMHD). The assump-
tion of IMHD is that the fluid has zero resistivity,
but for the merger—and in particular for the
fields surrounding the remnant with torus and
ejecta—the quality of that approximation is un-
clear. Resistivemagnetohydrodynamics (RMHD)
is expected to be important for realisticmodels of
plasma instabilities and magnetic reconnection.
Apart from unknown physics, the mathematical
character of the RMHD equations may be prob-
lematic (61, 62). There are only a few general rela-
tivistic simulations with RMHD [e.g., (61, 63, 64)].
Developing a proper theory of resistive relativistic
plasmas is a large project in itself (65).
The microphysical equation of state of neu-

tron stars remains unknown and is also a tar-
get for numerical models and for observations.
Investigations may include 20 or more different
equations of state in an attempt to cover all
sensible proposals. Even determining just one
parameter—the existence of neutron stars with
2.0 solar masses (66, 67)—provided a strong con-
straint. In principle, gravitational wave observa-
tions can do much better, gleaning information
from the inspiral and the merger. Although in-
spiral signals will show rather systematic long-
time effects (68–70), one of the grand challenges
will be to disentangle the much more messy
merger signal (71).
Standard merger models predict strong heat-

ing of the neutron star matter, which is expected
to lead to an enormous amount of neutrino emis-
sion with luminosity on the order of 1054 erg s–1.
This burst of energy plays a role in models of
short gamma ray bursts (72) and also for the
ejecta, which in turn affects heavy-element pro-
duction and macro- or kilonovae (73). However,
currently the high dimensionality of such radia-
tive transport problems (3+1 spacetime plus 3 for
the radiative transport) is prohibitive, leading
to a wide array of approximations with variable
applicability (74, 75). A coherent picture for neu-
trino physics in binarymergers is still lacking but
should be a part ofmulti-messenger astrophysics.

Beyond current astrophysics

Numerical relativity has a large number of ap-
plications outside the area of compact binaries
and gravitational waves (76, 77). Topics include
gravitational collapse with surprising critical

phenomena, boson stars and other exotic matter,
and cosmological simulations. Going beyond clas-
sical general relativity, the field of numerical
relativity for alternative gravity theories and
gravity in higher dimensions is wide open.

Conclusion

The next decade is sure to see numerical rel-
ativity grow in terms of computational power
and applicability to different physical scenarios.
The detailed theoretical models for black hole
and neutron star binaries that are the target of
research in numerical relativity are closely linked
to the observation of gravitational waves. Numer-
ical relativity, in combination with the highly
anticipated future observations of gravitational
waves, is expected to provide entirely new insights
into extreme gravity and extreme matter.
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