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Honors 225 – Study Guide/Chapter Summaries for Exam 1 
Roots Chapters 1-7 
 
Introduction - "Conventions, Abbreviations, Symbols" 
 
Units. Standard metric units that I would expect you to know are as follows: 

 Length – meter (m) 
 Mass – kilogram (kg) 
 Time – second (s) 
 Energy – joule (J) 
 Force – newton (N) 
 Electric potential – volt (V) 
 Temperature – kelvin (K) 
 Power – watt (W), which is energy per time (J/s) 

 
Convert between these standard units and other units by using conversion factors. I will give you any 
conversion factors you may need to know, perhaps in a list like this: 

 1 inch = 2.54 cm 
 1 foot = 0.3048 m 
 1 mile = 1.609 km 
 1 mi/hr = 1 mph = 0.44704 m/s 
 1 cal = 4.186 J 
 1 eV = 1.602  10-19 J 

  
Powers of 10. Standard metric prefixes indicate powers of ten; I would expect you to know the following:  

 Giga (G) – 109  
 Mega (M) – 106 
 Kilo (k) – 103 
 Centi (c) – 10-2 
 Milli (m) – 10-3 
 Micro (μ) – 10-6 
 Nano (n) – 10-9  

 
If any other metric prefixes show up in a problem (like “femto”, etc.), I would give you their meaning. 
 
Short-cut “e” notation can be used to mean powers of 10, for example 3.58  1013 is 3.58e13.  
 
Fundamental constants. I will give you the following list of fundamental physical constants that you 
might need to know, perhaps in a list like this:  

 c = speed of light, 2.998  108 m/s 
 e = charge of an electron (magnitude), 1.602  10-19 C 
 h = Plank’s constant, 6.626  10-34 Js 
 k = Boltzmann’s constant, 1.381  10-23 J/K. Not to be confused with the wavenumber k, 

described below. 
 m = mass of an electron, 9.109  10-31 kg 
 σ = Stefan-Boltzmann constant, 5.670  10-8 W/(m2K4)  
 Wien’s law constant, 2.898 ൈ 10ିଷ	meters ∙ K 
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Basic math. I will expect you to be able to do algebra and basic trigonometry, as well as know what the 
mathematical constants e and π refer to. You should have a basic scientific calculator that can do 
mathematical functions such as sin, cos, tan, and exp.  
 
Chapter 1: Themes, Appendix DIR Paul Dirac  
 
These are good topics to set the stage for the rest of the book, but nothing that would be explicitly tested 
on. 
 
 
Chapter 2: O Light Divine; Appendix FRE Frequency  (the Fourier Analysis appendix gets its own 
section below) 
 
Basic wave properties. Although Newton pictured light as a stream of particles, other scientists who were 
his successors (and in some cases even his contemporaries) soon discovered that light demonstrated 
features of waves. Wave properties are characterized by: 

 wavelength, λ (lambda) – This is the distance over which a wave repeats itself, if for example the 
wave were frozen in time in a photograph. That is, how many meters between wave crests. 

 period, T – This is the time over which a wave repeats itself, as the wave passes through a 
particular point in space. That is, how many seconds between wave crests. 

 frequency, f (book symbol ν, nu) – This is the inverse of the period, ݂ ൌ
ଵ

்
 . That is, how many 

wave crests pass through a particular point in space each second. 
 angular frequency, ω (omega) – This is 2π times the frequency, ߱ ൌ  and represents how ,݂ߨ2

many radians of the wave pass by per second. (There are 2π radians in a complete oscillation.) 

It’s also related to the period through	߱ ൌ
ଶగ

்
 . 

 wavenumber, k – This is 2π divided by the wavelength, ݇ ൌ
ଶగ

ఒ
 , and represents how many radians 

of the wave exist per meter. 
 
The speed of a wave is related to the wavelength and frequency through this equation:  
 

݂ߣ ൌ  ݒ
 
For light waves, the wave speed is equal to c, the fundamental constant given above. 
 
Sine waves. We often use sine functions to represent waves for reasons that are explained in the next 
section. They could have the following mathematical forms, where y is whatever quantity that is 
oscillating and A is the amplitude of the oscillation.  
 
ݕ ൌ ܣ sinሺ݇ݔሻ – a wave that has no time dependence (like in a photograph) 
ݕ ൌ ܣ sinሺ߱ݐሻ – a wave that has no spatial dependence (like if you’re restricted to a single point in space) 
ݕ ൌ ܣ sinሺ݇ݔ െ  ሻ – a traveling wave with both time and space dependenceݐ߱
 
Since sine equals 0 when its argument is 0, all of those forms implicitly require a wave which starts at 
zero. If a particular wave does not start at zero, one can take that into account by adding a phase shift to 
the wave, commonly symbolized as ϕ (phi). For example: 
 
ݕ ൌ ܣ sinሺ݇ݔ ൅ ߶ሻ – a wave with no time dependence, that is shifted toward negative x by ϕ radians 

(where there are 2π radians in a complete oscillation).  
ݕ ൌ ܣ sinሺ߱ݐ ൅ ߶ሻ – a wave with no spatial dependence, that is shifted toward negative t by ϕ radians  
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When waves come together, they add together. This is called interference. Interference can be 
constructive if they are in phase or destructive if they are out of phase.  
 
More properties of light include the following; you should review them in the book if needed: 

 Reflection  
 Refraction 
 Dispersion  
 Diffraction 
 Transverse vs. longitudinal oscillations 
 Polarization 
 Coherence 

 
 
Chapter 2 Appendix FOU Fourier Analysis 
 
All waves can be represented as a sum of sinusoidal functions at different frequencies. This is called 
Fourier analysis. Including more and more frequencies gives a more and more accurate representation of 
the wave.1  
 
This was demonstrated in the book using an example of a square pulse having a duration (“pulse width”) 
of 1 ms and a pulse repetition period of 4 ms. The book called this the RECT function. The function and 
its Fourier representation are given in Fig A2.2.  
 
One can depict a wave either as a function as time or as its Fourier representation in terms of the 
amplitude of the frequency components that make up the wave. The frequency representation is called the 
“frequency spectrum”; if the squares of the amplitudes are plotted this is called the “frequency power 
spectrum”, or often just the “power spectrum” for short (because the energy or power contained in a 
sinusoidal wave depends on its amplitude squared). The power spectrum for the RECT function is given 
in Fig A2.3.  
 
In class I depicted power spectra of a few other functions similar to RECT but with different pulse widths 
and repetition periods. The three most important take aways from that discussion were: 
 

 The shape of the power spectrum depends only on the shape of pulse. All of the RECT-type 
functions had the same basic power spectrum shape as Fig A2.3.  

 The spacing between frequency points is inversely proportional to the period T. Doubling the 
period (for example) will result in the power spectrum points being spaced together 2 more 
closely.  

o To be even more specific, the spacing between points is equal to 1/T. One can say: 
݀݋݅ݎ݁݌ ൈ ݃݊݅ܿܽ݌ݏ	ݕܿ݊݁ݑݍ݁ݎ݂ ൌ 1  

o As period goes to infinity, the frequency points become infinitely close together.  
 The width of the power spectrum is inversely proportional to the pulse width. Doubling the pulse 

width (for example) will result in the power spectrum being half as wide, while keeping the same 
overall shape. 

                                                 
1 We are considering now only waves that are functions of time, although similar things can be done by for waves 
that are functions of space by talking about “spatial frequencies”. 
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o To be even more specific, the width of the power spectrum is equal to a constant C (a 
small positive number), divided by the pulse width. One can say: 
݁ݏ݈ݑ݌	݂݋	݄ݐ݀݅ݓ ൈ ݉ݑݎݐܿ݁݌ݏ	ݎ݁ݓ݋݌	݂݋	݄ݐ݀݅ݓ ൌ   ܥ

 
That last fact is given in the book as Eq. A2 in Appendix FOU. The value of the constant C depends on 
the details of the pulse shape along with how you specifically define the power spectrum width. For the 
RECT pulse function, and with the power spectrum width defined as the “distance” (in Hz) from the 
power spectrum minimum point just to the right of 0 minus the minimum point just to the left of 0, it 
turns out that the constant C = 2.  As mentioned in a homework problem, for the usual definition of power 
spectrum width (which is a little different than what we did for RECT, but which I won’t go into here), it 
can be mathematically proven that the smallest that C can ever be is C = 1/(4π). 
 
The third bullet point is the first major instance of uncertainty in the physics of this class. If you want a 
wave with a well-defined frequency (narrow frequency power spectrum), it must by necessity be long in 
duration. If you want a wave with a well-defined arrival time (short pulse), it must by necessity have a 
wide frequency power spectrum. You cannot simultaneously have a wave with a well-defined frequency 
and also a well-defined arrival time. 
 
 
Chapter 3 - The Young Experiment (1801) 
 
Young’s “two slit experiment” showed unambiguously that light waves interfere with each other, and 
hence (people thought at the time) light must be a wave. Here’s the setup, from Fig. 3.3b. 

 
 

L is the light source. M stands for a “mask”, which contains two slits, S1 and S2. The light passes through 
the mask and gets projected onto a screen labeled N. The stripes on the figure indicate spots of varying 
intensity or brightness as shown below. The letters y1 and y2 indicate positions on the screen relative to 
the middle of the pattern (origin O). 
 

 
 

 
 

y 
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Using the symbols d and D to refer to the distance between the two slits, and the distance between mask 
and screen, respectively, the path length difference (PD) for light rays traveling through S2 vs. S1 is:  
 

ܦܲ ൌ
݀ݕ
ܦ

 

 
The bright fringes occur when the path difference is zero, one wavelength, two wavelengths, etc., because 
that will result in the waves being in phase. The equation for constructive interference is thus: 
 

݀ݕ
ܦ
ൌ  ߣ݊

 
In that equation n represents any integer and y now means the specific distance on the screen from the 
origin to the center of the “nth” fringe.  One can solve for y for a given n, to find out where a given fringe 
will appear. The fringe separation distance (which I will call Δy) is constant, and is given by the distance 
from the origin to the y-value for n = 1: Δݕ ൌ  ݀/ܦߣ
 
 
Chapter 4 – A Whiff of Ether (1887) 
 
Some basic definitions 
 

 Velocity, v – how fast an object changes position: ݒ ൌ
ୡ୦ୟ୬୥ୣ	୧୬	୮୭ୱ୧୲୧୭୬

୲୧୫ୣ	୧୲	୲ୟ୩ୣୱ	୤୭୰	୲୦ୣ	ୡ୦ୟ୬୥ୣ
 

 Acceleration, a – how fast an object’s velocity changes: ܽ ൌ
ୡ୦ୟ୬୥ୣ	୧୬	୴ୣ୪୭ୡ୧୲୷

୲୧୫ୣ	୧୲	୲ୟ୩ୣୱ	୤୭୰	୲୦ୣ	ୡ୦ୟ୬୥ୣ
 

 Mass, m – a measure of how much matter is present in an object 
 Force, F – the strength of a push or a pull on an object 

 
Newton’s laws of motion.  

1) If F = 0 on an object, then there is no acceleration. An object with no forces acting on it will 
remain at rest or at constant velocity. 

2) If F  0, then there will be an acceleration, and the amount of acceleration is given by ܽ ൌ   .݉/ܨ
Or, as it’s usually written, ܨ ൌ ݉ܽ. 

a. Note in laws 1 and 2 we’re talking about the net force, since (for example) forces applied 
in opposite directions can cancel out. 

3) If there’s a force between two objects, then the force of object 1 on object 2 will always be equal 
and opposite to the force of object 2 on object 1. 

a. Note that this means that forces always comes in pairs. If (for example) I hit someone’s 
face with my hand, their face will always be applying a force on my hand in the opposite 
direction at the same time (which can injure my hand!).  

 
Example of forces. 

 Gravity, F ~ 1/r2 
 Electromagnetic, F ~ 1/r2  
 Strong and weak nuclear (they are very short ranged, and very complicated) 

 
Gravity and electric forces are inverse square laws: double the distance between the objects and the force 
goes down by a factor of 4. 
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Inertial vs. non-inertial observers.  Observers must be inertial for them to agree that Newton’s laws are 
valid. Inertial means “at rest or moving at constant velocity” (like in the book’s cargo hold example). 
Under those conditions everything will be normal. Non-inertial observers are ones in a frame of reference 
that is accelerating or rotating; under those conditions there will be strange effects which objects don’t 
seem to obey Newton’s laws. One example of this is the Coriolis force or Coriolis effect where objects in 
flight appear to be pushed to the right (in the Northern hemisphere) even though there is no force on 
them; this is really a result of the earth rotating underneath the object as it is in the air. 
 
 
Chapter 4 - continued 
 
The second half of chapter 4 deals with the speed of light, which has the symbol c and has been measured 
to be 3  108 m/s. (A more accurate value is given above.)  This value exactly matched the predicted 
speed of electromagnetic waves by Maxwell’s laws of electricity and magnetism in 1864, and the 
agreement between theory and experiment was seen as a great triumph of electromagnetic wave theory 
and incontrovertible evidence of light being a wave. Incidentally, the speed of light was measured with a 
fair degree of accuracy as early as 1849 (not discussed in book).  
 
Waves require a medium in which to travel, so the Michaelson-Morley experiment was done to try to 
measure properties of the luminiferous ether which was thought to be the medium, but which we now 
know does not exist. The experiment measured interference between light waves starting at the same spot 
but going back and forth from there along two different paths. The set-up of the experiment (assuming 
equal paths) is given in Fig. 4.5a, which assume an ether current or “wind” coming from the right due to 
the Earth’s motion through the ether: 
 

 
 
Using v to indicate the speed of the ether wind, we worked out in class the time for light to travel along 
the round-trip horizontal and vertical paths: 

௛௢௥௜௭ݐ ൌ
2݀ܿ

ܿଶ െ ଶݒ
 

௩௘௥௧ݐ ൌ
2݀

√ܿଶ െ ଶݒ
 

 
The two equations can be combined in a ratio which shows that the horizontal time is larger (because the 
denominator of the ratio is obviously smaller than the numerator):  
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௛௢௥௜௭ݐ
௩௘௥௧ݐ

ൌ
ܿ

√ܿଶ െ ଶݒ
 

 
By measuring the differences in the two times, which Michaelson and Morely proposed to do via phase 
shifts and interference fringes, one can then calculate v. The result: there WAS no difference in times, and 
hence v = 0, and hence there is no ether. Since there is no ether, a necessary and confusing consequence is 
that light emitted by sources will be measured by all observers as traveling at c, regardless of any motion 
by the sources or observers. This was eventually resolved by Einstein through his theory of relativity in 
1905, but (sadly?) is not a topic of this course.  
 
 
Chapter 5 – Professor Plank is Desperate (1901); Appendix PLA Max Plank 
 
The random motion of atoms and molecules is a form of energy. The hotter the object, the more vigorous 
the random motion. Like other forms of energy, this is measured in the metric systems in joules. Heat is 
the transfer of this random thermal energy. The three main ways thermal energy can be transferred are 
conduction, convection, and radiation. We’ll focus on radiation: heat transfer through light energy.  
 
Blackbody radiation is the “glow” of hot objects, such as incandescent lights, electric burners, lava, stars, 
etc. The glow carries away energy from the hot object, which then can be given to cooler objects 
surrounding it. The three important laws governing blackbody radiation are: 
 
Stefan-Boltzmann law:  ܲ ൌ  ସܶܣߪ߳

 P is the radiant power (in watts), which is the radiant energy emitted per time; in the book the 
equation is given as ܴܧ ൌ  .ସ where RE = power per surface area of the sourceܶߪ߳

 Epsilon, ϵ, is called the emissivity, and describes how different the actual radiation is from 
radiation of a perfect blackbody. It’s always between 0 and 1 but has a different value for each 
radiating object. 

 Sigma, σ, is the “Stefan-Boltzmann constant”, a fundamental constant given above.  
 

Wien’s law:  ߣ௣௘௔௞ ൌ
ଶ.଼ଽ଼ൈଵ଴షయ	୫ୣ୲ୣ୰ୱ∙୏

்
 

 ߣ௣௘௔௞ is the peak wavelength of the radiant emission (in meters) 
 For some reason the constant in the numerator isn’t typically given a special name/symbol, 

although Wikipedia uses the letter b. I’ll just call it the “Wien’s law constant”.  
 

Plank’s law: ܴܵܧ ൌ
ଶగ௛௖మ

ఒఱቀୣ୶୮ቀ
೓೎
ഊೖ೅

ቁିଵቁ
 

 SRE is the “spectral radiant emission”, which is the radiant power per surface area, per 
wavelength. 

 h is a new fundamental constant, called “Plank’s constant”; value given above. 
 k is an older constant, called “Boltzmann’s constant”, value given above, which had previously 

been discovered in the thermodynamic studies of gases (if you care: it’s the ideal gas law constant 
R in metric units, divided by Avogadro’s number). 

 As expected, λ is wavelength (in meters) and c is the speed of light. 
 
Caution: In all three equations the temperature must be given in kelvin. 
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Plank’s law actually predicts the Stefan-Boltzmann law and Wien’s law (although we didn’t do that in 
class), and perfectly explains the measured shape of blackbody radiation spectra. 
 
Plank derived this equation theoretically via quantized oscillators, which means that although light can 
come in different frequencies, for a given frequency f the light can only come in bundles of energy which 
are multiples of hf.   
 
This is reminiscent of standing waves, such as the waves I made in class by oscillating a section of rubber 
tubing, where the waves are forced to be nodes (unmoving spots) at the edges. Increasing the frequency of 
oscillation results in special situations where you get successive “humps” (called antinodes) in the 
middle. Here’s the table we made in class: 
 

 Number of 
antinodes 

Wavelength, in 
terms of length 
of tubing, L 

Frequency, in terms of 
L and wave speed v  
(using f = v/λ)  

Frequency, in 
terms of the 
first mode, f1   

1st mode 1 2L v/(2L) f1 
2nd mode 2 L v/L 2  f1 
3rd mode  3 (2/3) L v/((2/3)L) = 3v/(2L) 3  f1 
nth mode n 2L/n v/(2L/n) = nv/(2L) n  f1 

 
You can see that standing waves come in quantized frequencies, where only multiples of f1 are allowed. 
 
 
Chapters 6 and 7 – The Photoelectric Effect (1902) and Dr Einstein’s Light Arrows (1905) 
 
In some materials, electrons can be made to jump off of a surface and be attracted to a nearby positive 
electrode (electrons are negatively charged, and opposites attract). Light helps this process. Whether or 
not an electron can be made to escape the surface depends on the spectrum of the light, but not on the 
intensity of the light. This was studied in the photoelectric effect experiments done by Lenard and others, 
as depicted in Fig. 6.2: 

 
 
The γ symbols refer to “quantized oscillations of electromagnetic energy”, which we (thankfully) now 
call photons, coming from the light source; the e- symbols refer to electrons which have left the electrode 
on the left and are attracted to the electrode on the right. The electrons can come off of the left electrode 
with varying amounts of energy. 
 
The most important results of a photoelectric effect experiment are summarized by making a plot of the 
maximum energy of the electrons vs. the frequency of the applied light, for the material under study. This 
is given for several materials Fig. 7.2; the plots show that no electrons are produced until the frequency 
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reaches some threshold (which depends on the material), and then the maximum energy of the electrons 
increases linearly with frequency with a slope that is equal to Plank’s constant:  
 

 
 
The equation describing the result is this: 
 

௠௔௫ܧ ൌ ݄݂ െܹ݂ 
 
The work function (Wf) is different for each material, and is a measure of how deep the “well” is that the 
electrons must escape from in order to leave the material. The y-intercept of the graph for a given 
material, multiplied by –1, is the work function for that material.  
 
Caution: When using that equation, Emax and Wf must be given in joules, so to make a plot like the one 
above, you would need to first convert joules to eV.  
 
The results of these experiments were explained by Einstein thusly in 1905: the energy of a light wave 
comes in bundles, called photons. Einstein’s genius was to give the explanation with only preliminary 
results, i.e. prior to the full results shown in the figure (those results were from 1916). In J.J. Thomson’s 
words, the photons in a wave front are like “bright sparkles on a dark background”. Each individual 

photon has energy ܧ ൌ ݄݂, or in terms of the wavelength, ܧ ൌ
௛௖

ఒ
.  Einstein’s photons explain both the 

photoelectric effect and also the “quantized oscillators” of Plank’s radiation law. 
 
 


