
Honors 225 Study Guide for Exam 2 - pg 1 
 

Honors 225 – Physics Study Guide/Chapter Summaries for Exam 2; Roots Chapters 8-14 
 
 
Chapter 8 – Young, Revisited 
 
When very sensitive detectors are used to detect smaller and smaller amounts of light, there comes a point 
when they start registering individual photons. That can be seen in Fig. 8.3, the photos of a woman with 
differing amounts of exposures.  
 
Much more surprising was this: when Young’s double-slit experiment was repeated by G.I. Taylor in 
1909, he was able to detect individual photons… but the individual photons still bunched up in 
interference patterns even though there were no other photons present to interfere with! In some sense the 
individual photons are passing through both slits at the same time and interfering with themselves! This is 
crazy‼ But apparently it’s the way the universe works.  
 
That is depicted in Fig. 8.2, and there’s an actual video of the effect posted to the class website.  

     
 
In fact, every particle behaves this same way, not just photons. Here’s the depiction for electrons in the 
1989 Hitachi experiment, as given in this article: https://physicsworld.com/a/the-double-slit-experiment/ 
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To make matters even more strange, if detectors (“indicators”, as Grometstein calls them) are used to 
observe which slit the photons or electrons went through, the narrow interference fringes go away and 
you just get a superposition of two wider bands.  
 
Moral of the story:  

Things on a very small scale behave like nothing that you have any direct experience about. They do not 
behave like waves, they do not behave like particles, they do not behave like clouds, or billiard balls, or 
weights on springs, or like anything that you have ever seen.  –Richard Feynmann, 1963 

 
 
Chapter 9 – The Nuclear Atom (1904-1912) 
 
The main topic of this chapter is Ernest Rutherford’s 1910 experiment where he used alpha particles to 
bombard nuclei, and from the results was able to deduce that the size of a nucleus is around 10 fm, 
meaning 10  10–15 m. Here’s how that went.  
 
Alpha particles are made up of two protons and two neutrons. They have a mass of 6.64424  10–27 kg 
and a charge of +2e. They are what’s left if you take a helium atom and strip away the electrons, and are 
often also emitted as independent particles in various radioactive decays. As an alpha particle approaches 
a nucleus where the positive charge of an atom is concentrated, it experiences a repulsion because both 
the alpha particle and the nucleus are positively charged. Like charges repel according to Coulomb’s law 
which governs the electric force between any two charged objects:  
 

ܨ ൌ
ଶݍଵݍ݇
ଶݎ

 

 
 F is the amount of the repulsive force (in N) 
 q1 and q2 are the values of the two charges (in C) 
 r is the separation distance between the two charges 
 k is the Coloumb force constant, sometimes called “Coloumb’s constant”, and has a value of 

8.988  109 Nm2/C2. Don’t confuse this with Boltzmann’s constant which was mentioned in 
Chapter 5 even though both sometimes use the same symbol, k.  

 
This repulsive force creates what can be called an “energy barrier” for the alpha particles, in much the 
same way that a ramp creates an energy barrier for a skateboarder. Energy comes in two forms, namely 
kinetic and potential. The equation for the kinetic energy of an object is: 
 

ܧܭ ൌ
1
2
 ଶݒ݉

 m is the object’s mass 
 v is the object’s velocity 

 
There are also equations for potential energy, but the specific potential energy equation depends on the 
specific force from which the potential energy arises (in the case, the Coulomb force), so we won’t go 
into details on that right now.  
 
Back to the skateboarder analogy. In that example, potential energy arises from gravitational force, and 
the higher up the ramp a skateboarder is the more potential energy she has. As she approaches the ramp, 
she has kinetic energy. As she rises up the ramp, the kinetic energy is turned into potential energy. The 
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kinetic energy can be reclaimed when she goes back down the ramp, assuming no energy is lost to effects 
like friction. 
 
In the Rutherford experiment, the potential energy from the nucleus causes the alpha particle to behave 
like a skateboarder going up a ramp shaped like this (the small blue ring indicates the size of the nucleus):  
 

 
 
The impact parameter describes the closest distance the alpha particle would get to the nucleus, if it 
didn’t experience any repulsion at all. (The distance of closest approach, or DCA, by contrast, is how 
close the alpha particle actually gets to the nucleus.) For large impact parameters the alpha particles won’t 
be deflected much. But with small impact parameters a substantial deflection can occur. For an impact 
parameter close to zero, the alpha particle can even “go up the ramp” a ways, then turn around and come 
straight back! With even more energy, the alpha particle can go all the way up the ramp and actually 
collide with the nucleus.  
 
Here are Rutherford’s key results for alpha particles, as summarized in Fig. 9.5:  

 
 
These experiments disproved J.J. Thomson’s “plum pudding” model of the atom which thought the positive 
charge was spread out rather than gathered into a nucleus. Grometstein estimates (without showing details) 
that the deflection of an alpha particle by a single plum pudding-type nucleus would have been about 0.02 
in a random direction. That means at each nucleus the alpha particles have a 50-50 change of going left or 
right by about 0.02 (up-down deflections have a similar story). This is analogous to flipping a coin, where 
at each flip the coin has a 50-50 chance of being heads or tails. Grometstein cites a well-known statistical 
fact that if you flip a coin 10,000 times, then the coin will probably not go heads exactly 5,000 times… but 
one might reasonably expect the number of heads to be within 2√10,000 = 200 heads of 5,000. In other 
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words, the number of heads will likely be 5,000  200. The square root dependence comes from analyzing 
random numbers and is common to many statistical events, such as sampling error in election polls. The 
factor of 2 comes from Grometstein’s defining “very likely” to have a precise statistical definition of “within 
two standard deviations”. To summarize the situation: for N flips the deviation from 50% will very likely 
be within 2√ܰ flips.  
 
This means that if Thomson’s model had been correct, for alpha particles going through a gold foil that is 
10,000 atoms thick and with the particles making a 0.02 random deflection at each atom, Rutherford should 
have seen nearly all of the alpha particles to have deflections less than 0.02∘ ൈ 2√10,000 ൌ 4∘. But that is 
not at all what Rutherford observed. He saw many deflections at angles larger than that, some at very large 
angles. Moreover, by increasing the energy of the alpha particles he was able to see the point at which the 
alpha particles had enough energy to actually penetrate the nucleus, and in that case the number of alpha 
particles deflected at very large angles (close to 180, i.e. straight back) was reduced. All of this data when 
combined with mathematical models beyond the scope of this class resulted in the conclusion that the size 
of the nucleus is about 10 fm, as mentioned above. 
 
 
Chapter 10 – Bohr’s Atom (1913-1925) 
 
Rutherford’s “solar system” model of the atom, as it came to be known, suffered from two huge flaws. One, 
it didn’t explain the observed atomic spectra. Why are only discrete wavelengths observed? And why those 
particular wavelengths? Secondly, the laws of electricity and magnetism (“Maxwell’s equations”) indicated 
that due to the loss of energy from electromagnetic waves being given off, if an electron were really orbiting 
a nucleus it would spiral in and collide within 16 picoseconds or so. Bohr proposed an alternate model of 
the atom to explain these. Bohr’s model was a huge break from classical physics and explained some (but 
not all) features that had been observed. To understand Bohr’s model, we must first review the concepts of 
momentum, angular momentum, and centripetal acceleration. 
 
Momentum: The momentum of an object, given the symbol p, is defined as its mass times its velocity:   ൌ
 Its usage in physics is pretty close to its usage in English—the more momentum something has, the .ݒ݉
harder it is to stop.  
 
Angular momentum: The angular momentum of an object, given the symbol L, is defined as the object's 
momentum multiplied by a “lever arm” about a central point. For the case of circular motion, the lever arm 
is just the radius of the circle in which the object is traveling: ܮ ൌ  Loosely speaking the angular .ݎݒ݉
momentum is a measure of how hard it would be to stop something traveling around in a circle.  
 
Centripetal acceleration: As per Newton’s First Law, objects tend to travel in constant velocity straight-line 
motion unless acted upon by a force. If an object is traveling in a circle, it must be experiencing a force and 
hence (from Newton’s Second Law) an acceleration… even if its speed is not changing. This type of 
acceleration is called “centripetal”, meaning “center seeking”, because the force is constantly deflecting the 
object towards the center of the circle. It can be shown (but it’s beyond the scope of this class) that the 
amount of acceleration an object must have to move in a circle (radius R) at constant speed v is:  

ܽ ൌ
ଶݒ

ܴ
 

 
The amount of force required to move the object in the circle is just its mass times that acceleration.  
 
Back to Bohr’s model. He proposed three postulates that had no foundation in classical physics… but which 
seemed to explain the experimental observations related to electrons orbiting their nuclei. They are: 
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(1) Angular momentum is quantized. It only exists as multiples of Plank’s constant divided by 2π, 
which is given the new symbol  (pronounced “h bar”). In equation form: ܮ ൌ ݊ where n 
represents any integer. This means that only certain orbits are possible.  

(2) Electrons in atoms don’t follow Maxwell’s equations, namely they do not give off radiation as long 
as they don’t switch orbits. 

(3) When an electron does switch orbits, it emits or absorbs a photon to account for the energy 
difference between the two orbits. 

 
In class we went through the math that combined Bohr’s quantized angular momentum with centripetal 
acceleration caused by the Coulomb force between an electron and a hydrogen nucleus (one proton) to 
arrive at these two important equations for the orbital radius and orbital energy of electrons in the nth orbit 
in hydrogen atoms. (In these equations k is the Coulomb force constant.) 
 

ݎ ൌ
ଶ

݇݉݁ଶ
݊ଶ ൌ ሺ5.29 ⋅ 10ିଵଵ	metersሻ	݊ଶ 

 

ܧ ൌ െ
݇ଶ݉݁ସ

2ଶ
1
݊ଶ

ൌ ሺെ13.61	eVሻ
1
݊ଶ

 

 
Success! The energy equation in particular, combined with the third postulate, exactly predicts the known 
absorption and emission spectral lines of hydrogen atoms. Modified versions of those equations also worked 
well for other atoms containing only one electron, such as singly ionized helium atoms, doubly ionized 
lithium atoms, and so forth.  
 
But not total success—the theory couldn’t be modified for other atoms, and other special cases such as what 
happens to atoms in electric and magnetic fields necessitated the creation of other “quantum numbers” 
besides n which were required to specify the state of a given electron. These were labeled in Roots as ℓ, mℓ, 
and s. (Disclaimer: what Roots calls s is often called ms.) 
 
We are skipping the Frank-Hertz experiment of 1914, which also helped verify the discrete nature of 
electron energy levels in atoms.  
 
 
Chapter 11 – Compton’s Shift (1923) 
 
In addition to the energy of a photon being ܧ ൌ  Einstein also proposed that the momentum of a ,ߣ/݄ܿ
photon is: 

 ൌ
݄
ߣ

 

 
Compton used this to explain his results in a scattering experiment where photons collide with electrons 
and then go off with a different energy and a different momentum in some other direction.  
 
This type of collision is similar to two billiard balls colliding, which can be analyzed through the principles 
of conservation of energy and conservation of momentum. Since momentum is a vector quantity, 
momentum in both x- and  y-directions is conserved. Suppose a cue ball (labeled C in the figure, but let me 
call it “ball 1”) collides with a target ball (T in the figure, aka “ball 2”), and we measure ball 1’s initial 
velocity (v1) and final angle (α). Can we predict these three things? (1) Ball 1’s final velocity (v1′). (2) Ball 
2’s final angle (θ), and (3) Ball 2’s final velocity (v2′)? Yes we can! We can set up three equations which 
allow us to solve for those three unknowns. (We will assume both balls have the same mass, m.) 
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 Just before collision Just after collision 
 
 
 
 
 
 
 
Conservation of energy: 

 
ଵ

ଶ
ଵݒ݉

ଶ ൌ
ଵ

ଶ
ଵݒ݉

ᇱଶ 
ଵ

ଶ
ଶݒ݉

ᇱ ଶ 

 
Conservation of momentum in the x-direction: 
ଵݒ݉  ൌ ଵݒ݉

ᇱ cos ߙ ݉ݒଶ
ᇱ cos  ߠ

 
Conservation of momentum in the y-direction: 
 0 ൌ ଵݒ݉

ᇱ sin ߙ െ ଶݒ݉
ᇱ sin  ߠ

 
Going through quite a bit of algebra from those three equations we arrive at the answers to our three 
questions above: 

ଵݒ (1)
ᇱ ൌ ଵݒ cos  ߙ

ߠ (2) ൌ 90∘ െ  ߙ
ଶݒ (3)

ᇱ ൌ ଵݒ sin  ߙ
 

The situation with a photon colliding with a stationary electron is quite similar. We just need to use the 
equations for energy and momentum of a photon which we know, and Einstein’s equation that relates 
energy and momentum of a high speed electron, which we don’t know but which I don’t especially care 
that you know. Since the photon loses energy in the process it is shifted to higher wavelength. If one sets 
up three equations again and goes through the math (beyond the scope of this class), then one can arrive at 
Compton’s equation which relates the new photon wavelength (λ′) to the original wavelength (λ): 

ᇱߣ ൌ ߣ 
݄
݉ܿ

ሺ1 െ cos  ሻߙ

 
In the equation, m is the mass of the electron and α is the scattering angle of the photon. This equation 
exactly matched Compton’s experimental data for how the wavelength shifted as a function of angle α, and 
could only be derived by viewing photons as particles very similar to electrons.  
 
 
Chapter 12 – A Princely Postulate (1924) 
 
It had been established through experiments such as Young’s double-slit experiment, G.I. Taylor’s follow 
up with single photons, the photoelectric effect, and Compton scattering, that light displayed both particle 
and wave aspects. De Broglie took this one step farther and said that everything displays both particle and 
wave aspects. Specifically, the wavelength λ of a “particle” (or any object with mass) is given by the same 
exact same equation that Einstein proposed for photons, where p is momentum and h is Plank’s constant: 
 

ߣ ൌ
݄
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For macroscopic objects this equation predicts tiny wavelengths, and so their wave nature is never 
observed. But for particles such as electrons, this predicts wavelengths that are long enough to have real 
effects on the electrons’ behavior… for example, being able to see interference fringes in the double-slit 
experiment done with electrons as mentioned in Chapter 8.  
 
Another case where the wave nature of electrons was unambiguously observed was in diffraction by 
crystals, where a beam of x-rays (or later, electrons) is sent towards a crystal and scattering from the 
planes of atoms in the crystal causes bright diffraction spots to occur at specific angles which can be 
determined from Bragg’s law: 

ߣ݊ ൌ 2݀ cos
ߠ
2
	 

 
Here n is the diffraction “order”, typically a small integer, λ is the wavelength of the x-rays (or electrons), 
d is the spacing between planes of atoms, and θ is the diffraction angle as defined in this figure 
(Fig. 12.2): 

 
 
Although the equation was developed by Bragg in 1912 for use with x-rays, in 1927 Davisson and 
Germer found that electrons diffracted in exactly the same way, with the appropriate wavelength given 
exactly as predicted by de Broglie’s equation. One can also modify de Broglie’s equation which relates 
wavelength to momentum, to an equation that relates wavelength to kinetic energy (KE), like this: 
 
The definition of KE gives an equation for velocity v: 

ܧܭ ൌ
1
2
ݒ		ଶݒ݉ ൌ ඨ

ܧܭ2
݉

 

 
Plugging that v into the definition of momentum gives an equation for p in terms of KE: 

 ൌ ݒ݉ ൌ ݉ඨ
ܧܭ2
݉

ൌ  ܧܭ2݉√

 
Equating that p to the momentum in de Broglie’s equation gives us a useful equation that relates λ to KE: 

݄
ߣ
ൌ  ܧܭ2݉√

 
De Broglie’s equation, though powerful and borne out by experiment, is incomplete, in that it doesn’t 
explain how or why electrons act as waves, nor how to reconcile the concept with other experiments in 
which electrons seem to act as particles. De Broglie’s “matter waves” as we can call them, aka the particle 
“wave functions”, are given the symbol ψ (Greek letter psi). 
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(Chapter 13 – skipped) 
 
Chapter 14 – Inventing the Wave Equation (1926) – part 1 
 
Schrödinger's equation is the heart of quantum mechanics. His equation gives more insight into what the 
wave function of a particle is, and allows one to calculate ψ for a given environment which is 
characterized by a particle’s potential energy (which I will call PE but which Roots calls U). We will 
study this chapter in four parts. 
 
Schrödinger's equation involves derivatives. The derivative of a function is a function in its own right 
whose value at each point describes the slope of the original function. It’s given the symbol D:  the 
derivative of the function f is labeled D(f). A region of f that is sloping upwards will have a positive 
derivative. A region that is sloping downwards will have a negative derivative. A region which is flat will 
have a derivative equal to zero. The derivative of the derivative is called the “second derivative” of a 
function, and given the symbol D2(f) (the 2 doesn’t mean squared, it means two sequential derivatives). 
For some additional assistance on the concept if needed, see the video and simulation given in the 
warmup exercise:  

 https://www.youtube.com/watch?v=rAof9Ld5sOg 
 https://phet.colorado.edu/en/simulation/legacy/calculus-grapher 

 
Since sines and cosines are so important when discussing waves, we need to know what their derivatives 
and second derivatives are. The results are as follows (side note: sin  ሻ to avoidݔis shorthand for sinሺ݇ ݔ݇
using so many parentheses; similarly for cos  :(ݔ݇
 

ሺsinܦ ሻݔ݇ ൌ ݇ cos  	ݔ݇
ሺcosܦ ሻݔ݇ ൌ െ݇ sin  	ݔ݇
ଶሺsinܦ ሻݔ݇ ൌ െ݇ଶ sin  	ݔ݇
ଶሺcosܦ ሻݔ݇ ൌ െ݇ଶ cos  	ݔ݇

 
If the sine or cosine function has an amplitude different than 1, then just multiply the derivative by the 
amplitude as well, e.g.: ܦሺ5 sin ሻݔ݇ ൌ 5݇ cos  .etc ,ݔ݇
 
We therefore have an equation for both sine and cosine waves that looks like this:  
 

ଶሺ݂ሻܦ ൌ െ݇ଶ݂	 
 
That’s called a “differential equation”, meaning an equation that involves derivatives (which are also 
sometimes called “differentials”). Unlike regular equations which you solve for values of x, y, etc., 
differential equations are typically used to solve for functions. What’s more, sine and cosine functions 
(and sines and cosines added together) are the only functions that will solve that particular differential 
equation. So, for example, if you arrive at an equation that looks like ܦଶሺ݂ሻ ൌ െ49݂, the only functions 
that are solutions to the equation will be: sin cos ,ݔ7  with any amplitudes you like, or any of those ,ݔ7
functions added together.  
 
In the last chapter we saw that the wavelength of a particle with mass m was related to its kinetic energy 

according to: 


ఒ
ൌ  Since the wavenumber k is defined in terms of the wavelength according to .ܧܭ2݉√

݇ ൌ  :one can put that equation in terms of k instead of λ ,ߣ/ߨ2

݇ ൌ
ܧܭ2݉√
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To create his equation, Schrödinger said that the differential equation for sines and cosines given above, 
namely ܦଶሺ݂ሻ ൌ െ݇ଶ݂, should hold for matter waves of a given kinetic energy KE as long as we use the 
k value appropriate for the given kinetic energy in a given region of space: 
 

ଶሺ߰ሻܦ ൌ െ
2݉
ଶ

 ߰	ܧܭ

 
Since total energy Etot is conserved, kinetic energy will increase and decrease as a particle moves through 
regions of different potential energy, so we can put the equation in terms of the total energy and potential 
energy like this, using ܧܭሺݔሻ ൌ ௧௧ܧ െ  :ሻݔሺܧܲ
 
 
 
 
 
This is Schrödinger's equation, which we could expand to describe functions of x, y, and z, rather than 
functions of x alone (but we won’t). It is a differential equation that allows one to solve for the wave 
function ψ of a particle, given the potential energy landscape it finds itself in (which relates closely to the 
forces acting on the particle). ߰ is a function of x, so I could have written it as ߰ሺݔሻ. And actually, for a 
given potential energy function, Schrödinger's equation often predicts multiple possible wave functions, 
which we call different possible “states” or “energy states” of the particle. For each possible wave 
function, the equation also allows one to calculate the total energy of the state in a manner that we will 
see in the next section. 
 
 
Chapter 14 – Inventing the Wave Equation (1926) – part 2 
 
Now that we have the equation, we need to focus on what it tells us. If we want to predict the possible 
states of an electron in an atom, we would need to solve the Schrödinger equation for the potential energy 
of an electron in the environment of a nucleus. This is essentially just the opposite of the potential of an 
alpha particle near a nucleus, since electrons have a negative charge and alpha particles have a positive 
charge. The potential creates a well, like this (compare to the figure on page 3 of this document):  

 
 
However, that problem is too hard to solve. So we will create a model, which looks like the following but 
with the sides going up to infinity instead of only to 10; also the sides of the well in this model are at +d 
and –d instead of at +1 and –1 as the figure shows. It’s called an “infinite square well”:  
 

ଶሺ߰ሻܦ ൌ െ
2݉
ଶ

൫ܧ௧௧ െ ሻ൯ݔሺܧܲ ߰ 
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Given this potential energy, ψ for the electron is zero outside the well because the sides of the well form a 
barrier that it cannot overcome. Inside the well the potential energy ܸሺݔሻ is zero, so Schrödinger's 

equation becomes ܦଶሺ߰ሻ ൌ െ
ଶ

మ
 ߰… and we already know what the solutions are to this differential	௧௧ܧ

equation! They are just sine and cosine functions, like sin cos ,ݔ݇  or combinations. Since the wave ,ݔ݇
function inside the well must go to zero at the boundaries in order to match up with the wave function 
outside the well, that puts a condition on what values of k are allowed. This results in a set of allowed 
wave functions that seems very similar to the standing waves we saw earlier in the semester. Specifically, 
the first four look like this: 
 

 
 
If we shift the origin to be at the left hand side of the well instead of the middle (which doesn’t affect the 
physical situation at all), the sines and cosines can be summarized as a set of sine functions like this, 
where n is the number of the state which in this case matches the number of antinodes in the 
corresponding ψ: 
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߰ ൌ sin
ݔߨ݊
2݀

 

 

In other words, the first allowed wave function is ߰ଵ ൌ sin
గ௫

ଶௗ
, the second one is ߰ଶ ൌ sin

ଶగ௫

ଶௗ
, etc. These 

allowed wave functions are called the eigenfunctions. 
 
The energy of each state can be found by plugging the equation for ψ back into the Schrödinger equation 

ଶሺ߰ሻܦ ൌ െ
ଶ

మ
 :߰ and using what we know about second derivatives of sine functions	௧௧ܧ

 

Schrödinger equation with ψ plugged in: ܦଶ ቀsin
గ௫

ଶௗ
ቁ ൌ െ

ଶ

మ
௧௧ܧ 	ቀsin

గ௫

ଶௗ
ቁ 

  Evaluate the second derivative: െቀ
గ

ଶௗ
ቁ
ଶ
ቀsin

గ௫

ଶௗ
ቁ ൌ െ

ଶ

మ
௧௧ܧ 	ቀsin

గ௫

ଶௗ
ቁ 

 
The negative signs and the sine functions cancel, giving us: 
 

state	݊௧	of	௧௧ܧ ൌ
݊ଶߨଶଶ

8݉݀ଶ
	 

 
(This is also the kinetic energy of the nth state, since for this particular model the potential energy in the 
well is defined to be zero.) 
 
For an electron in a well going from –0.5 nm to +0.5 nm, the energies of the lowest four states are: 
 

ଵܧ ൌ 0.376 eV 
ଶܧ ൌ 1.504 eV 
ଷܧ ൌ 3.384 eV 
ସܧ ൌ 6.016 eV 

 
These energies are called the eigenenergies. For this model, they don’t really match the energies of 
electrons in any atoms, although they are the right order of magnitude… HOWEVER if one uses the 
actual potential energy instead of our simplistic model one, and the full 3-dimensional version of the 
Schrödinger equation, the resulting energies for an electron in a hydrogen atom exactly match the 
observed ones. The wave functions are the “atomic orbitals” that many students learn in chemistry 
classes (to be technical, the orbitals are the wave functions squared, not just ψ).  
 
The Schrödinger equation as given here doesn’t have any time dependence. Schrödinger modified the 
equation to predict what the wave functions will do as time passes (in fact it’s possible he did the version 
that includes time first and then this version second), and found that the wave functions oscillate at a 
frequency f that is related to the energy of each state, according to: 
 

݂ ൌ
௧௧ܧ
݄

 

 
which looks very similar to Einstein’s equation for photons, although the frequency in the equation means 
something different. For photons, it’s the frequency of the electromagnetic wave that the photons are part 
of, i.e. the oscillation of the electric and magnetic fields that produce the wave, which when quantized 
give you photons. For electrons (and other particles with mass) it’s the frequency of oscillation of the 
wave function itself, which as we will see in the next two sections involves complex numbers. 
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Chapter 14 – Inventing the Wave Equation (1926) – part 3 
 
The wave function ߰ሺݔሻ is an indication of where the particle is located. In 1926 Max Born gave the 
more specific interpretation that |߰ሺݔሻ|ଶ, when properly normalized, indicates the probability of finding a 
particle at the given point x. This is one of the key principles of quantum mechanics. So |߰ሺݔሻ|ଶ is really 
the measurable quantity, not ߰ሺݔሻ itself. This is good, because Schrödinger found the oscillating parts of 
the wave functions involve complex numbers which can’t correspond to “real” quantities (pun intended). 
But when you take the magnitude of the wave function squared, as indicated by absolute value signs in 
|߰ሺݔሻ|ଶ, you end up with a purely real function. 
 
The proper normalization involves making sure that the total probability indicated by |߰ሺݔሻ|ଶ is 100%. 
That generally requires calculus so we won’t do that, we will just assume that if an eigenfunction is given 
to us, it has already been normalized. As a side note, the infinite square well wave functions given on the 
previous page have not been normalized, but we don’t really need them for anything except their general 
shapes so it’s OK. 
 
The Schrödinger equation predicts that particles can be in a quantum superposition of eigenfunctions. A 
superposition state is when two or more eigenfunctions are added together in some ratio such as  
 

߰ሺݔሻ ൌ ሻݔଵ߰ଵሺܥ  ሻݔଷ߰ଷሺܥሻݔଶ߰ଶሺܥ  ⋯ 
 
The superposition state must be normalized so that the squares of the coefficients add up to 1 (since the 
wave function squared gives the probability): ܥଵ

ଶ  ଶܥ
ଶ  ଷܥ

ଶ  ⋯ ൌ 1. If they don’t add up to 1 in that 
manner, then you must normalize them by dividing all coefficients by the square root of the sum of the 
squares—and then the squares of the coefficients will add up to 1 and will indicate the percentage that the 
superposition is in each of the states 1, 2, 3, etc. When normalized, the expected energy of the 
superposition state is given by a weighted average of the energies of the eigenstates, ܧ௧௧ ൌ ଵܥ

ଶܧଵ 
ଶܥ
ଶܧଶ  ଷܥ

ଶܧଷ ⋯. In other words, each state that’s part of the superposition contributes its coefficient 
squared towards the total energy of the state. 
 
Back to complex numbers. More background on complex numbers is available at these links which were 
provided in the reading assignment/warmup exercise: 

 https://www.youtube.com/watch?v=T647CGsuOVU - Imaginary Numbers Are Real Part 1 
 https://www.youtube.com/watch?v=2HrSG0fdxLY - Imaginary Numbers Are Real Part 2 
 https://www.youtube.com/watch?v=N9QOLrfcKNc - Imaginary Numbers Are Real Part 3 
 https://www.youtube.com/watch?v=DThAoT3q2V4 - Imaginary Numbers Are Real Part 4 
 https://www.youtube.com/watch?v=65wYmy8Pf-Y - Imaginary Numbers Are Real Part 5 
 https://www.youtube.com/watch?v=z5IG_6_zPDo - Imaginary Numbers Are Real Part 6 
 https://www.youtube.com/watch?v=YHvR8siIiD0 - Imaginary Numbers Are Real Part 7 
 https://www.youtube.com/watch?v=sKtloBAuP74 - Euler's Identity  

 
The main points from the first seven videos are as follows: 

1. Imaginary numbers are a useful mathematical construct which can help solve problems that 
involve real situations.  

2. Imaginary numbers lie an axis that in some sense is perpendicular to the real number line, and 
hence complex numbers (numbers which have both a real and an imaginary part) can be thought 
of as points in a plane.  

3. One can represent those points in polar form, with a magnitude and an angle. For a given 
complex number z which has real part x and imaginary part iy, the magnitude is given by (via the 

Pythagorean theorem) |ݖ| ൌ ඥݔଶ   .ଶ and the angle can be found through some trigonometryݕ
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4. Multiplying together two complex numbers has a geometrical interpretation, namely the angles of 
the two numbers add together and the magnitudes multiply.  

 
The point of the last video was to help you understand Euler's equation, ݁௫ ൌ cos ݔ  ݅ sin  Through a .ݔ
little bit of thinking about where the point ሺcos ݔ , sin  ሻ lies in the complex plane, one can conclude thatݔ
the complex number ݁௫ has a magnitude of 1 and an angle of x. Therefore multiplying by ݁௫ causes a 
rotation of x radians or degrees (depending on what angular units you’re using) without changing the 
magnitude of the number. Multiplying by ݁ି௫ causes a rotation of –x radians or degrees. 
 
How do complex numbers relate to wave functions? When I previously said that a wave function 

oscillates at frequency ݂ ൌ
ா


, I didn’t mean the wave function just oscillates up and down in amplitude. 

If it did that, at most times the wave function squared would not be normalized, i.e. there wouldn’t be a 
100% chance of finding the particle somewhere. What really happens, is that each eigenfunction oscillates 

according to ݁ିఠ௧, where the angular frequency ω of a state is given by ߱ ൌ ݂ߨ2 ൌ ߨ2 ቀ
ா


ቁ ൌ

ா


	. By 

Euler’s formula ݁ିఠ௧ is cos߱ݐ െ ݅ sin߱ݐ. Multiplying by this factor gives rise to sinusoidal oscillations 
in time, in both the real and the imaginary parts of the wave functions, but because they are out of phase 
with each other the normalization condition of |߰|ଶ is maintained. That can be seen since ݁ିఠ௧ has 
magnitude of 1, so regardless of time it doesn’t change the magnitude of ߰. 
 
For superposition states, each eigenfunction component oscillates at its own particular frequency given by 
its own particular energy, like this: 
 

߰ሺݔ, ሻݐ ൌ ሻ݁ିఠభ௧ݔଵ߰ଵሺܥ  ሻ݁ିఠయ௧ݔଷ߰ଷሺܥሻ݁ିఠమ௧ݔଶ߰ଶሺܥ  ⋯ 
 
where ߱ଵ ൌ ଵ/, ߱ଶܧ ൌ ଶ/, ߱ଷܧ ൌ  .ଷ/, etcܧ
 
By the way, the complex number nature of the wave function and how eigenfunctions oscillate in time is 
referred to in passing in Roots and depicted in one figure but without the (hopefully helpful) added detail 
that I have provided. 
 
To sum up some of the major points of this and the previous section:  

 Potential wells have special solutions called eigenfunctions. 
 Each eigenfunction represents a state with a different energy. 
 Eigenfunctions have both real and imaginary components. 
 Those real and imaginary components oscillate at frequencies that depend on the energies of the 

given state. 
 The magnitude squared of the wave function is a probability function describing where the 

particle is likely to be. 
 Particles can be in superposition states that contain different amounts of two or more 

eigenfunctions; in that case the state as written as a sum of eigenfunctions with different 
coefficients (normalized so the squares of the coefficients add up to 1). 

o The squares of the coefficients indicate the probability of being in each of the eigenstates. 
o Each eigenfunction oscillates at its normal frequency but the state as a whole does not 

oscillate at any one frequency. 
 
All of those points can be demonstrated with this wonderful PhET simulation called “Quantum Bound 
States”: https://phet.colorado.edu/en/simulation/legacy/bound-states  
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Chapter 14 – Inventing the Wave Equation (1926) – part 4 
 
The final section of Chapter 14 involves a scenario where electrons are shot at a potential “barrier”, which 
is the opposite of a potential well. The scenario can be demonstrated with this equally wonderful PhET 
simulation called “Quantum Tunneling and Wave Packets”, if you set the potential to a few different 
values as specified in the warmup instructions: 
https://phet.colorado.edu/en/simulation/legacy/quantum-tunneling 
 
Some key observations: 

 A wave function is made up of a real and an imaginary component, each of which can have 
spatial oscillations (see Fig 14.4).  

 A wave function traveling in a region with a flat potential energy will gradually spread out (see 
Fig. 14.5).  

 A wave function which impacts a barrier will split into two parts: a part that travels through the 
barrier and a part that gets reflected off the barrier. The two parts represent probabilities that the 
wave will transmit or reflect. (See Fig. 14.6.) 

 If the barrier is sufficiently large, the part that transmits will be very small, essentially zero (see 
Fig. 14.7). 

 The reflected portion can interfere with the incoming wave, resulting in spatial oscillations in not 
only ߰ but also |߰|ଶ (see Figs. 14.7 and 14.8).  

 
 


