
Honors 225 Study Guide for Final Exam - pg 1 
 

Honors 225 – Physics Study Guide/Chapter Summaries for Final Exam; Roots Chapters 15-18 
 
Chapter 15 – Collapsing the Wave 
 
If a particle is in a quantum superposition state (that is, a superposition of eigenfunctions each with its 
own coefficient), when a measurement is done the wave function will abruptly change, or “collapse”, to 
one of the eigenfunctions. Which eigenfunction gets chosen is randomly determined with a probability 
given by its normalized coefficient squared. One example of this is an electron wave packet that hits a 
barrier with some chance of reflection and some chance of transmission. As was discussed in chapter 14, 
the wave function splits into two parts: one that reflects and one that transmits. When a measurement is 
made the particle is found to be either reflected or transmitted, and the wave function collapses to one of 
those two options. Another example of this is an electron in an atom that is in a superposition of energy 
states. When it emits a photon the electron collapses to an eigenstate, so the photons are only emitted at 
energies corresponding to differences between eigenstates. 
 
What does it mean to say that a “measurement is done”? My view is that it means the quantum system has 
interacted with a macroscopic system. I also believe (as I suspect most physicists do), but perhaps this is 
not provable, that if the macroscopic system could be described in quantum terms then there would be no 
abrupt wave function collapse but rather a smooth evolution in the combined wave function. The collapse 
is an artifact of not being able to describe the macroscopic system in quantum terms because there are too 
many interacting particles and the combined wave function is too complicated to possibly be worked out. 
 
This chapter also mentions Heisenberg’s matrix mechanics which was developed in 1925, the year before 
Schrödinger's wave equation was formulated. It is an alternate way of doing quantum mechanics 
compared to the wave equation. The mathematics is different and in some ways more complicated so we 
won’t go into it, but sometime between 1926 and 1939 (I couldn’t locate the exact date) Schrödinger and 
Dirac proved that the two methods were mathematically equivalent. As a side note, a third method for 
doing quantum mechanics was developed by Richard Feynman in 1948, and this method was also proven 
mathematically equivalent to Schrödinger's and Heisenberg’s methods; each method is easier for some 
problems and harder for others, so each method is still used by physicists today. 
 
 
Chapter 16 – Copenhagen Takes Over (1925-?) 
 
The discussions of Niels Bohr and those who visited the Institute for Theoretical Physics of the 
University of Copenhagen where he worked (renamed the Niels Bohr Institute in 1965 in his honor) led to 
this prevailing view of what quantum mechanics is, how to use it, and what it means. It is called the 
“Copenhagen Interpretation” and includes the following points:  
 

1) The quantum states of particles are described by wave functions, labeled Ψ (Schrödinger).  
a. The eigenfunctions are special solutions to Schrödinger’s equation that oscillate at well-

defined frequencies.  
b. If they are interacting, or “entangled” particles, then Ψ represents the combined system 

rather than an individual particle.  
2) Quantum mechanical particles exhibit both particle-like and wave-like behavior, which is called 

the principle of “complementarity” (Bohr). 
3) |Ψ|ଶ represents a probability function. It should be normalized to 100% (Max Born). 
4) Ψ can include parts of multiple eigenfunctions; if so, it’s called a “superposition” state. 
5) During an “observation”, Ψ collapses to one of the eigenfunctions. 

a. One cannot directly measure Ψ because the act of measuring it affects the state. 
6) Ψ represents all that can be known about the system prior to the observation. 
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7) Not all properties of the system can be completely known simultaneously; for example position 
and momentum are “conjugate pairs” and can’t both simultaneously be known to high precision 
(Heisenberg’s Uncertainty Principle).  

8) Quantum mechanics will reproduce classical physics in the limit of large quantum numbers (i.e. 
for large orbits/energies); this is called the “correspondence principle” (Bohr and Heisenberg). 

 
More on the Uncertainty Principle: since particles are described by wave functions, Fourier analysis is 
relevant to these waves. Fourier analysis tells us that a wave which is localized in time must contain many 
frequency components. If Δt represents the width (or uncertainty) of the pulse in time and Δf  the width 
(or uncertainty) of the pulse in terms of frequencies, as was discussed back in Chapter 2 Appendix FOU, 
then graphically the situation is like this:  
 

    
 
Even though it looks like the wave on the left might have a well-defined frequency because it has a few 
well-defined oscillations, due to its finite extent in time it actually does not. The question of “what 
frequency does that wave have” has no answer—many sinusoidal waves, each with its own frequency, are 
required to produce that localized wave. Fourier analysis leads to this relationship: 
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Since the frequency of oscillation of an eigenfunction relates to its energy via ܧ ൌ ݄݂ (same as the 
energy-frequency relation of a photon) we can write this in terms of energy E:  
 

ΔݐΔܧ ൒
԰
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Mathematically speaking, waves in space of the form sin  are identical to waves in time of the form ݔ݇
sin߱ݐ, so an identical analysis for position x and wavenumber k (ൌ  rad/m) can be done using de ,ߣ/ߨ2

Broglie’s equation (݌ ൌ
௛

ఒ
ൌ ԰݇). This leads to:  
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Those last two centered equations are each called Heisenberg’s Uncertainty Principle, the first being the 
“energy-time uncertainty principle” and the second being the “position-momentum uncertainty principle”. 
Note that Roots leaves out the factor of 2 in the denominator but it’s present if you use the normal 
definition of width or uncertainty (which is the standard deviation, for those with some statistical 
background) so I will leave it in.  
 
Heisenberg’s microscope. Heisenberg demonstrated in a thought experiment with a microscope that uses 
only a single photon of light to observe an electron, that measuring the position of an electron will 
invariably affect its momentum. A more and more precise measurement of position will give rise to more 

Fourier 
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and more uncertainty of momentum, in just the same way that the uncertainty principle predicts. I refer 
the reader to this excellent video on the topic: https://www.youtube.com/watch?v=dgoA_jmGIcA 
 
Einstein and Bohr Solvay debates (1927 and 1930). In these two famous conferences in Brussels, 
Belgium, Einstein made several attempts to prove that quantum mechanics and the Copenhagen 
Interpretation were wrong, or at least incomplete. Bohr thwarted all his attempts. See this excellent video 
on the topic: https://www.youtube.com/watch?v=8PUi0I02Mdc, although note that with regards to 
Einstein's 1930 challenge, the video refers to the “mass” and the “weight” of a photon. That's incorrect. 
Photons have no mass nor weight. The way it’s described in Roots on page 432 is better, which is that the 
energy of the departing photon creates a loss of measured mass of the box through Einstein's ܧ ൌ ݉ܿଶ 
equation. 
 
 
Chapter 17 – EPR (1935) and EPR-B 
 
In 1935 Einstein, Podolsky, and Rosen published the famous “EPR” paper objecting to quantum 
mechanics, specifically to entangled states. Their objection can be summarized by the following: if two 
particles are entangled, then collapsing the wave function of one will necessarily instantaneously collapse 
the wave function of the other one, no matter how far apart the two particles may be. On its surface this 
appears to violate Einstein’s theory of relativity which holds that nothing can travel faster than the speed 
of light. Their solution was to propose that some properties (or “variables”) exist that govern the situation 
to create what looks to be a wave function collapse (but isn’t really), but that these variables are hidden so 
we don’t notice them. The variables always existed before they interacted with the macroscopic system, 
though, so nothing really collapsed faster than the speed of light (in their view). This view is antithetical 
to quantum mechanics, and for a time people didn’t know which was correct, the EPR view or the 
quantum mechanical one. 
 
In 1951 David Bohm expanded on this a bit, elucidating the EPR position while at the same time 
defending the quantum mechanical one, in what Roots calls the EPR-B paper. And in 1964 John Bell 
wrote a seminal paper proposing an experiment to test whether the EPR view was correct or whether the 
quantum mechanical view was correct. Since most tests of Bell’s theorem involve polarization of photons, 
that’s what we’ll discuss. 
 

 
 
Here two photons are produced from a single source in such a way that their quantum states are 
entangled. This is typically done experimentally by exciting calcium atoms with a particular wavelength 
of light that causes two photons to be emitted in response. They go out in opposite directions, and hit two 
polarizers that the experimenter has positioned at the same angles, α. In this chapter and the next let’s 
always assume the left photon hits its polarizer first. If the right hand one hits first then all of the 1’s and 
2’s are just reversed and nothing is really changed.  
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Roots has a whole slew of polarization facts, or “P-facts”, in this chapter and the next, but I will mention 
just a few facts about polarization here. 

 Polarizations rotated by 180 are equivalent. I.e. there is no difference between a polarization of, 
say, 12.4 and a polarization of 192.4.  

 A polarizer acting on a polarized beam of photons will pass cosଶ  of them (expressed as a ߠ
fraction or percentage), where θ is the angle between the polarizer and the polarization of the 
beam. Similarly, one can say: 

o (for the beam) ܫ ൌ ଴ܫ cosଶ  ଴ is the intensity of the beamܫ .This is called Malus’s law .ߠ
before the polarizer and ܫ is the intensity after. 

o (for individual photons) Each individual photon’s chance of passing is given by cosଶ   .ߠ
 The photons that make it through a polarizer pick up the polarization angle of the polarizer. 

 
Quantum mechanics says that no matter what the state of the left photon before it hits polarizer 1, hitting 
that polarizer will cause its wave function to collapse into either a polarization state of α, in which case it 
passes, or a polarization state 90 away from that, in which case it is blocked (fails to pass). Since the two 
photons are entangled, collapsing photon 1 to α (or 90 – α) will immediately cause photon 2 to collapse 
to α (or 90 – α). It will then either pass or fail its polarizer in exactly the same way photon 1 did with its 
polarizer. In other words, the two photons will always have the same fate. In the language of Roots, 100% 
of these SameTilt runs are SameFate and 0% of them are DiffFate.  
 
What happens when the experiment is done? It’s exactly as quantum mechanics predicts: 
 

100% of the SameTilt runs are SameFate 
 
Can this be explained within the EPR framework of hidden variables? Yes! However, there is only one 
possible explanation. Or at least, only one that anyone has come up with so far. As Grometstein writes in 
the next chapter on page 497, “if you know of a different explanation for [that result], please shout it from 
the rooftops.” The EPR explanation is that photons carry a “code”, which can be visualized as a table or a 
disk, that tells the photon what to do when it meets a polarizer… and that both of the entangled photons in 
the experiment are created with the exact same code. It might look like this, for example: 
 

polarizer 
angles 

what 
to do 

0‐23.999  pass 

24‐34.999  fail 

35‐70.999  pass 

71‐123.999  fail 

etc.  etc. 
 
 
If both photons get produced with the same code, then that naturally leads to them both responding the 
identical way to polarizers at the same angle.  
 
 
Chapter 18 – Bell’s Thunderbolt (1964) – part 1 
 
Bell’s paper in 1964 asked the question, “What happens if the two polarizers are at different angles?” He 
showed that when the polarizers are at different angles, the EPR view and the quantum mechanics view 

pass 

fail 

pass 
fail 

etc. 

pass 

fail 
pass 

fail 

etc. 
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lead to different predictions. This is then an experiment that can be done to see whose view was correct, 
Einstein (EPR) or Bohr (quantum mechanics). The result? Einstein was wrong and Bohr was right.  
 
This chapter examines two different configurations of polarizer 1 vs. polarizer 2. Here’s the first one:  
 

 
 
The figure makes it look like there are three different polarizers on each side, but what it really means is 
there are three different options for polarizers: 0, 120, and –120 (which is the same as 60). There are 
thus 9 different combinations for the two polarizer locations that can be set up; the experimentalist choses 
between them randomly during the experiment. We will analyze this situation using both the EPR and the 
quantum mechanical views, and see which matches the actual experiments. 
 
First, the EPR point of view. This uses the idea of hidden variables described in code tables or disks. 
Since there are only three different polarizer settings for a given photon, the infinite number of potential 
codes can be broken down into only 8 different possibilities based on whether a code says “pass” or “fail” 
for each of the three angles. We label those FFF, FFP, FPF, FPP, PFF, PFP, PPF, and PPP. For example, 
FFF means a photon will fail at 0, 120, and also –120. “PFF” means a photon will pass at 0 but fail at 
120 and–120. Etc. Those eight possibilities will all have equal chances to be realized. All together then, 
there are 9  8 = 72 different possibilities of polarizer configurations and photon codes. To analyze this 
we can make a large table that describes what will happen for each of the 72 cases. Here  means pass 
and  means fail, and S and D refer to SameFate and DiffFate results, respectively. 
 

 
 
There are 48 SameFate cases out of the 72 possibilities (48/72 = 66.7%), so EPR predicts: 
 

SameFate = 66.7% (EPR prediction) 
 
Or, the way Roots describes it, all of the middle cases have five out of nine SameFate results (5/9 = 
55.6%), and the first and last two columns will only increase that number, so SameFate   55.6%. 
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Now the quantum mechanical point of view. Suppose the left polarizer is in the 0 position. The left 
photon will either pass or fail. 
 
If the left photon passes, then that’s because it has collapsed to 0, and because of entanglement the right 
photon also collapses to 0. If the right polarizer is set to 0 (1/3 of the time), the right photon will pass 
and we’ll get SameFate 100% of the time. If the right polarizer is set to either 120 or –120 (2/3 of the 
time), the right photon will pass cosଶ 120 = 25% of the time. So overall for the “left photon passes” case 
we’ll get SameFate (1/3)100% + (2/3)25% = 50% of the time. 
 
If the left photon fails, then that’s because it has collapsed to 90, and therefore the right photon also 
collapses to 90.  If the right polarizer is set to 0 (1/3 of the time), the right photon will pass 0% of the 
time, will therefore fail 100% of the time, and we’ll get SameFate 100% of the time. If the right polarizer 
is set to either 120 or –120 (2/3 of the time), both of which are 30 away from 90 and/or –90, the right 
photon will pass cosଶ 30 = 75% of the time, will therefore fail 25% of the time, and we’ll get SameFate 
25% of the time. So just like before we’ll get SameFate (1/3)100% + (2/3)25% = 50% of the time. 
 
If the left polarizer is in the 120 or –120 positions, the math works out exactly the same. All of the 
various cases work out to give exactly a 50% chance for SameFate results, so overall we have:  
 

SameFate = 50% (quantum mechanics prediction) 
 
What do the experiments show? They are simply stated: 
 

SameFate = 50% (experimental results) 
 

The experimental results match the prediction of quantum mechanics and not the EPR view. 
 
 
Chapter 18 – Bell’s Thunderbolt (1964) – part 2 
 
The second configuration of polarizer 1 vs. polarizer 2 is this; each polarizer has only two basic options:  
 

 
 
Polarizer 1 can be either 0 or some arbitrary angle θ; polarizer 2 can be either θ or 2θ, where θ is the 
same angle used for 1. Those four settings are referred to as a, a′, b, and b′, respectively. 
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We’ll analyze this configuration in terms of a correlation function: c is the correlation between polarizers 
1 and 2 for a given run, defined as ܿ ൌ ൅1 if SameFate and ܿ ൌ െ1 if DiffFate. For a large number of 
runs, we can talk about the average correlation which I will call Cave (it’s just called C in Roots). As with 
the previous section, we will analyze this situation using both the EPR and the quantum mechanical 
views, and see which matches the actual experiments. 
 
First, the quantum mechanical point of view. There are four possible combinations for the two 
polarizers: ab, ab′, a′b′, and a′b. We need to consider the four configurations separately. The average 
correlation for a given configuration will be given by Cave = +1(chance of SameFate) + –1(chance of 
DiffFate). Note: Roots neglects the second term and says Cave = chance of SameFate but that is an error.  
 
Suppose we have combination ab, namely polarizer 1 at 0 and polarizer 2 at θ. Suppose photon 1 passes 
its polarizer; that must be because it collapsed to 0 and therefore photon 2 also collapses to 0. When 
photon 2 hits its polarizer it has a cosଶ chance of passing and a sinଶ ߠ  chance of failing (since the ߠ
chance of failing is 100% – the chance of passing, and since 1 െ cosଶ ߠ ൌ sinଶ  The chance of .(ߠ
SameFate is therefore cosଶ and the chance of DiffFate is sinଶ ߠ ௔௩௘ܥ so ,ߠ ൌ cosଶ ߠ െ sinଶ   .ߠ
 
If, however, photon 1 fails, then it has collapsed to 90 and photon 2 also collapses to 90. Photon 2 then 
has a cosଶሺ90 െ ሻߠ ൌ sinଶ chance of passing its polarizer and a 1 ߠ െ sinଶ ߠ ൌ cosଶ  .chance of failing ߠ
This leads to the same SameFate and DiffFate chances as previously, and therefore the same ܥ௔௩௘. Either 
way, then, for this combination we have: 
 

Combination ab: ܥ௔௩௘ ൌ cosଶ ߠ െ sinଶ  ߠ
 
The other combinations lead to very similar equations for the exact same reasons, just with the angle θ in 
that equation replaced by the relative angles between polarizers 1 and 2. 
 

Combination ab′: ܥ௔௩௘ ൌ cosଶ ߠ2 െ sinଶ  ߠ2
 

Combination a′b′: ܥ௔௩௘ ൌ cosଶ ߠ െ sinଶ  ߠ
 
Combination a′b: ܥ௔௩௘ ൌ cosଶ 0 െ sinଶ 0 ൌ 100% 

 
For reasons that relate to the EPR analysis of the situation discussed below, we will put these four Cave 
values together in a specific way to construct this function which Grometstein calls B in honor of Bell: 
 

ܤ ൌ ௔௩௘ሺܾܽሻܥ| െ |௔௩௘ሺܾܽᇱሻܥ ൅ ௔௩௘ሺܽ′ܾ′ሻܥ| ൅  |௔௩௘ሺܽ′ܾሻܥ
 
Plugging in the correlations we just worked out, here it is as a function of θ:  
 

ܤ ൌ |ሺcosଶ ߠ െ sinଶ ሻߠ െ ሺcosଶ ߠ2 െ sinଶ |ሻߠ2 ൅ |ሺcosଶ ߠ െ sinଶ ሻߠ ൅ 1| 
(quantum mechanics prediction) 

 
Here’s a plot of B vs. θ (in degrees): 
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This is the same as the book’s Fig. 18.5, except as mentioned above the book gets the Cave definition 
slightly wrong and so its plot is slightly different. It still looks quite similar though.  
  
Now the EPR point of view… OK, actually I will skip nearly all of this analysis because the math on 
page 503 is pretty horrible and Roots itself even gets some of it wrong. But here’s the general idea. The 
EPR analysis involves ߣ௞, which stands for the kth photon polarization code, ݌௞, which is the probability 
of that code, and ܿሺܽ, ܾ,  ௞ሻ, which is the correlation function for that specific code and polarizer settingߣ
ab. (Here a and b could be a′ and/or b′ as well.) The key step in the book’s EPR analysis is to assume that 
ܿሺܽ, ܾ,  ௞ሻ is composed of separate functions of a and b, multiplied together. That’s because in the EPRߣ
view, the setting of polarizer 1 cannot influence the results of polarizer 2, and vice versa. This is called 
the locality assumption. After the horrible math, the result is this:  
 

ܤ ൑ 2 (EPR prediction, called “Bell’s inequality”) 
 
Clearly this disagrees with the quantum mechanical prediction because as you can see in the graph above, 
the quantum mechanical plot says that B should go above 2 for some of the angles. 
 
What do the experiments show? Again we have a testable difference between quantum mechanics and 
the EPR view. So, what do the experimental results tell us? An overwhelming number of experiments 
show Bell’s inequality to be violated and the quantum mechanical prediction to be fulfilled. Roots says 
this is the case for 5 out of 7 experiments, but the numbers since Roots was published are far more 
conclusive, with dozens and dozens additional experiments verifying the violation of Bell’s inequality, 
i.e. validating quantum mechanics. In fact, the only experiments I’m aware of which did not validate 
quantum mechanics are the two early ones which Roots mentioned, and are generally considered now to 
be inaccurate. There may still be a little debate as to whether any of the experiments allow for tiny 
loopholes that still permit an EPR-type explanation, but generally speaking the experiments are now 
considered to be definitive. 
 
So, what does this all mean? Well, it means that the EPR view of hidden variables is wrong. The 
polarization state of the photons is not predetermined in some sort of code at the moment of creation. The 
equations of quantum mechanics were proven to give the correct predictions. This does not, however, 
mean that the Copenhagen Interpretation is necessarily correct. Specifically, there may be other ways of 
interpreting the theory of quantum mechanics that don’t involve the instantaneous collapse of a wave 
function. Some of these are covered in Chapter 19, and many more are listed in this Wikipedia article, 
https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics, but since we have now reached the 
end of the semester you’ll need to read more about those on your own.  


