Announcements

1. Happy December!
2. Exam 4: starts Friday, goes through Monday
a. Covers chapters 9-12
i. Solids, fluids, gases
ii. Thermodynamics
b.Covers HW17-21
c. Thursday's class will be exam review
d.Equations should be posted on website
3. Late HW due on Friday for HW 17-20
4. Online course evaluations, do before Dec 13
http://studentratings.byu.edu

What is sound?
Air pressure wave-high and low pressure

Longitudinal wave-air molecules move back and forth along the direction of wave travel.

Demo: siren disk, bucket call, tuning fork, vacuum jar Video: Star Wars http://www.youtube.com/watch?v=bqN-ybphzZc

Audible sound waves -20 Hz to 20 kHz (varies in each person)
Hearing test! Demo: speaker, frequency source
2. Eardrum
3. Hammer
4. Anvil
5. Stirrup
6. Oval window
8. Cochlea
9. Nerve of hearing

Speed of sound in a gas/liquid:
$v=\sqrt{\frac{B}{\rho}}$
B is the bulk modulus (resistance to 3D "squeezing")

Air: $v=331 \mathrm{~m} / \mathrm{s}$ at $0^{\circ} \mathrm{C}$
Other T's: $\mathrm{v}=331 \mathrm{~m} / \mathrm{s} \sqrt{\frac{T}{273 K}}$
At $20^{\circ} \mathrm{C}$: $\mathbf{v}=\mathbf{3 4 3} \mathbf{~ m} / \mathbf{s}$
Helium: $972 \mathrm{~m} / \mathrm{s}$ at $0^{\circ} \mathrm{C}$
ρ_{He} compared to air?
Demo: frequency when speaking
Solids:

$$
\mathrm{v}=\sqrt{\frac{Y}{\rho}} \quad \text { longitudinal waves } \quad \begin{aligned}
& \begin{array}{l}
\text { Y is Young's modulus: } \\
\text { (resistance to 1D stress) }
\end{array} \\
& \hline
\end{aligned}
$$

Air vs solids: solids are faster because \qquad
solids: water $1500 \mathrm{~m} / \mathrm{s}$ aluminum $5100 \mathrm{~m} / \mathrm{s}$

Intensity and power

$$
I=\frac{P}{A}
$$

Intensity vs distance?
For a spherically emitting source:

$$
\begin{aligned}
& I=\frac{P}{A}=\frac{P}{4 \pi r^{2}} \\
& \text { so } \frac{I_{1}}{I_{2}}=\frac{r_{2}^{2}}{r_{1}^{2}}
\end{aligned}
$$

A spherical speaker puts out an intensity of $10 \mathrm{~W} / \mathrm{m}^{2}$ at a distance of 1.5 meters.

Q4. The intensity at 3 meters away is \qquad $\mathrm{W} / \mathrm{m}^{2}$
a. 2.5
b. 5
c. 10
d. 20
e. 40

The total power the speaker puts out is \qquad W

Decibel intensity scale

- We hear over a huge range of intensities
- So use logarithmic scale: decibel number β, (powers of 10)
\rightarrow adding ten to $\mathbf{d B}$ number $=\times 10$ to the intensity
$\beta=10 \log \frac{I}{I_{o}} \quad$ where $\mathrm{I}_{\mathrm{o}}=10^{-12} \mathrm{~W} / \mathrm{m}^{2} \quad \beta=$ "decibel number"
$I=I_{o}\left(10^{\beta / 10}\right)$

		$\mathrm{W} / \mathrm{m}^{2}$	dB
Jet on runway	Instant pain, damage	1000	150
Machine gun	damage	10	130
Rock concert (best seats)	pain, damage	1	120
Power mower	damage (if all day)	10^{-2}	100
Vacuum cleaner	safe all day	10^{-5}	70
Conversation		10^{-7}	50
Whisper	Threshold	10^{-9}	10^{-12}
Rub fingers by ear		0	

Mythbusters: jet on a runway
http://www.youtube.com/watch?v=eTQh7D-nDNM start at 2:48

Intensity depends on distance from source!

Demo: sound meter
OSHA regulations: $\leq 90 \mathrm{~dB}$ averaged over 8 hour day.

Logarithms (base 10)

$\log _{10}(x)$ is the inverse of $10^{y} \rightarrow$ if $x=10^{y}$ then $y=\log _{10}(x)$
I.e. "10 to the what equals 22?" answer: $1.3424(\log (22))$

Review of "Laws of Logs":

1. $\log (a b)=\log (a)+\log (b)$
2. $\log \left(a^{n}\right)=n \log (a)$
$\log (100)=? \quad$ Translation: 10 to what number equals $100 ?$
$\log \left(10^{6}\right)=$

If $\log (3)=0.477$, what is $\log (300)$?

Decibels again

$$
\begin{array}{|ll}
\beta=10 \log \frac{I}{I_{o}} & B=\text { "decibel number" } \\
I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}
\end{array}
$$

Compare two intensities:
If you increase I by a factor of 10 , add \qquad to β
If you increase I by a factor of 100 , add \qquad to β
If you increase I by a factor of 1000 , add \qquad to β
\rightarrow each factor of ten added to dB number $=\times 10$ to the intensity
If you increase I by a factor of 2 , add \qquad to β $[\log (2)=0.301]$

Q5. If you increase I by a factor of 8, add \qquad to the decibel level (Hint: do it with 2's)
a. 4
b. 6
c. 8
d. 9
e. 12

You hear an average of 82 dB in your workshop as one printing press runs. The next day you come in and find very close to 88 dB. How many total printing presses of the same type are now running? (Hint: what happens as you double the number of presses?)

Doppler Shift-"Race Car Effect"

Applications:
Doppler ultrasound: blood flow imaging in heart

$81 / 2$ week embryo blood flow

Doppler radar

Frequency is \qquad when the source and observer approach each other, \qquad when they go away from each other.

Demo: Doppler speaker

The pie factory conveyor belt:

$f=v / \lambda$ or $\lambda=v / f$ the spacing between pies
v_{s} source speed
v_{o} observer speed
v speed of sound
If observer moves toward source (pie maker), she would measure the same \qquad but the pies are coming at her at \qquad
If source moves toward observer, the \qquad shrinks, but the pie \qquad doesn't change
$\underline{\text { http://stokes.byu.edu/doppler_script_flash.html }}$
Both source and observer could move:

$$
\begin{aligned}
& f^{\prime}=\frac{v^{\prime}}{\lambda^{\prime}} \\
& f^{\prime}=f\left(\frac{\mathrm{v} \pm \mathrm{v}_{o}}{\mathrm{v} \pm \mathrm{v}_{s}}\right)
\end{aligned}
$$

How to choose your signs?
Demo: tone change executable http://stokes.byu.edu/bells.wav

Colton Lecture 22, Tues 12/4/07-pg 9

When the source moves at or above the speed of the waves
$\left(\mathrm{v}_{\text {source }}>\mathrm{v}_{\text {wave }}\right) \quad$ http://stokes.byu.edu/boom_flash.html

Colton Lecture 22, Tues 12/4/07-pg 10

Q6. $10^{-4} \mathrm{~W} / \mathrm{m}^{2}$ has a dB level of \qquad dB.
$\begin{array}{ll}\text { a. } 4 & \text { b. } 8\end{array}$
c. 60
d. 80
e. 90

Q7. A siren emitting at 200 Hz is on a car going very fast toward you at $1 / 2$ the speed of sound (take the speed of sound to be $300 \mathrm{~m} / \mathrm{s}$ here). You travel away from the car on your bike at $1 / 3$ the speed of sound. The frequency you hear is \qquad Hz
a. 150
b. 200
c. 250
d. 267
e. 330

Q8. Two plastics have the same density, but plastic A is 16 times as stiff as plastic B. Which has the greatest speed of sound?
a. A
b. B

Q9. The factor by which it is greater is: \qquad
a. 2
b. 4
c. 8
d. 16
e. 32

Q10. Did you discuss at least half of the discussion quiz questions today with a neighbor?
a. Yes
b. No

