Announcements

- 1. Happy December!
- 2. Exam 4: starts Friday, goes through Monday a. Covers chapters 9-12
 - i. Solids, fluids, gases
 - ii. Thermodynamics

b.Covers HW17-21

c. Thursday's class will be exam review

- d.Equations should be posted on website
- 3. Late HW due on Friday for HW 17-20
- 4. Online course evaluations, do before Dec 13 http://studentratings.bvu.edu

What is sound?

pressure wave-high and low pressur

Longitudinal wave-air molecules move back and forth along the direction of wave travel.

> Demo: siren disk, bucket call, tuning fork, vacuum jar Video: Star Wars http://www.youtube.com/watch?v=bqN-ybphzZc

Audible sound waves - 20 Hz to 20 kHz (varies in each person)

Hearing test! Demo: speaker, frequency source

- 2. Eardrum
- 3. Hammer
- 4. Anvil
- 5. Stirrup
- 6. Oval window
- 8. Cochlea
- 9. Nerve of
- hearing

Colton Lecture 22, Tues 12/4/07 - pg 1

Colton Lecture 22, Tues 12/4/07 - pg 2

Speed of sound in a gas/liquid:

B is the bulk modulus (resistance to 3D "squeezing")

Air: $v = 331 \text{ m/s} \text{ at } 0 \text{ }^{\circ}\text{C}$

Other T's: v = 331 m/s $\sqrt{\frac{T}{273K}}$

- At 20°C: **v** = **343 m/s**
- Helium: 972 m/s at 0 °C ρ_{He} compared to air?

Demo: frequency when speaking

Solids:

$$v = \sqrt{\frac{Y}{\rho}}$$
 longitudinal waves
 (resistance to 1D stress)

Air vs solids: solids are faster because_ solids: water 1500 m/s aluminum 5100 m/s Intensity and power

$$I = \frac{P}{A}$$

Intensity vs distance? For a *spherically* emitting source:

$$I = \frac{P}{A} = \frac{P}{4\pi r^2}$$

so $\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$

A spherical speaker puts out an intensity of 10 W/m² at a distance of 1.5 meters.

 $_W/m^2$ Q4. The intensity at 3 meters away is _____ c. 10 d. 20 e. 40 a. 2.5 b. 5

The total power the speaker puts out is _____ W

is Young's modulus:

Decibel intensity scale

- We hear over a <u>huge</u> range of intensities
- So use *logarithmic scale*: decibel number β , (powers of 10) \rightarrow adding ten to dB number = ×10 to the intensity

$$\beta = 10 \log \frac{I}{I_o} \quad \text{where } I_o = 10^{-12} W / m^2 \qquad \beta = \text{``decibel number''}$$
$$I = I_o \left(10^{\frac{\beta}{10}} \right)$$

		W/m^2	dB
Jet on runway	Instant pain,	1000	150
	damage		
Machine gun	damage	10	130
Rock concert (best seats)	pain, damage	1	120
Power mower	damage (if	10 ⁻²	100
	all day)		
Vacuum cleaner	safe all day	10-5	70
Conversation		10-7	50
Whisper		10-9	30
Rub fingers by ear	Threshold	10-12	0

Mythbusters: jet on a runway http://www.youtube.com/watch?v=eTQh7D-nDNM start at 2:48

Intensity depends on distance from source!

Demo: sound meter OSHA regulations: \leq 90 dB averaged over 8 hour day.

Colton Lecture 22, Tues 12/4/07 - pg 5

Logarithms (base 10)

 $Log_{10}(x)$ is the inverse of $10^y \rightarrow if x = 10^y$ then $y = log_{10}(x)$

I.e. "10 to the what equals 22?" answer: 1.3424 (log(22))

Review of "Laws of Logs": 1. log(ab) = log(a) + log(b)2. $log(a^n) = n log(a)$

log(100) = ? Translation: 10 to what number equals 100?

 $\log(10^6) =$

If log(3) = 0.477, what is log(300)?

Colton Lecture 22, Tues 12/4/07 - pg 6

Decibels again

$$\beta = 10 \log \frac{I}{I_o}$$

 β = "decibel number" $I_0 = 10^{-12} \text{ W/m}^2$

Compare two intensities:

If you increase I by a <i>factor</i> of 10, <i>add</i>	_ to β
If you increase I by a <i>factor</i> of 100, <i>add</i>	to β
If you increase I by a <i>factor</i> of 1000, add	to β

\rightarrow each factor of ten added to dB number = $\times 10$ to the intensity

If you increase I by a *factor* of 2, *add* ______ to β [log (2) = 0.301]

Q5. If you i	increase	I by a <i>fac</i>	ctor of 8,	add	to the		
decibel level (Hint: do it with 2's)							
a. 4	b. 6	c. 8	d. 9	e. 12			

You hear an average of 82 dB in your workshop as one printing press runs. The next day you come in and find very close to 88 dB. *How many* total printing presses of the same type are now running? (Hint: what happens as you double the number of presses?)

Doppler Shift—"Race Car Effect"

Applications:

Doppler ultrasound: blood flow imaging in heart

8 1/2 week embryo blood flow

Doppler radar

Frequency is ______ when the source and observer approach each other, ______ when they go away from each other.

Demo: Doppler speaker

