José sits on frictionless ice, holding a spinning bicycle wheel. View from above it is going clockwise (CW). Neglect external friction.

Clicker quiz 1: If he grabs on to the wheel edge firmly and

"stops" it he will then be

aturning CW (viewed from the top)

b. turning CCW

c. not turning

Eller = Eleft

Maria is on a spinning merry-go round. What will happen to its rotational speed if she...

Clicker quiz 2: Walks towards the center?

a. it slows down

b. it stays same speed

vit speeds up

L=12p

Clicker quiz 3: Runs opposite to the spinning so she is at rest vs the ground? Lift (same choices)

Clicker quiz 4: Slips off when she steps on a frictionless icy part?

(same choices)

L not conserved (system)
L conserved (just mery gorond)

Formulas Review

Definitions and Fundamental Laws

Final exam: you will be expected to know these

Definition of momentum: $\vec{p} = m\vec{v}$

no fore...) Conservation of momentum: $\sum \vec{p}_{before} = \sum \vec{p}_{after}$ (if ...)

Angular formulas from old formulas:

 $x \to \theta^-$

2mv2 -> 11w2

 $m \rightarrow I$ e.g. rotational kinetic energy, angular momentum

 $F \rightarrow \tau$ e.g. Newton's 2nd Law for torques $\mathcal{L} F = m\alpha$ $p \rightarrow L$

Definition of torque: $\tau = r_{\perp}F = rF_{\perp} = rF \sin \theta$

Conservation of L: $\sum L_{before} = \sum L_{after}$ (if ...) sedistance

New stuff, but not quite as basic

Final exam: I will give you these

 $a_c = v^2/r$

Universal gravity: $F = \frac{GMm}{r^2}$, $PE_g = -\frac{GMm}{r}$

Moments of inertia:

I makes $I = mR^2$ (point mass going in circle) $I = 2/5 \ mR^2$ (sphere rotating about center) $I = mR^2$ (hoop rotating about its axis) $I = 1/2 \ mR^2$ (disk or cylinder about its main axis)

 $I = 1/12 \ mL^2$ (rod about its center)

 $I = 1/3 \ mL^2$ (rod about its end)

Angular momentum, definition 2: $L = r_{\perp} p = rp_{\perp} = rp \sin \theta$

Things which you might consider to be formulas

(but I don't really, so I won't give them to you on exam)

Relationship between speed and period: $v = \sqrt{2\pi r/T}$ Quick derivation of satellite orbital velocity:

$$\Sigma F = ma_c - \begin{cases} \frac{GMm}{r_{sch}^2} = \frac{mv_{orbit}^2}{r_{orbit}^2} \end{cases}$$

Quick derivation of escape velocity:

$$E_{bef} = E_{afi} \rightarrow -\frac{GMm}{r_{plone}} + \frac{1}{2}mv_{escape}^2 = 0$$

(be clear about which r to use...)

$$I_{tot} = I_1 + I_2 + \dots$$

Exam 3 - Review of important concepts

1. Momentum

- a. Definition
- b. Conservation Law
- c. Collision problems $(\xi_{\mathcal{K}})_{\mathcal{M}}$: $(\xi_{\mathcal{K}})_{\mathcal{M}}$ i. 1D

 ii. 2D think of momentum components in each direction

 Judeshie: $(\xi_{\mathcal{K}})_{\mathcal{M}}$ in each direction
- d. Elastic vs. Inelastic Flastic: ux Cons. of mim. + velocid
- e. Combination problems (e.g. bullet into block of wood)
- f. Center of mass motion

q. Impolx equ

2. Rotational motion

- a. Angular quantities: θ , ω , α
 - i. How they relate to "regular" quantities
 - ii. Radians 2π radians in a circle
- b. Connection between linear and rotational motion: a=ar -) tangential $v = \omega r$, etc.
- c. Kinematic equations for constant angular acceleration
 - i. also constant tangential acceleration
- d. Period vs. velocity vs. ω

- 3. Centripetal acceleration, $a_c = v^2/r$
 - a. Difference between centripetal and tangential
 - i. ... and when the two are combined orbits
 - b. Newton's Law of Gravity and orbits
 - i. Force equation
 - ii. Potential energy equation
 - iii. Orbital velocity and/or escape velocity
 - c. "Roller coaster" problems
 - i. Normal force = 0 when you "fly out of your seat"

4. Torque

- a. Definition
 - i. "lever arm" concept, r_{\perp}
- b. Equilibrium problems: $\Sigma F = 0$, $\Sigma \tau = 0$
- c. Moment of inertia
 - i. Equation for I for various situations will be given
- d. Newton's 2^{nd} Law for rotations: $\Sigma \tau = I\alpha$
- e. Torques and rotation
 - i. Combining Newton 2 with kinematics

- a. Definitions KE Land

 - b. Conservation laws
 - c. The two expressions for L:

$$L = r_{\perp} p$$
 and $L = I \omega$

Some HW problems (missed by many):

HW 10 Problem 2. A 11.4-g object moving to the right at 21 cm/s makes an elastic head-on collision with a 14.3-g object moving in the opposite direction with some unknown velocity. After the collision, the second object is observed to be moving to the right at 14.6 cm/s. Find the initial velocity of the second object.

Answer: 36 m/s to the left

HW 11 Problem 6. A 0.537-kg ball that is tied to the end of a 1.83-m light cord is revolved in a horizontal plane with the cord making

a 28.6° angle with the vertical. (a) Draw a free-body diagram of the ball. (b) Determine the ball's speed. (c) If instead the ball is revolved so that its speed is 4.24 m/s, what angle does the cord make with the vertical? (d) If the cord can withstand a maximum tension of 8.76 N, what is the highest speed at which the ball can move?

Some conceptual quizzes

Clicker quiz: An elastic collision means:

- a. the objects deform when they collide
- b. each object keeps its kinetic energy when they collide
- g the total kinetic energy of the objects stays the same
 - d. both b and c

Clicker quiz: Newton's second law (ΣF =ma) for rotational motion is:

$$\Omega$$
. $\Sigma \tau = I\alpha$

$$b.\Sigma \tau = I\omega$$

$$c. \Sigma \tau = L\alpha$$

$$d.\Sigma\tau = L\omega$$

Clicker quiz: You go around a curve in your car at constant speed. The tangential acceleration of the car is zero.

a)True

b. False

Clicker quiz: The net horizontal force on the car is:

- Toward the center of the circle
 - b. Away from the center of the circle
 - c. Tangent to the circle, in the direction of travel
 - d. Tangent to the circle, opposite the direction of travel

More Conceptual Questions

Clicker quiz. A boy is at the stern (back) of a sailboat with a bunch of beanbags. The wind has stopped. If the boy throws the beanbags <u>against the sail</u> with sufficient velocity, he can get the boat to move forward.

Clicker quiz. Two snowballs are thrown at each other. One is 2 kg traveling to the right at 3 m/s. The second is 0.5 kg traveling to the left at 8 m/s. After they collide they stick together. In this collision, total kinetic energy was conserved.

a) to the right

Clicker quiz: A large solid steel sphere and a small steel hoop are rolled down an inclined plane. Which reaches the bottom first?

- a. Sphere I is 3mr²
 b. Hoop
 c. Tie
 - d. Need to know masses
 - e. Need to know diameters