Lecture 23 Announcements

- 1. Exam starts Thursday a. Thursday will be the in-class exam review i. No warmup quiz
 - b. Thursday evening will be the TA exam review: 7-9 pm, C215 Eyring
- 2. Exam ends on Tuesday, not Wednesday a. Testing Center not open on Wed, due to Thanksgiving 3. Homework 19 due tomorrow
- a. Next homework not due until Dec 3! Two weeks off!

Colton - Lecture 23 - 11/18/08 - pg 1

The total kinetic energy of a system is shared equally among all of its independent parts, on the average, once the system has reached thermal equilibrium.

Each "degree of freedom", of each molecule, has an

 \rightarrow such molecules have more "internal energy"

(monoatomic)

(2 rotational directions that take energy)

Monatomic ideal gas: only kinetic energy possible (3 directions)

independent parts: larger for molecules that can

Internal energy of an ideal gas: U

Return to Equipartition Theorem:

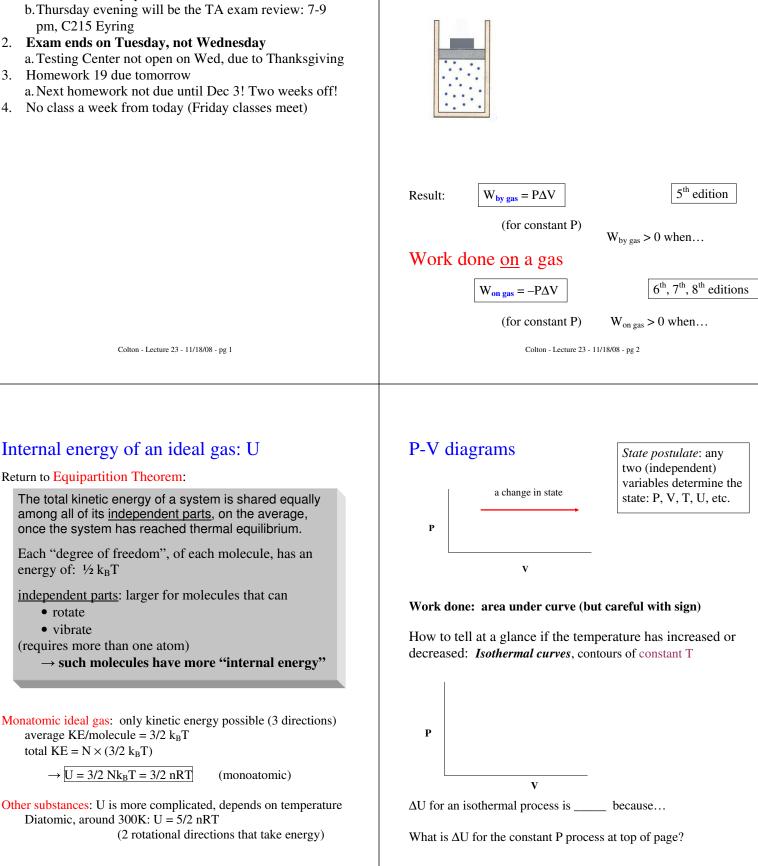
(requires more than one atom)

average KE/molecule = $3/2 k_{\rm B}T$

 \rightarrow U = 3/2 Nk_BT = 3/2 nRT

Diatomic, around 300K: U = 5/2 nRT

total KE = N × $(3/2 k_BT)$


energy of: 1/2 k_BT

• rotate • vibrate

4. No class a week from today (Friday classes meet)

Work done by a gas

1 m³ of an ideal gas at 300 K supports a weight in a piston such that the pressure in the gas is 200,000 Pa (about 2 atm). The gas is heated up. It expands to 3 m³. How much work did the gas do as it expanded?

Colton - Lecture 23 - 11/18/08 - pg 4

1st Law of Thermodynamics

 $\Delta U = Q_{added} + W_{on \ system}$

(note: 5th edition uses $-W_{by system}$)

System: the object you are studying. Environment: what it interacts with

What does it mean?? Use 5th edition version:

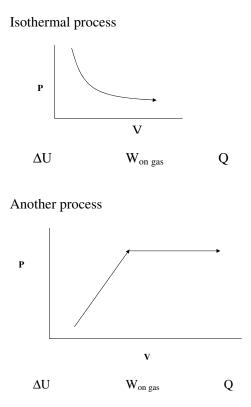
 $\Delta U = Q_{added} - W_{by \, system} \rightarrow Q_{added} = \Delta U + W_{by \, system}$

Meaning of 1st Law:

Heat added can go either towards

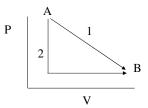
- increasing internal energy (temperature), or
- doing work by the gas

Final warning: Be careful with all the signs!!!


 ΔU is positive if:

Q_{added} is positive if:

W_{on system} is positive if:


Colton - Lecture 23 - 11/18/08 - pg 5

P-V diagram examples

Colton - Lecture 23 - 11/18/08 - pg 6

A gas in a piston expands from point A to point B on the P-V plot, via either path 1 or path 2. Path 2 is a "combo path," going down first then over.

Clicker quiz 1: The gas does the most work in:

- a. path 1
- b. path 2

c. neither; it's the same

Clicker quiz 2: In process 1, the *work* done:

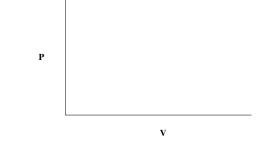
- a. puts energy into the system
- b. takes energy out of the system
- c. has no effect on the energy of the system

Clicker quiz 3: The process in which ΔU is the greatest

- (magnitude) is:
 - a. path 1
 - b. path 2
 - c. neither; it's the same

How much work is done in first half of path 2? What is this path physically?

Adiabatic expansion or compression


Adiabatic: no heat added, either because...

- system is *insulated*, or
- ΔV is *fast*, so no time for much heat to go in/out of gas

ΔU

Q W

Adiabatic curves are steeper than isothermal curves

 \rightarrow "No heat added" does <u>not</u> mean "no temperature change"

Demos: adiabatic compression and cotton freezing by expansion

Ralph question: how does isothermal compression work?

Two situations...

Clicker quiz: You compress air very quickly in an engine cylinder. Determine the signs of Q, W, and ΔU .

$\Delta U = +$
$\Delta U = +$
$\Delta U = +$
$\Delta U = +$
$\Delta U = 0$

Clicker quiz: You heat a spray can in a fire, and volume stays about the same (it doesn't explode). System = gas in the can. Determine the signs of O, W, and ΔU .

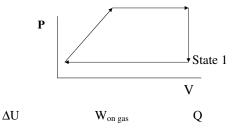
\mathcal{Q} , \mathcal{Q} , \mathcal{Q} , \mathcal{Q}			
a. $Q_{added} = +$	$W_{on gas} = +$	$\Delta U = +$	
b. $Q_{added} = 0$	$W_{on gas} = +$	$\Delta U = +$	
c. $Q_{added} = +$	$W_{on gas} = -$	$\Delta U = +$	
d. $Q_{added} = +$	$W_{on gas} = 0$	$\Delta U = +$	
e. $Q_{added} = -$	$W_{on gas} = +$	$\Delta U = 0$	

Demo: Thermoelectric converter engine

Colton - Lecture 23 - 11/18/08 - pg 9

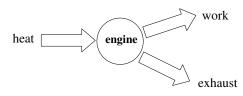
Worked Problem: An engine produces power of 5000 W, at

20 cycles/second. Its efficiency is 20%. What are $|W_{net}|$, Q_h , and


What do those quantities represent?

Answers: 250 J, 1250 J, 1000 J

 $Q_{\rm c}$ per cycle?


Colton - Lecture 23 - 11/18/08 - pg 11

Cyclical Processes

Engines

The basic idea: energy transformation

Notation: Q_h, Q_c, T_h, T_c, |W_{net}|

Efficiency: how good is your engine at converting heat to work?

Definition: e =

Engine Power: work per time (as usual)

Colton - Lecture 23 - 11/18/08 - pg 10

Real engines modeled by PV-diagram cycles

Example: Gasoline engines

- Piston is compressed quickly
- Heat is then added quickly by igniting fuel
- Piston then expands quickly
- Heat is then expelled quickly (by getting rid of old air)
 → Same air is not re-used; the cycle is just an approximation

The "Otto cycle"

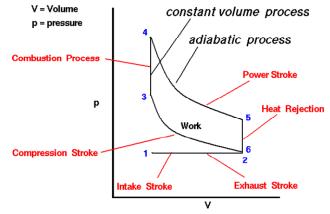


Image credit: http://www.grc.nasa.gov/WWW/K-12/airplane/otto.html

2nd Law of thermodynamics: Heat spontaneously flows from hot to cold, not the other way around.

Why? Order. From textbook: which hand is more likely?

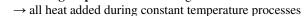
... but which is more likely, a straight flush or a garbage hand?

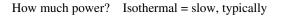
 \rightarrow Boltzman 3D program revisited; increasing "entropy"

Another version of the law:

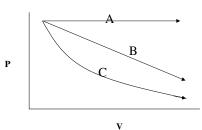
In an engine, you can't convert all the heat into usable work

Why are they equivalent?


Colton - Lecture 23 - 11/18/08 - pg 13



(Organized) Energy lost by "irreversibilities" Irreversibilities occur when heat is added during a temperature change


Most efficient engine possible: Carnot engine

P ______ V

Colton - Lecture 23 - 11/18/08 - pg 14

Clicker quiz 1: The process that does the most work (magnitude) is _____

Clicker quiz 2: The process that is at constant temperature is

Clicker quiz 3: The process that leaves the system at the highest T is:_____

Clicker quiz 4: The process in which the **magnitudes** of W and Q are the **same** is: _____