Announcements – 9/1/09

- 1. Welcome to Physics 105!
 - o I'm Dr. Colton
- 2. Answers to two common questions
 - o The Physics 107 Lab is completely separate from this course, since it's not required for all majors. I know practically nothing about it.
 - o There is no Blackboard site for this class.
 - Instead, we'll use my own website (details later)
- 3. We'll go over the syllabus shortly. Make a note of these corrections, though:
 - Wed office hours changed: now Wed 2:30 4 pm (Fri still 3:30 - 5 pm)
 - o Page 3 printing error: look for it after page 6
- 4. As most of you have found out already, I send out periodic class-wide emails via Route Y. Make sure your email address there is current.

Colton - Lecture 1 - pg 1

Introductory Stuff

Syllabus

- Course objectives (pg 3)
- Schedule (pg 1)

Physics 105 Class Schedule – Fall 2009						
cortant: The reading assignments are given here for the \underline{s}^{th} edition of the textbook only (that's the edition I have). If you are using the \underline{s}^{th} , $\underline{6}^{th}$ editions, you need to look at the reading assignment table on the next page because your sections may be different.						
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
31	1 lecture 1		3 lecture 2		5 HW1	
Before first class:			Acceleration, 1-D motion			
Review units, trig.	Reading: syllabus; 2.1-2.2		Reading: 2.3-2.6			
7	8 HW2 lecture 3	9	10 HW3 lecture 4	11	12	
Labor Day Holiday	Vectors		2-D motion/ Exam 1 Review			
	Reading: 3,1-3,5 (except for		Reading; the rest of 3,4			
	the worked examples in 3.4)		Begin Exam 1 (Ch.2-3)			
14 Addition deadline	15 lecture 5	16	17 lecture 6	18	19 HW4	
14 Additirop deadline	Newton's Laws of Motion	End Exam 1	Using Newton's Laws:			
	Reading: 4 1-4 4	(late fee after 1 nm)	mnes nulleys and planes			

- Reading assignments for other editions (pg 2)
- Grading (pg 4)

Grading: If you hit these grade boundaries, you are guaranteed to get the grade shown. Please note that these boundaries are curved a bit from the standard 90-80-70-60 scale. Expect about half the class to get B's and above, and about half to get B-'s and below. 81% 65% 49% B-77% 45% Grades will be determined by the following weights: Reading assignments and pre-class "warm-up" quizzes: 3% Class participation and "clicker" quizzes: 39 Homework: 30% 4 Midterm Exams: 44% Final Exam: 20%

Colton - Lecture 1 - pg 2

Class website:

physics.byu.edu → Courses → Class Web Pages → Physics 105 (Colton J)

Takes you to...

http://www.physics.byu.edu/faculty/colton/courses/phy105-fall09/

- Warmup exercises
- Obtain CID (student ID number for the class)
- Register clicker
- Homework data sheets

I'll talk about that a

• Homework submission/status

bit on Thurs

- Check your course grade
- Study aids
 - a. Class notes, both before & after class
 - b. Videos of demos
 - c. Link to Google group
 - Homework discussion/hints/help
 - d. Sample exam problems
 - e. Exam solutions
 - f. Website links
 - g. Etc.
- List of "How to get started"

More stuff you should know from syllabus:

- Four free warmup quizzes
- Four free clicker quizzes

• Extra credit opportunities

Read about them on your own

The best study aid: the other students! Take two minutes now to exchange names/numbers/ emails with 3-4 people sitting near you.

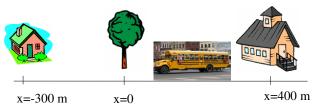
First clicker quiz: (do the clicker quizzes if you have yours, but they won't be recorded today)

I now have the names/numbers/emails of 3-4 other people in the class.

a. True

b.False

...and now, for the Physics


Chapter 1: Units/Trigonometry

 \rightarrow skipped, but you need to know it → don't need to know "sig figs"

Chapter 2: Kinematics

mathematical description of motion

Recording motion: Choose an origin (zero) Choose a + direction.

The bus starts at x=200 m, goes to your house, and waits for you, then takes you to school.

Table of "position vs time", x(t)

t (sec)	<i>x</i> (m)
0	200
20	-300
50	-300
120	400

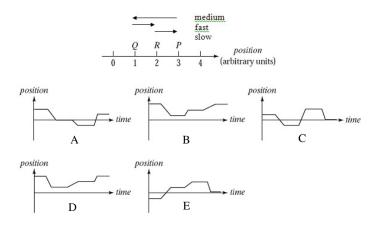
x(t) plot of table (assuming constant speed between events)

Colton - Lecture 1 - pg 5

x (m) 40 20 0 20 -20 40 60 80 100 120 -40

Where is the bus going the slowest (not counting stops)?

Where is it going the fastest?


When is it moving to the right?

When is it moving left?

Colton - Lecture 1 - pg 6

Clicker quiz:

Nancy, initially at point P in the illustration, stays there a moment and then moves along the axis to Q and stays there a moment. She then runs quickly to R, stays there a moment, and then strolls slowly back to P. Which of the x(t) graphs below correctly represents this motion?

Question: what was Nancy's total change in position?

→ ambiguous

Position vs. Displacement

Position: where something is located, often labeled by x

Displacement: a change in position, often labeled by Δx $\Delta x = x_f - x_0$

f = "final" θ = initial, pronounced "naught"

What do we mean by +/- position?

Being on the right/left side of the *origin*

What do we mean by +/- displacement?

Has *shifted* to the right or left

Clicker quiz: What was Nancy's total displacement?

a. -4 b. -2 d. 2

c. 0

e. 4

Clicker quiz: What was Nancy's total distance traveled?

a. -4 b. -2 d. 2

c. 0

e. 4

Clicker quiz: An object goes from one point in space to another. After it arrives at its destination, its displacement is _ compared to the distance traveled?

- a. either greater than or equal to
- b. always greater than
- c. always equal to
- d. either smaller than or equal to
- e. always smaller than

Hint: draw a picture of some random path

Colton - Lecture 1 - pg 9

Problem: On the Tour de Provo, bicyclists ride straight south for 3 hours at 8 km/hr, rest for 2 hours, then continue their ride south down a mountain for 1 hour at 20 km/hr. What is their average velocity for the morning?

From "Problem Solving" section of syllabus: PEANuT

Picture Equations Algebra **Numbers Think**

Speed vs. Velocity

velocity: rate of change of position

average velocity, $v_{ave} =$

sometimes written <*v*>

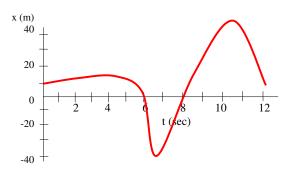
→ must always specify the time interval (start/end times)

Slope

Speed vs **velocity**: are they the same thing?

Question: A race car driver does 100 laps of a circular track, at a constant 200 mph.

What was his average speed? What was his average velocity?


Colton - Lecture 1 - pg 10

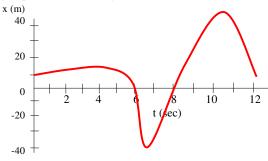
Instantaneous Velocity

(...at a particular time)

The instantaneous velocity at a particular time is the average velocity over a very small time interval around that time

= slope of tangent line of the x(t) graph at that point

Positive slope means:


Negative slope means:

Zero slope means:

Colton - Lecture 1 - pg 11

Colton - Lecture 1 - pg 12

The shadow of a roller coaster car has the following left-right position on the ground.

Problem: Find v_x at 6 seconds in m/s, including direction.

Clicker quiz: During the ride the roller coaster stops and turns around _____ times.

A: 1 B: 2 C: 3 D: 4 E: 5.

Clicker quiz: The time it has the largest speed is closest to ____sec.

A: 3 B: 5.75 C: 6.25 D: 8 E: 10.5

Clicker quiz: At t = 8 sec, the car is moving to the _____ A: right B: left C: not moving

Colton - Lecture 1 - pg 13

Summary: What you need to do ASAP

See also the "How to get started" section of the website.

Before class on Thursday

- Get CID (via website, if you weren't emailed one)
- Get course packet
- Get textbook
- Get clicker
- Register clicker via course website
- Do reading assignment
- Do warm-up exercise on website

Before Saturday night

- Get individual homework data sheet via class website
- Do first homework assignment
- Submit HW via class website

Optional, but highly recommended

- Register for class Google group
- Read the syllabus regarding on-line homework system
 We'll discuss briefly on Thurs
- Read the syllabus regarding other stuff: extra credit, departmental policies, etc.

Colton - Lecture 1 - pg 14