Announcements - Oct 15, 2009

1. Don't forget to pick up your exams in the boxes near Tutorial Lab

From last time: How much energy would you have to provide in order to "shoot" a 100 kg satellite into a near orbit like the
ISS, 6712 km from center of earth? (Assume via initial KE)

$$
\begin{aligned}
& \mathrm{KE}_{\text {bef }}+\mathrm{PE}_{\text {bef }}=\mathrm{KE}_{\text {aft }}+\mathrm{PE}_{\text {aft }} \\
& \mathrm{KE}_{\text {bef }}+\left(-\mathrm{GmM} / \mathrm{R}_{\text {earth }}\right)=1 / 2 \mathrm{mv}_{\text {orbital }}^{2}+\left(-\mathrm{GmM} / \mathrm{r}_{\text {orbital }}\right)
\end{aligned}
$$

$$
\mathrm{KE}_{\text {bef }}=3.29 \mathrm{E} 9 \mathrm{~J}
$$

...into a much farther geostationary orbit? $(42,157 \mathrm{~km})$ 5.79E9 J
...to an orbit at the moon's distance? $(381,715 \mathrm{~km}) \quad 6.21 \mathrm{E} 9 \mathrm{~J}$

New: ...into an orbit very far away from the Earth??
Hints: What is its orbital velocity? Final potential energy?

Robert Heinlein: "If you can get into orbit, then you're halfway to anywhere"

What is the "escape velocity" of the earth?
\rightarrow velocity needed to "escape"...end up very far away

Answers: 6.26E9 J, 11.2 km/s

Colton - Lecture 14-pg 2

Torque and equilibrium

A force supplies a torque on an object when it is applied in such a way that could cause the object to \qquad

Definition: $\quad \tau=r_{\perp} F$

Note: where do you measure the distance r from?

If the object is rotating:
If the object is standing still:
Above all, be \qquad

Positive vs. negative torques:

From warmup: in order to apply the most torque to a screw, you should:
a. use a wrench with a long handle
b.use a wrench with a short handle
c. no difference

Clicker quiz: In order to apply the most torque, you should:
(a)

(b)

a. apply the force perpendicular to r
b. apply the force at a 45° angle from r
c. no difference
"Lever Arm"

Perpendicular distance
$r_{\perp}=$ the "lever arm" of the force

Summary: $\tau=r_{\perp} F=r F_{\perp}=r F \sin \theta$
\rightarrow be careful about which angle is $\theta!$
Note: If you are familiar with vector cross products, those equations can be summarized in vector form like this: $\tau=\mathbf{r} \times \mathbf{F}$.

From warmup: Two people sit on a seesaw. They sit in positions such that the seesaw is balanced in a horizontal position. The two people must weigh the same amount.
a. true
b. false

Clicker quiz: Where should the large elephant stand in order to balance the seesaw? (mass $=4$ times the little elephant)
a. d
b. $d / 2$
c. $d / 4$
d. $d / 8$

Clicker quiz: When the see-saw is balanced, what is the upwards force from the pivot point? (Or, equivalently, the downward force on the pivot point.)
a. $m g / 4$
b. $m g / 2$
c. $m g$
d. $4 m g$
e. 5 mg

Center of mass demos

Equilibrium

What concepts were involved?

1. If an object is not moving ("translational"), then...
2. If an object is not rotating, then...

A new blueprint equation!

In that problem:

In general: think carefully about the p \qquad p \qquad and the s \qquad of t \qquad
How to do additional question: what are the horizontal and vertical forces of the wall on the board?

Answers: $T=3050 \mathrm{~N}, \mathrm{~F}_{\mathrm{x}}=2641 \mathrm{~N}$ to right, $\mathrm{F}_{\mathrm{y}}=775 \mathrm{~N}$ up

Problem:

A ladder leans against a frictionless wall. The ground has static coefficient of friction μ. What's the smallest angle θ such that the ladder doesn't slip?

Draw FBD of ladder:

Clicker quiz: using the ground contact point as the pivot, the (magnitude of the) torque produced by the wall's normal force is compared to the torque produced by the weight.
a. more than
b. less than
c. the same

Clicker quiz: The ground's frictional force is \qquad compared to the wall's normal force.
a. more than
b. less than
c. the same

Clicker quiz: The ground's normal force is \qquad compared to the weight.
a. more than
b. less than
c. the same

Solved problem: use $\Sigma \tau=0 \ldots$ about what point??

Answer: $\theta=\tan ^{-1}(1 /(2 \mu)) \quad \mu=0.5 \rightarrow \theta=45^{\circ} ; \quad \mu=0.7 \rightarrow \theta=35.5^{\circ} ; \quad \mu=0.9 \rightarrow \theta=29.1^{\circ}$

A 0.4 kg meterstick is suspended from support pillars (not shown) via two strings at $\theta_{1}=41.4^{\circ}$ and $\theta_{2}=60^{\circ}$, with tensions of 2 N and 3 N . The strings are attached at 10 cm and 5 cm from the two ends of the meterstick. The stick is not in equilibrium until an additional mass is hung from a point in the middle. Find the unknown x and m.

