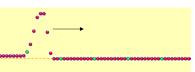
Lecture 26 Announcements

1. Results of the class votes


- a. Final replace a midterm score? **Yes**
 - i. 26% for option A (regular final, safety net at 77%)
 - ii. 74% for option B (final score will replace one midterm if it helps you, chosen to maximize your points; safety net moved to 73%)

 \rightarrow Note: computer grading system does not (yet?) reflect this change in the "Your score on the final exam must be at least xx% to guarantee a final grade of X" statements.

- 2. Colton "class improvement survey" link sent out, 3 bonus points if you complete it by Thurs, Dec 10.
- Online course evaluations due Dec 13
 <u>http://studentratings.byu.edu</u>
 → Please take both the ratings and the comments seriously. I read every single comment, as does the Physics Department promotion/tenure committee. (No extra credit)
- 4. TA-led final exam review-doodle.com survey again
- 5. Rate the TA-lab tutors! You should receive an email. The top tutor (tutors?) gets a cash prize.

Colton - Lecture 26 - pg 1

Reflections

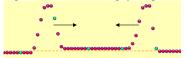
Clicker quiz: What happens when an upward pulse hits the end and turns around?

- a. the wave reflects back, upward
- b. the wave reflects back, downward
- c. it depends

Web Demo: http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf

Boundaries

Rope: Light rope meets heavy rope Light: Air meets glass

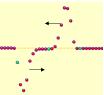

In both cases:

Sound: Thin air meets dense air \rightarrow Also can cause reflections

Colton - Lecture 26 - pg 2

Superposition/Interference

http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf



From warmup: What happens when two pulses on a string (one coming from each end) meet in the middle?

- a. The pulses pass through each other
- b. The pulses reflect off of each other

Demo: Shive wave machine

What about this case?

Review:

What gets transported by the wave? What does the transporting?

What was wrong with the Star Wars video?

What is sound?

Clicker quiz: What type of oscillation is a sound wave?

- a. Longitudinal
- b. Transverse
- c. Neither

Kind of like this:

...but not entirely. What is oscillating like that? The molecules?

Demo: Vacuum jar

Audible sound waves: ~20 Hz to ~20 kHz (different for everyone)

Demo: Hearing test! Frequency source & speaker

How is sound produced?

- \rightarrow Speaker cutaway
- \rightarrow Tuning fork demo
- \rightarrow Air jet and spinning disk demo
- \rightarrow Vocal folds ("cords") demo
- \rightarrow "singing rod" demo

Speed of sound

Gases

Air: v = 343 m/s at 20° C To impress your date: ~1 km in 3 seconds

Other temps: $v = 331 \text{ m/s} \sqrt{\frac{T}{273K}}$ (you don't need to know this)

Helium: 972 m/s (at 0° C) Why so much faster?

Solids

"Sound waves" in solids are like the P (longitudinal) and S (transverse) waves in earthquakes

Table in book:

Aluminum 5100 m/s Copper 3560 m/s

Almost certainly these speeds are for *longitudinal* waves

Liquids

Only longitudinal. (Why are transverse waves not possible?)

Table in book:

Water 1490 m/s Methanol 1140 m/s

\rightarrow Why would solids be the fastest?

Colton - Lecture 26 - pg 5

Clicker quiz: You measure the sound intensity produced by a spherically-emitting speaker to be 10 W/m² at a distance of 1.5 meters. What will be the intensity at 3 meters away? <u>W/m²</u> a. 2.5 b. 5 c. 10 d. 20 e. 40

Problem: What is the total sound power (watts) being produced by the speaker?

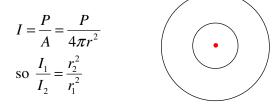
Decibel intensity scale

- We hear over a huge range of intensities
- So use a *logarithmic scale*

(multiplied by 10, for no apparent reason)

"Decibel number" $\beta = 10 \log \frac{I}{I_o}$ where $I_o = 10^{-12} \text{ W/m}^2$ "log" = "logarithm, base 10"

 \rightarrow adding ten to dB number = $\times 10$ to the intensity


Intensity

 \rightarrow How concentrated (or "focused") the wave is

Definition $I = \frac{P}{A}$

 \rightarrow Not just for sound

Intensity vs distance? For a *spherically* emitting source:

From warmup: If a loudspeaker emits spherical sound waves in all directions, what decreases as you go farther away from the loudspeaker?

- a. frequency
- b. intensity
- c. wavelength

Colton - Lecture 26 - pg 6

From warmup: You go to a rock concert where the sound level where you are standing is 110 dB. How does the intensity (power/area) of sound waves compare to when you listen to the same music on your home stereo system, 90 dB at the spot you sit?

- a. Concert intensity = Stereo intensity
- b. Concert intensity = $1.20 \times$ stereo intensity
- c. Concert intensity = $2 \times$ stereo intensity
- d. Concert intensity = $10 \times$ stereo intensity
- e. Concert intensity = $20 \times$ stereo intensity
- f. Concert intensity = $100 \times$ stereo intensity

From table in book:

		W/m^2	dB
Jet on a runway	Instant pain, damage	1000	150
Machine gun	damage	10	130
Rock concert (best seats)	pain, damage	1	120
Power mower	damage (if all day)	10^{-2}	100
Vacuum cleaner	safe all day	10^{-5}	70
Conversation		10-7	50
Whisper		10-9	30
Rub fingers by ear	Threshold	10 ⁻¹²	0

"Jet on a runway?" → calling Mythbusters! ☺ <u>http://www.youtube.com/watch?v=eTQh7D-nDNM</u> start at 2:48

OSHA regulations: \leq 90 dB averaged over 8 hour day.

From warmup: Ralph is confused about Table 14.2 (8th edition), where the book lists different intensity levels for different sources. For example, the table says a vacuum cleaner has an intensity of 70 dB. What confuses Ralph, is that it seems like a vacuum cleaner should sound louder to someone who is pushing the vacuum cleaner than to someone who is a little farther away. How can the intensity level be 70 dB for both people? How should you answer Ralph's question?

Answer from the class:

Logarithm Review (base 10)

1. $\log(ab) = \log(a) + \log(b)$ **2.** $\log(a^n) = n \log(a)$

Review of "Laws of Logs":

 $Log_{10}(x)$ is the inverse of $10^y \rightarrow if x = 10^y$ then $y = log_{10}(x)$

I.e. "10 to the what equals 22?" answer: 1.3424 (log(22))

 $log_{10}(100) = ?$ Translation: 10 to what number equals 100? (2) Test: $10^2 = 100 \checkmark$ $\ln(100) = ?$ $("ln" = log_e = log_{2.71828})$ Translation: e to what number equals 100? (4.605) Test with calculator: $2.71828^{4.605} = 99.983$ If the problem just says log(100)...could be either log_{10} or ln For us: assume \log_{10} Worked Problem: log₁₀(1,000,000) = Worked problem: If log(3) = 0.477, what is log(300)? Colton - Lecture 26 - pg 9 Colton - Lecture 26 - pg 10 You need to know this for final **Decibels** again \rightarrow each factor of ten added to dB number = $\times 10$ to the intensity \rightarrow each $\times 10$ to the intensity means you add 10 dBs $\beta = 10 \log \frac{I}{I_o} \qquad \beta = \text{``decibel number''}$ $I_0 = 10^{-12} \text{ W/m}^2$ \rightarrow each factor of 3 added to dB number = $\times 2$ to the intensity \rightarrow each \times 2 to the intensity means you add 3 dBs Compare two intensities: If you increase I by a *factor* of 10, *add* ______ to β **Clicker quiz:** If you increase I by a *factor* of 8, *add* If you increase I by a *factor* of 100, *add* ______ to β to the decibel level (Hint: do it with 2's) If you increase I by a *factor* of 1000, *add* _____ to β a. 4 b. 6 c. 8 d. 9 e. 12 \rightarrow each factor of ten added to dB number = $\times 10$ to the intensity **Worked problem:** If you increase *I* by $\times 2$, what do you add to β ? (Given that log(2) = 0.301.) Worked problem: You hear an average of 82 dB in your workshop as three printing presses run. The next day you come in and find the sound level to be 88 dB. How many total printing presses are now running?

What if you need to solve for *I*?

(this is not given on final)

Review quizzes

Clicker quiz 1: The *intensity* of a wave is its

- a. power
- b. power/area
- c. $power \times area$

Clicker quiz 2: True/false: if you double the sound intensity, the decibel number also gets doubled.

a. true

b. false

Clicker quiz 3: 10^{-4} W/m² has a dB level of _____ dB.

a. 4

b. 8

c. 60

d. 80

e. 90

Colton - Lecture 26 - pg 13