Physics 105, sections 1, 2 and 3
Exam 1
Colton
Please write your CID \qquad
No time limit. No notes. No books. Student calculators only. All problems equal weight, 60 points total.
Constants/Materials parameters:
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
$k_{B}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$N_{A}=6.022 \times 10^{23}$
$R=k_{B} \cdot N_{A}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$
Mass of Sun $=1.991 \times 10^{30} \mathrm{~kg}$
Mass of Earth $=5.98 \times 10^{24} \mathrm{~kg}$

Conversion factors

1 inch $=2.54 \mathrm{~cm}$
1 mile $=1.609 \mathrm{~km}$ $1 \mathrm{~m}^{3}=1000 \mathrm{~L}$

Other equations

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Surface area of sphere $=4 \pi r^{2}$
Volume of sphere $=(4 / 3) \pi r^{3}$
$v_{\text {ave }}=\frac{v_{i}+v_{f}}{2}$
$v=v_{0}+a t$
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
$v_{f}^{2}=v_{0}^{2}+2 a \Delta x$
$w=m g, P E_{g}=m g y$
$F=-k x, P E_{s}=1 / 2 k x^{2}$
$f=\mu_{k} N$ (or $f \leq \mu_{s} N$)
$P=F_{/ /} v=F v \cos \theta$
$\vec{F} \Delta t=\Delta \vec{p}$
Elastic: $\left(v_{1}-v_{2}\right)_{\text {bef }}=\left(v_{2}-v_{1}\right)_{\text {after }}$
arc length: $s=r \theta$
$v=r \omega$
$a_{t a n}=r \alpha$
$a_{c}=v^{2} / r$
$F_{g}=\frac{G M m}{r^{2}}, P E_{g}=-\frac{G M m}{r}$
$I_{p t \text { mass }}=m R^{2}$
$I_{\text {sphere }}=(2 / 5) m R^{2}$
$I_{\text {hoop }}=m R^{2}$

Radius of Earth $=6.38 \times 10^{6} \mathrm{~m}$
Radius of Earth's orbit $=1.496 \times 10^{11} \mathrm{~m}$
Density of water: $1000 \mathrm{~kg} / \mathrm{m}^{3}$
Density of air: $1.29 \mathrm{~kg} / \mathrm{m}^{3}$
Linear exp. coeff. of copper: $17 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Linear exp. coeff. of steel: $11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Specific heat of water: $4186 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Specific heat of ice: $2090 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 1 \text { gallon }=3.785 \mathrm{~L} \\
& 1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=14.7 \mathrm{psi} \\
& T_{F}=\frac{9}{5} T_{C}+32
\end{aligned}
$$

$$
\begin{aligned}
& I_{\text {disk }}=(1 / 2) m R^{2} \\
& I_{\text {rod }}(\text { center })=(1 / 12) m L^{2} \\
& I_{\text {rod }}(\text { end })=(1 / 3) m L^{2} \\
& L=r_{\perp} p=r p_{\perp}=r p \sin \theta \\
& P=P_{0}+\rho g h \\
& V F R=A_{1} v_{1}=A_{2} v_{2} \\
& P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2} \\
& \Delta L=\alpha L_{0} \Delta T \\
& \Delta V=\beta V_{0} \Delta T ; \beta=3 \alpha \\
& \text { transl. } K E_{\text {ave }}=\frac{1}{2} m v_{\text {ave }}{ }^{2}=\frac{3}{2} k_{B} T \\
& Q=m c \Delta T ; Q=m L \\
& \frac{\Delta Q}{\Delta t}=k A \frac{T_{2}-T_{1}}{L} \\
& P=e \sigma A T^{4} \\
& \left|W_{\text {on gas }}\right|=\text { area under P-V curve } \\
& =|P \Delta V| \quad \text { (constant pressure) } \\
& =\left|n R T \ln \left(V_{2} / V_{1}\right)\right| \text { (isothermal) } \\
& =|\Delta U| \quad \text { (adiabatic) } \\
& U=\frac{3}{2} N k_{B} T=\frac{3}{2} n R T \quad \text { (monatomic) }
\end{aligned}
$$

Specific heat of steam: $2010 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Specific heat of alum.: $900 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Latent heat of melting (water): $3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
Latent heat of boiling (water): $2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
Thermal conduct. of alum.: $238 \mathrm{~J} / \mathrm{s} \cdot \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$
$v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$ at $20^{\circ} \mathrm{C}$

$$
T_{K}=T_{C}+273.15
$$

$$
U=\frac{5}{2} N k_{B} T=\frac{5}{2} n R T \text { (diatomic, }
$$ around 300 K)

$Q_{h}=\left|W_{\text {net }}\right|+Q_{c}$
$e=\frac{\left|W_{\text {net }}\right|}{Q_{\text {added }}}=1-\frac{Q_{c}}{Q_{h}}$
$e_{\max }=1-\frac{T_{c}}{T_{h}}$
$\omega=\sqrt{\frac{k}{m}}, \quad T=2 \pi \sqrt{\frac{m}{k}}$
$\omega=\sqrt{\frac{g}{L}}, \quad T=2 \pi \sqrt{\frac{L}{g}}$
$v=\sqrt{\frac{T}{\mu}}, \mu=m / L$
$\beta=10 \log \left(\frac{I}{I_{0}}\right) \quad I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
$f^{\prime}=f \frac{v \pm v_{0}}{v \pm v_{S}}$
$\sin \theta=v / v_{s}$
o-о/с-с: $f_{n}=n f_{1} ; n=1,2,3, \ldots$
o-c: $f_{n}=n f_{1} ; n=1,3,5, \ldots$

Instructions:

- Write your CID at the top of the first page, otherwise you will not get this exam booklet back.
- Circle your answers in this booklet if you wish, but be sure to record your answers on the bubble sheet.
- Unless otherwise specified, ignore air resistance in all problems.
- Use $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

1. In many European countries, fuel economy is given in terms of "liters per 100 km " as opposed to the U.S. standard of "miles per gallon". If a given vehicle is rated at 6.5 liters per 100 km , what is its equivalent mpg rating? (Hint: there are some unit conversion factors on page 1 of the exam.)
a. $20-22 \mathrm{mpg}$
f. 30-32
b. 22-24
g. $32-34$
c. 24-26
h. 34-36
d. 26-28
i. $\quad 36-38$
e. 28-30
j. $\quad 38-40 \mathrm{mpg}$
2. Mia throws a ball straight upwards. While the ball is rising, in which direction is it accelerating?
a. Up
b. Down
c. Not accelerating
3. Same situation. While the ball is falling, in which direction is it accelerating?
a. Up
b. Down
c. Not accelerating
4. Same situation. While the ball is right at the top of its path, in which direction is it accelerating?
a. Up
b. Down
c. Not accelerating
5. George drives in a straight line, first for 100 s at $10 \mathrm{~m} / \mathrm{s}$, then for 100 s at $20 \mathrm{~m} / \mathrm{s}$. What was his average velocity?
a. $12 \mathrm{~m} / \mathrm{s}$
b. 13.33
c. 15
d. 16.67
e. $18 \mathrm{~m} / \mathrm{s}$
f. Not enough information to determine.
6. Fritz drives in a straight line, first for 1000 m at $10 \mathrm{~m} / \mathrm{s}$, then for 1000 m at $20 \mathrm{~m} / \mathrm{s}$. What was his average velocity?
a. $\quad 12 \mathrm{~m} / \mathrm{s}$
b. 13.33
c. 15
d. 16.67
e. $18 \mathrm{~m} / \mathrm{s}$
f. Not enough information to determine.
7. Susan drives in a straight line, accelerating constantly from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$. What was her average velocity?
a. $12 \mathrm{~m} / \mathrm{s}$
b. 13.33
c. 15
d. 16.67
e. $18 \mathrm{~m} / \mathrm{s}$
f. Not enough information to determine.
8. The graph on the right is a position vs. time graph for a car that is moving left and/or right (right = positive). How many times does the car stop and turn around?
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7

9. Same situation. What is the car's average velocity between 1 and 3 seconds? (Be care in reading values off the graph.)
a. $\quad 0.05-0.15 \mathrm{~m} / \mathrm{s}$
f. $0.55-0.65$
b. $0.15-0.25$
g. $0.65-0.75$
c. $0.25-0.35$
h. $0.75-0.85$
d. $0.35-0.45$
i. $0.85-0.95$
e. $0.45-0.55$
j. More than $0.95 \mathrm{~m} / \mathrm{s}$
10. Same situation. At $t=8 \mathrm{~s}$, what is the car's acceleration?
a. Positive
b. Negative
c. Zero
11. The graph on the right is a velocity vs. time graph for a car that is moving left and/or right (right = positive). Which of the following best describes its motion?
a. The car first moves to the right, and then moves to the left.
b. The car has a constant negative acceleration.
c. The car starts to the right of the origin, then it returns to the origin and stops.
d. The car, initially moving to the right, slows down and stops.

e. More than one of the above.
12. Suppose my car's specs say it can stop from $60 \mathrm{mph}(26.82 \mathrm{~m} / \mathrm{s}$) in 130 feet (39.62 m). If the acceleration during that time is constant, how many negative g's of acceleration do I experience?
a. $0.5-0.6 \mathrm{~g}$
b. $0.6-0.7$
c. $0.7-0.8$
d. $0.8-0.9$
e. $0.9-1.0$
f. 1.0-1.1
g. $1.1-1.2 \mathrm{~g}$
13. Suppose my car's specs say it can accelerate from 0 to $60 \mathrm{mph}(26.82 \mathrm{~m} / \mathrm{s})$ with a constant acceleration of 1 g . How long will that take?
a. $2.5-3.0 \mathrm{~s}$
b. $3.0-3.5$
c. $3.5-4.0$
d. $4.0-4.5$
e. $4.5-5.0$
f. $5.0-5.5$
g. $5.5-6.0$
h. 6.0-6.5
i. $6.5-7.0 \mathrm{~s}$
14. A boy throws a ball at an upward angle across a flat field. The ball leaves his hand 2 meters above the ground, and it lands on the field some distance away. At what part of its path does the ball have its maximum speed?
a. Right after it leaves his hand
b. Halfway to the top
c. At the top of its path
d. Halfway from the top to the ground
e. Right before it hits the ground
f. There's not enough information to say
15. Same situation. At what part of its path does the ball have its minimum speed?
a. Right after it leaves his hand
b. Halfway to the top
c. At the top of its path
d. Halfway from the top to the ground
e. Right before it hits the ground
f. There's not enough information to say
16. A hiker wants to travel 6 miles due north, but unfortunately gets her bearings wrong. For the first 3 miles she travels 15° east of north; for the second 3 miles she travels 11° west of north. How close is she to where she wanted to be?
a. Less than 0.14 miles
b. $0.14-0.16$
c. $0.16-0.18$
d. $0.18-0.20$
e. $0.20-0.22$
f. $0.22-0.24$
g. $0.24-0.26$
h. $0.26-0.28$
i. More than 0.28 miles
17. The pilot of an airplane wishes to fly due north in a $40 \mathrm{~km} / \mathrm{h}$ wind blowing due south-east. The airspeed of the airplane (i.e. $\overrightarrow{\mathbf{v}}_{\text {plane-air }}$) is $150 \mathrm{~km} / \mathrm{h}$. In what direction should the aircraft head? Specify how for west of north the angle must be.
a. Less than 8 degrees
b. 8-11
c. 11-14
d. $14-17$
e. $17-20$
f. 20-23
g. 23-26
h. More than 26 degrees
18. Same situation. What speed relative to the ground will the airplane be going?
a. Less than $86 \mathrm{~km} / \mathrm{h}$
b. $86-92$
c. $92-98$
d. 98-104
e. $104-110$
f. $110-116$
g. $116-122$
h. More than $122 \mathrm{~km} / \mathrm{hr}$
19. In one of the demos done in class, a ball was shot out horizontally at the same time that another ball was dropped from the same height with no horizontal velocity. Which ball hit the ground first?
a. The one shot horizontally
b. The one dropped
c. Same time
20. Jane stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of $v_{x}=8 \mathrm{~m} / \mathrm{s}$ (the initial $v_{y}=0$). The cliff is 19 m above a flat, horizontal beach. (I.e. use 19 m as the initial height of the stone.) How fast is the stone traveling when it hits the beach?
a. Less than $18 \mathrm{~m} / \mathrm{s}$
b. 18-19
c. 19-20
d. 20-21
e. 21-22
f. $22-23$
g. More than $23 \mathrm{~m} / \mathrm{s}$
21. Same situation. With what angle does it land? (measured as an angle below horizontal)
a. Less than 61 degrees
b. 61-63
c. 63-65
d. 65-67
e. 67-69
f. 69-71
g. More than 71 degrees
22. Two months ago on the reality show Top Shot, contestants had to use a high powered rifle to hit a target one mile away (1609 m). The bullet they used has a typical muzzle velocity of $900 \mathrm{~m} / \mathrm{s}$, meaning that's the velocity with which it leaves the gun. For this problem let's assume the target was at the same elevation as the shooters. Also, let's assume that we can neglect wind and air resistance, although undoubtedly those would play large roles here. If a shooter aimed the barrel perfectly horizontally, directly at the center of the target, how much below the center would he or she hit? (assuming the bullet could fall that far without hitting the ground)
a. Less than 12.0 m
b. $12.0-12.5$
c. $12.5-13.0$
d. $13.0-13.5$
e. $13.5-14.0$
f. $14.0-14.5$
g. $14.5-15.0$
h. $15.0-15.5$
i. More than 15.5 m
