Colton

Please write your CID \qquad
No time limit. No notes. No books. Student calculators only. All problems equal weight, 100 points total.
Constants/Materials parameters:
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
$k_{B}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$N_{A}=6.022 \times 10^{23}$
$R=k_{B} \cdot N_{A}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$
Mass of Sun $=1.991 \times 10^{30} \mathrm{~kg}$
Mass of Earth $=5.98 \times 10^{24} \mathrm{~kg}$
Conversion factors
$1 \mathrm{~kg}=2.205 \mathrm{lb}$
1 inch $=2.54 \mathrm{~cm}$
1 mile $=1.609 \mathrm{~km}$
$1 \mathrm{~m}^{3}=1000 \mathrm{~L}$

Other equations
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Surface area of sphere $=4 \pi r^{2}$
Volume of sphere $=(4 / 3) \pi r^{3}$
$v_{\text {ave }}=\frac{v_{i}+v_{f}}{2}$
$v=v_{0}+a t$
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
$v_{f}^{2}=v_{0}^{2}+2 a \Delta x$
$w=m g, P E_{g}=m g y$
$F=-k x, P E_{s}=1 / 2 k x^{2}$
$f=\mu_{k} N$ (or $f \leq \mu_{s} N$)
$P=F_{/ /} v=F v \cos \theta$
$\vec{F} \Delta t=\Delta \vec{p}$
Elastic: $\left(v_{1}-v_{2}\right)_{\text {bef }}=\left(v_{2}-v_{1}\right)_{\text {after }}$
arc length: $s=r \theta$
$v=r \omega$
$a_{t a n}=r \alpha$
$a_{c}=v^{2} / r$
$F_{g}=\frac{G M m}{r^{2}}, P E_{g}=-\frac{G M m}{r}$
$I_{p t \text { mass }}=m R^{2}$
$I_{\text {sphere }}=(2 / 5) m R^{2}$
$I_{\text {hoop }}=m R^{2}$

Radius of Earth $=6.38 \times 10^{6} \mathrm{~m}$
Radius of Earth's orbit $=1.496 \times 10^{11} \mathrm{~m}$
Density of water: $1000 \mathrm{~kg} / \mathrm{m}^{3}$
Density of air: $1.29 \mathrm{~kg} / \mathrm{m}^{3}$
Linear exp. coeff. of copper: $17 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Linear exp. coeff. of steel: $11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Specific heat of water: $4186 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Specific heat of ice: $2090 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
$1 \mathrm{hp}=745.7 \mathrm{~W}$
1 gallon $=3.785 \mathrm{~L}$
$1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}=14.7 \mathrm{psi}$

$$
\begin{aligned}
& I_{\text {disk }}=(1 / 2) m R^{2} \\
& I_{\text {rod }}(\text { center })=(1 / 12) m L^{2} \\
& I_{\text {rod }}(\text { end })=(1 / 3) m L^{2} \\
& L=r_{\perp} p=r p_{\perp}=r p \sin \theta \\
& P=P_{0}+\rho g h \\
& V F R=A_{1} v_{1}=A_{2} V_{2} \\
& P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2} \\
& \Delta L=\alpha L_{0} \Delta T \\
& \Delta V=\beta V_{0} \Delta T ; \beta=3 \alpha \\
& \text { transl. } K E_{\text {ave }}=\frac{1}{2} m v_{\text {ave }}{ }^{2}=\frac{3}{2} k_{B} T \\
& Q=m c \Delta T ; Q=m L \\
& P=\frac{Q}{t}=k A \frac{T_{2}-T_{1}}{L} \\
& P=\frac{Q}{t}=e \sigma A T^{4} \\
& \left|W_{\text {on gas }}\right|=\text { area under P-V curve } \\
& =|P \Delta V| \quad \text { (constant pressure) } \\
& =\left|n R T \ln \left(V_{2} / V_{1}\right)\right| \text { (isothermal) } \\
& =|\Delta U| \text { (adiabatic) } \\
& U=\frac{3}{2} N k_{B} T=\frac{3}{2} n R T \quad \text { (monatomic) }
\end{aligned}
$$

Specific heat of steam: $2010 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Specific heat of alum.: $900 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Latent heat of melting (water): $3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
Latent heat of boiling (water): $2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
Thermal conduct. of alum.: $238 \mathrm{~J} / \mathrm{s} \cdot \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$
$v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$ at $20^{\circ} \mathrm{C}$
$T_{F}=\frac{9}{5} T_{C}+32$
$T_{K}=T_{C}+273.15$
$U=\frac{5}{2} N k_{B} T=\frac{5}{2} n R T$ (diatomic, around 300K)
$Q_{h}=\left|W_{\text {net }}\right|+Q_{c}$
$e=\frac{\left|W_{\text {net }}\right|}{Q_{\text {added }}}=1-\frac{Q_{c}}{Q_{h}}$
$e_{\max }=1-\frac{T_{c}}{T_{h}}$
$\omega=\sqrt{\frac{k}{m}}, \quad T=2 \pi \sqrt{\frac{m}{k}}$
$\omega=\sqrt{\frac{g}{L}}, \quad T=2 \pi \sqrt{\frac{L}{g}}$
$v=\sqrt{\frac{T}{\mu}}, \mu=m / L$
$\beta=10 \log \left(\frac{I}{I_{0}}\right) \quad I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
$f^{\prime}=f \frac{v \pm v_{0}}{v \pm v_{S}}$
$\sin \theta=v / v_{s}$
о-о/с-с: $f_{n}=n f_{1} ; n=1,2,3, \ldots$
о-с: $f_{n}=n f_{1} ; n=1,3,5, \ldots$

Instructions:

- Write your CID at the top of the first page, otherwise you will not get this exam booklet back.
- Circle your answers in this booklet if you wish, but be sure to record your answers on the bubble sheet.
- Unless otherwise specified, ignore air resistance in all problems.
- Use g = $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
- Many materials parameters such as thermal conductivity, latent heat, etc., are given on pg 1.

1. Two blocks ($m_{1}=5 \mathrm{~kg}, m_{2}=1 \mathrm{~kg}$) sitting on a frictionless table are pushed from the left by a horizontal force as shown, with $F=10 \mathrm{~N}$. They accelerate to the right. What is the magnitude of the force between the two blocks?
a. Less than 1.6 N
b. $1.6-1.8$
c. $1.8-2.0$
d. $2.0-2.2$
e. $2.2-2.4$
f. $2.4-2.6$
g. $2.6-2.8$
h. 2.8-3.0
i. More than 3.0 N
2. On an air track with no friction, a moving cart of mass m and velocity of $10 \mathrm{~m} / \mathrm{s}$ to the right collides with a stationary cart of mass 3 m . The moving cart bounces backwards at $2 \mathrm{~m} / \mathrm{s}$. Which number is closest to the speed with which the larger cart moves off to the right?
a. $\quad 1 \mathrm{~m} / \mathrm{s}$
b. 2
c. 3
d. 4
e. 5
f. 6
g. 7
h. 8
i. 9
j. $\quad 10 \mathrm{~m} / \mathrm{s}$
3. A hoop rolls without slipping down a ramp that is 2 m long, with an angle of 30° from horizontal. How fast will the hoop be going at the bottom? The hoop has a mass of 1 kg and a radius of 20 cm .
a. Less than $3.0 \mathrm{~m} / \mathrm{s}$
b. $3.0-3.2$
c. $3.2-3.4$
d. $3.4-3.6$
e. $3.6-3.8$
f. $3.8-4.0$
g. $4.0-4.2$
h. $4.2-4.4$
i. More than $4.4 \mathrm{~m} / \mathrm{s}$
4. Barney swings a 0.2 kg yo-yo around in a horizontal circle, as shown. The angle θ in the picture is 30°, and the length of the string is 0.5 m . What must the yo-yo's speed be as it goes around the circle?
a. Less than $1.00 \mathrm{~m} / \mathrm{s}$
b. $1.00-1.05$
c. $1.05-1.10$
d. $1.10-1.15$
e. $1.15-1.20$
f. $1.20-1.25$
g. $1.25-1.30$
h. More than $1.30 \mathrm{~m} / \mathrm{s}$
5. A barometer is created using water as the liquid instead of mercury. If the atmospheric pressure is 0.85 atm , how high up will the water rise in the column (i.e. the distance h)? Remember the top of the column is vacuum.
a. Less than 8.0 m
b. $8.0-8.3$
c. $8.3-8.6$
d. $8.6-8.9$
e. $8.9-9.2$
f. $9.2-9.5$
g. $9.5-9.8$
h. $9.8-10.1$
i. More than 10.1 m
6. Suppose you could bathe in a pool of mercury (density $=13,534 \mathrm{~kg} / \mathrm{m}^{3}$). As you lie there, what fraction of your body's volume would be submerged? You can approximate yourself as a rectangular solid made out of water (the exact dimensions don't matter).
a. Less than 7.0%
b. $7.0-7.5$
c. $7.5-8.0$
d. $8.0-8.5$
e. $8.5-9.0$
f. $9.0-9.5$
g. $9.5-10.0$
h. More than 10.0%
7. A 5 kg block of metal is suspended from a spring scale and immersed in water as shown in the figure. The dimensions of the block are $12 \mathrm{~cm} \times 10 \mathrm{~cm} \times 6 \mathrm{~cm}$. What will be the reading of the spring scale?
a. Less than 42 N
b. $42-43$
c. $43-44$
d. $44-45$
e. $45-46$
f. $46-47$
g. $47-48$
h. More than 48 N

8. A cowboy at a dude ranch fills a horse trough that is 1.5 m long, 0.6 m wide, and 0.5 m deep. He uses a 3 cm diameter hose from which water emerges at $1.5 \mathrm{~m} / \mathrm{s}$. How long does it take him to fill the trough?
a. Less than 5.0 min
b. $5.0-5.5$
c. $5.5-6.0$
d. 6.0-6.5
e. 6.5-7.0
f. $7.0-7.5$
g. $7.5-8.0$
h. $8.0-8.5$
i. More than 8.5 min
9. Bernoulli's Law is a statement of:
a. conservation of energy
d. conservation of mass
b. conservation of linear momentum
e. conservation of volume
c. conservation of angular momentum
f. probability
10. A certain model airplane ($\mathrm{m}=3 \mathrm{~kg}$) is being tested in a wind tunnel; it's hovering in mid air. It has two wings (as usual), and each wing has a horizontal area of $0.070 \mathrm{~m}^{2}$. The wings are shaped so that the air is traveling faster above the wing than below in order to generate lift (as usual). Suppose the air above each wing is moving at $45 \mathrm{~m} / \mathrm{s}$. If all of the lift is explained by the Bernoulli effect, how fast must the air below the wing be moving? Use $1.29 \mathrm{~kg} / \mathrm{m}^{3}$ as the density of air, and neglect the $\rho g h$ terms in the equation.
a. Less than $39.0 \mathrm{~m} / \mathrm{s}$
b. $39.0-39.5$
c. $39.5-40.0$
d. $40.0-40.5$
e. $40.5-41.0$
f. $41.0-41.5$
g. $41.5-42.0$
h. $42.0-42.5$
i. More than $42.5 \mathrm{~m} / \mathrm{s}$
11. A copper ring has a gap in it, as shown in the figure. The gap width is 1.6000 cm when the temperature is $30^{\circ} \mathrm{C}$. What will the gap width be when the temperature is $122^{\circ} \mathrm{C}$?
a. Less than 1.5980 cm
b. $1.5980-1.5985$
c. $1.5985-1.5990$
d. $1.5990-1.5995$
e. $1.5995-1.6000$
f. $1.6000-1.6005$
g. $1.6005-1.6010$
h. $1.6010-1.6015$
i. $1.6015-1.6020$
j. More than 1.6020 cm
12. A bimetallic strip has copper on the left side and steel on the right side. It's initially uncurved. Which direction will it curve when it is heated up?
a. Like this:)
b. Like this:
c. It will stay uncurved
13. Actual gases follow the ideal gas law to a good approximation:
a. at high temperatures (far from their condensing point)
b. at low temperatures (close to their condensing point)
c. always
14. In my lab, I have a vacuum pump which can get my vacuum chamber to a pressure of 0.4 milliPascal. That's 250 million times less pressure than 1 atm ! The vacuum chamber has a volume of 20 L . How many gas molecules are still inside the chamber when it reaches that very low pressure? (The chamber is at 300 K .)
a. Less than 1.8×10^{15}
b. $1.8-2.0$
c. $2.0-2.2$
d. $2.2-2.4$
e. $2.4-2.6$
f. $2.6-2.8$
g. $2.8-3.0$
h. $3.0-3.2$
i. More than 3.2×10^{15}
15. You have a balloon filled with helium gas, having a volume V. It's initially at 300 K . If you cool the gas down to liquid nitrogen temperature (77 K), what will the volume become?
a. Less than 0.12 V
b. $0.12-0.15$
c. $0.15-0.18$
d. $0.18-0.21$
e. $0.21-0.24$
f. $0.24-0.27$
g. $0.27-0.30$
h. $0.30-0.33$
i. More than 0.33 V
16. Air can be thought of as a diatomic gas having a molar mass of $28.97 \mathrm{~g} / \mathrm{mol}$. That is basically a weighted average of the molar masses of all of molecules found in air (primarily nitrogen and oxygen, which are diatomic). Using that molar mass, what is the density of air at 350 K ? The air is at 1 atm.
a. Less than $1.05 \mathrm{~kg} / \mathrm{m}^{3}$
b. $1.05-1.10$
c. $1.10-1.15$
d. $1.15-1.20$
e. $1.20-1.25$
f. $1.25-1.30$
g. $1.30-1.35$
h. $1.35-1.40$
i. More than $1.40 \mathrm{~kg} / \mathrm{m}^{3}$
17. Gas A is made from atoms that are twice as massive as the atoms in gas B. However, gas A is monatomic while gas B is diatomic. How do the speeds of the molecules compare at 300 K ?
a. $\quad \mathrm{v}_{\mathrm{A}}<\mathrm{v}_{\mathrm{B}}$
b. $\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}}$
c. $\mathrm{v}_{\mathrm{A}}>\mathrm{v}_{\mathrm{B}}$
d. the relationship between speeds cannot be determined
18. Same situation. How does the total kinetic energy per molecule of gas A compare to gas B?
a. $\mathrm{KE}_{\mathrm{A}}<\mathrm{KE}_{\mathrm{B}}$
b. $\mathrm{KE}_{\mathrm{A}}=\mathrm{KE}_{\mathrm{B}}$
c. $\mathrm{KE}_{\mathrm{A}}>\mathrm{KE}_{\mathrm{B}}$
d. the relationship between KEs cannot be determined
19. You take an 80 g piece of aluminum out of your freezer (at $-18^{\circ} \mathrm{C}$) and add it to 250 g of water in an insulated cup (at $30^{\circ} \mathrm{C}$). The insulated cup itself has negligible mass. How cold does the aluminum get the water?
a. Less than $20^{\circ} \mathrm{C}$
b. 20-21
c. 21-22
d. 22-23
e. $23-24$
f. $24-25$
g. 25-26
h. 26-27
i. More than $27^{\circ} \mathrm{C}$
20. An ice cube is in an insulated container, right at its melting point of $0^{\circ} \mathrm{C}$. The ice is then melted by transferring in the minimum possible amount of heat energy. That is, after the ice melts, the water (that used to be ice) is still right at $0^{\circ} \mathrm{C}$. Then, that exact same amount of energy is transferred again into the container, causing the water to increase in temperature. What is the final temperature of the water?
a. Less than $77^{\circ} \mathrm{C}$
b. 77-79
c. 79-81
d. $81-83$
e. $83-85$
f. $85-87$
g. $87-89$
h. 89-91
i. More than $91^{\circ} \mathrm{C}$
21. A certain amount of heat (Q) flows over the course of one second from the inside of a house at $20^{\circ} \mathrm{C}$ through a wall to the outside air at $10^{\circ} \mathrm{C}$. How much heat will flow through the wall during a one second interval at night, when the outside air is $-10^{\circ} \mathrm{C}$? The inside stays at $20^{\circ} \mathrm{C}$. (Assume thermal conduction through the walls is the only source of heat loss.)
a. 0
b. $0.5 Q$
c. Q
d. $1.5 Q$
e. $2 Q$
f. $2.5 Q$
g. $3 Q$
h. $3.5 Q$
i. $4 Q$
22. Water is being boiled in an open kettle that has a 0.5 cm thick circular aluminum bottom with an area of $0.008 \mathrm{~m}^{2}$. If the water boils away at a rate of $0.4 \mathrm{~kg} / \mathrm{min}$, what is the temperature of the lower surface of the bottom of the kettle? Assume that the top surface of the bottom of the kettle is at $100^{\circ} \mathrm{C}$ (the temperature of the boiling water).
a. Less than $132^{\circ} \mathrm{C}$
b. $132-134$
c. $134-136$
d. 136-138
e. $138-140$
f. $140-142$
g. $142-144$
h. More than $144^{\circ} \mathrm{C}$
23. The first law of thermodynamics is a statement of:
a. conservation of energy
d. conservation of mass
b. conservation of linear momentum
e. conservation of volume
c. conservation of angular momentum
f. probability
24. If no heat is added to a system, its temperature cannot be increased:
a. True
b. False
25. In the figure, $P_{i}=4$ atm and $P_{f}=1 \mathrm{~atm}$. A monatomic gas can be taken from state I to state F via state A (path IAF), or via state B (path IBF). Which path results in the greater change in internal energy?
a. IAF
b. IBF
c. Same

26. Consider the cyclic process described by the figure. For A to B : is $\mathrm{W}_{\text {on gas }}$ positive, negative, or zero?
a. Positive
b. Negative
c. Zero
d. Can't tell without more details
27. Same situation. For C to A : is heat added or taken away from the gas?
a. Added
b. Taken away

c. \quad Neither $\left(Q_{\text {added }}=0\right)$
28. A diatomic ideal gas is compressed isothermally from state $1\left(100 \mathrm{kPa}, 0.008 \mathrm{~m}^{3}\right.$, $300 \mathrm{~K})$ to state $2\left(200 \mathrm{kPa}, 0.004 \mathrm{~m}^{3}, 300 \mathrm{~K}\right)$, as in the figure. Was heat added or taken away from the gas?
a. Added
b. Taken away
c. \quad Neither $\left(Q_{\text {added }}=0\right)$

29. Same situation. How much heat flowed into or out of the gas during the process (magnitude)?
a. Less than 520 J
b. $520-540$
c. $540-560$
d. $560-580$
e. $580-600$
f. $600-620$
g. $620-640$
h. $640-660$
i. More than 660 J
30. A coal power plant produces 800 megawatts of usable power (mega $=10^{6}$). To do this, it burns coal at $550^{\circ} \mathrm{C}$ and expels its waste heat into a nearby river at $60^{\circ} \mathrm{C}$. What is the theoretical maximum efficiency of the plant?
a. Less than 58%
f. 66-68
b. $58-60$
g. $68-70$
c. $60-62$
h. 70-72
d. $62-64$
i. More than 72%
e. $64-66$
31. Suppose the actual efficiency of the plant in the previous problem is 35%. How much heat is expelled to the river each second?
a. Less than 1200 MJ
b. $1200-1250$
c. $1250-1300$
d. 1300-1350
e. $1350-1400$
f. $1400-1450$
g. $1450-1500$
h. 1500-1550
i. $1550-1600$
j. More than 1600 MJ
