Announcements - 7 Nov 2013

1. Exams should all be in boxes for pick up now.

Temperature scales

Celsius

Kelvin

Fahrenheit

From warmup: Which is coldest?
a. 0 degrees Centigrade (Celsius)
b. 0 degrees Kelvin
c. 0 degrees Fahrenheit

What is a thermometer?

Expansion
Thermocouples
Resistors
Semiconductors

\rightarrow Just find some property you can measure that changes consistently with temperature

Demo: Two thermometers

What is temperature?

\rightarrow The property that governs h \qquad f

Two objects in thermal contact will exchange h \qquad e \qquad until they come to thermal equilibrium: they then have the "same temperature"

What is heat?

Temperature, cont.

Is there a maximum temperature?

Is there a minimum temperature?

Thermal expansion:

For a given material, a $1^{\circ} \mathrm{C}$ change will cause length to change by same fraction

$$
\begin{aligned}
& \Delta L=\alpha L_{o} \Delta T \\
& \Delta A=\gamma A_{o} \Delta T \\
& \Delta V=\beta V_{o} \Delta T
\end{aligned}
$$

For solids:
$\gamma=2 \alpha$
$\beta=3 \alpha$

What went wrong here?

For reference: $\alpha_{\text {steel }} \approx 11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
You heat up a 1 meter steel rod by 1 degree C. How long is it now?

Demo

Bimetallic strip

Video

Bimetallic strip

Microscopic View

Why do most materials expand when heated?

From warmup: You heat a disc with a hole in it. Will the radius of the hole get larger, smaller, or stay the same?
a. Larger
b. Smaller
c. Stay the same

Demo

Ring and ball

Ideal gases

1. Molecules bounce off each other like superballs (elastic)
2. They do not stick (no attractive forces)
3. Never condense into liquids or solids
4. Are like "frictionless surfaces", "massless pulleys", "perfect fluids", etc.

Mostly true as long as the gas is $f \quad$ from b \qquad p
(a.k.a. the c \qquad p

Experimental Thermodynamics

Wish to explain behavior of huge numbers of particles in terms of simple variables

Experiments on gases:
Hold T constant, increase P...
Volume \qquad

Hold P constant, increase T...
Volume \qquad

Hold P, T constant, increase N... Volume \qquad

Combine the experimental results

$$
\begin{aligned}
& \frac{P V}{N T}=\text { constant }=\mathrm{k}_{\mathrm{B}} \quad \text { Boltzmann's constant } \\
& k_{B}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& \text { Colton }- \text { Lecture } 20-\mathrm{pg} 11
\end{aligned}
$$

$P V=N k_{B} T$

Ideal gas law!
"Physics version"

Important:
P in pascal
V in m^{3}
N is number of molecules
T in Kelvin
$k_{B}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

From warmup

Suppose we have two jars of gas: one of helium and one of neon. If both jars have the same volume, and the two gases are at the same pressure and temperature, which jar contains the greatest number of gas molecules? (Both gases obey the ideal gas law. The mass of a neon molecule is greater than the mass of a helium molecule.)
a. jar of helium
b. jar of neon
c. same number

Clicker quiz

I am familiar with the quantity called "a mole"
a. yes
b. no

From warmup

Ralph is confused...the book calls two different equations "the ideal gas law". In equation 10.8 (8th edition), the equation is " $\mathrm{PV}=\mathrm{nRT}$ ". But in equation 10.11 (8th edition), the equation is " $\mathrm{PV}=\mathrm{Nk}_{\mathrm{B}} \mathrm{T}$ ". Why are they both called the ideal gas law, when only the first equation looks like what he learned in chemistry?
"Pair share"-I am now ready to share my neighbor's answer if called on. a.Yes

Avogadro's Number
 ...and other chemistry concepts

Chemists measure quantity in moles: $N_{A}=1$ mole =

Avagadro's number $\left(\mathrm{N}_{\mathrm{A}}\right)$
N = \# molecules
$n=$ \# moles: $n=N / N_{A}$
"molar mass": mass of one mole (careful: commonly given in grams)

$$
n=m / M M
$$

May need to convert to kg!

$P V=n R T$

Important:
P in pascal
V in m^{3}
n is number of moles
T in Kelvin
$R=8.314 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{K}$
\rightarrow don't use $R=0.08206$ liter-atm $/ \mathrm{mol} \cdot{ }^{\circ} \mathrm{K}$

Connection: $\mathrm{R}=\mathrm{N}_{\mathrm{A}} \times \mathrm{k}_{\mathrm{B}}$

Clicker quiz

Which will shrink more when cooled to 77K? (l'll use liquid nitrogen)
a. helium balloon
b. air balloon

Demo: Liquid nitrogen and balloons

Worked Problem

In an engine piston, with air at 1 atm , the volume is decreased from $200 \mathrm{~cm}^{3}$ to $40 \mathrm{~cm}^{3}$, while the temperature increases from 300 K to 600 K . Find the final pressure.

Method 1: Find N (or n)

Method 2: ratios

Answer: $1.01 \times 10^{6} \mathrm{~Pa}, 10 \mathrm{~atm}$

Clicker quiz

An old-fashioned glass milk jug is "empty" (still has air), at $20^{\circ} \mathrm{C}$. You seal it, then put it into a fire at $500^{\circ} \mathrm{C}$.

Using the ideal gas law, what is the final pressure in the jug? (Note: assuming the jug doesn't burst, N and V are constant.)
a. 0-1 atm
b. $1-2 \mathrm{~atm}$
c. 2-4 atm
d. $4-10 \mathrm{~atm}$
e. $10+\mathrm{atm}$

Worked Problem

Same situation as last problem. If instead of being totally empty the jug had a mole of water molecules in it (about 18 g), how much pressure would they exert after being vaporized (assuming the jug still doesn't break)?

Demos

Liquid nitrogen "balloon pop" Liquid nitrogen tower

Video

Barrel Crush

Worked Problem

How much volume will 1 liter of liquid nitrogen fill when it becomes gas?
Density of LN $=0.807 \mathrm{~g} / \mathrm{cm}^{3}$
Molar mass of $\mathrm{N}_{2}=28 \mathrm{~g} / \mathrm{mol}$
Temperature in this room $=$ about $70^{\circ} \mathrm{F}$ (=294.3 K) Atmospheric pressure in Provo $=0.85 \mathrm{~atm}$

Worked Problem

What is the mass of all the air in this room? The average molar mass of the molecules in air (mainly nitrogen and oxygen) is $29.0 \mathrm{~g} / \mathrm{mol}$.

Worked Problem

Use the ideal gas law to determine the density of air at 1 atm and $80^{\circ} \mathrm{F}$ (300K). $\left(\mathrm{MM}_{\text {air }}=29 \mathrm{~g} / \mathrm{mol}\right)$

