Announcements - 14 Nov 2013

1. Exam starts a week from today
a. Lecture that day will be an in-class exam review
2. Exam ends on the following Tuesday
a. Testing Center is not open on Wed, due to Thanksgiving
3. TA exam review - l'll send survey out, probably tonight
4. Boltzmann 3D applet
a. http://people.chem.byu.edu/rbshirts/research/boltzmann 3d

Review

From kinetic theory: (translational) $K E_{\text {ave }}=\frac{1}{2} m v_{\text {ave }}{ }^{2}=\frac{3}{2} k_{B} T$ Specific heat: $Q=m c \Delta T$

Latent heat: $Q=m L$
Reference: $c_{\text {water }}=4186 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& c_{\text {ice }}=2090 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} \\
& L_{\text {melting }}=3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg} \\
& L_{\text {boiling }}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

Calorimetry blueprint: $Q_{\text {gained by cold objects }}=Q_{\text {lost by hot objects }}$

Demo: boiling water in a vacuum

Worked Problem (from last time)

0.2 kg of iron at $100^{\circ} \mathrm{C}$ is added to an insulated container with 0.2 kg of ice at $-10^{\circ} \mathrm{C}$. How much ice melts if they come to equilibrium at $0^{\circ} \mathrm{C}$? (Ref: $c_{\text {iron }}=448 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$)

Start with: $Q_{\text {gained by ice }}=Q_{\text {lost by iron }}$

$$
(m c \Delta T)_{\text {iceup to } 0^{\circ} \mathrm{C}}+\left(m_{\text {unknown }} L\right)_{\text {ice melting }}=(m c \Delta T)_{\text {iron down to } 0^{\circ} \mathrm{C}}
$$

Worked Problem

5 g of hot iron at $300^{\circ} \mathrm{C}$ is added to 100 g of water at $30^{\circ} \mathrm{C}$. What is the

 final temperature?
Worked Problem

500 g of hot iron at $300^{\circ} \mathrm{C}$ is added to 100 g of water at $30^{\circ} \mathrm{C}$. What is the final temperature?

Answers: 124.1 (not real answer), $-395.3^{\circ} \mathrm{C}$ (not real answer), $100^{\circ} \mathrm{C}$

Heat Transfer

- Conduction
- Convection
- Radiation

Blackbody Radiation

Hot objects glow!

"Glow" carries away energy
$P_{\text {lost }}=e \sigma A\left(T_{\text {object }}\right)^{4}$
Power: watts = heat/time
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
(a constant)

e : "emissivity" between 0 and 1
Aluminum, highly polished: e ≈ 0.05
Aluminum, anodized (black): e ≈ 0.8
Depends on material, surface, shape, temperature, etc.

From warmup

If the temperature of a "black body" doubles, how much does its rate of energy emission change?
a. $\times 2$
b. $\times 4$
c. $\times 8$
d. more

But wait! Surroundings are also glowing!

$P_{\text {gained }}=e \sigma A\left(T_{\text {surroundings }}\right)^{4}$ absorbed by the object

Net power lost $=\mathbf{P}_{\text {out }}-\mathbf{P}_{\text {in }}$
"Color" of emission, IR thermometers

Chromaticity Diagram

Question

Why do some things at room temperature feel cold?

Clicker quiz

You put the end of a rod in a fire and the other end in a tub of water. The rod that would heat the water fastest will be:
a. short and fat
b. long and fat
c. short and thin
d. long and thin

Thermal conduction:

heat transfer through materials

$$
P=\frac{Q}{\text { time }}=k A\left(\frac{T_{2}-T_{1}}{L}\right)
$$

$\mathrm{k}=$ Thermal conductivity of the material (look up on table)
$\mathrm{L}=$ length/thickness of heat flow
A = area of heat flow

Some Thermal Conductivities

(from your textbook)

Material	$\underline{\mathrm{k}}\left(\mathrm{J} / \mathrm{s} \cdot \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$
Copper	397
Aluminum	238
Iron	79.5
Glass	0.84
Wood	0.10
Air	0.0234

Video: Boiling water in a paper cup

"R-value" for a material

$R=L / k$ (usually written in non-metric units)
$1 \mathrm{BTU}=1054 \mathrm{~J}$

$$
P=\frac{Q}{\Delta t}=A\left(\frac{T_{2}-T_{1}}{R}\right)
$$

Some R-values
(from your textbook)
$\frac{\text { Material }}{\text { Brick, } 4 \text { " thick }} \quad \frac{R\left(\mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F} \cdot \mathrm{hr} / \mathrm{Btu}\right)}{4}$
Styrofoam, 1" thick 5
Fiberglass insulation,

$$
3.5 " \text { thick } 10.9
$$

Drywall, 0.5 " thick 0.45

Worked Problem

You foolishly decide to build the walls of your new house out of solid aluminum, 5 cm thick. As a result, in the wintertime heat leaks out like a sieve. How much money will this cost you each day? The inside temp is $70^{\circ} \mathrm{F}\left(21.1^{\circ} \mathrm{C}\right)$, the average outside temperature is $25^{\circ} \mathrm{F}\left(-3.9^{\circ} \mathrm{C}\right)$. The surface area is $280 \mathrm{~m}^{2}$. The gas company charges you $\$ 0.89$ per "therm" $\left(1.055 \times 10^{8} \mathrm{~J}\right)$. Only count heat loss through conduction.

From warmup

Ralph-"Caution: Bridge freezes before road." How can that be the case when the road and the bridge are in thermal contact with each other and in the same environment?
"Pair share"-I am now ready to share my neighbor's answer if called on. a.Yes

Thermal convection

If air is a good thermal insulator why use fiberglass in attics?

Convection cell
Warm, low density fluid rises
Cool, high density fluid sinks
(end of chapter 11)

Internal energy of an ideal gas: U

Return to Equipartition Theorem:

The total kinetic energy of a system is shared equally among all of its independent parts, on the average, once the system has reached thermal equilibrium.
Each "degree of freedom" of a molecule, has energy: $\frac{k_{B} T}{2}$
independent parts: larger for molecules that can

- rotate
- vibrate
(requires more than one atom)
\rightarrow such molecules have more "internal energy"

Monatomic ideal gas: only translational KE possible (3 directions) $\mathrm{KE}_{\text {ave }}$ of each molecule $=3 / 2 \mathrm{k}_{\mathrm{B}} T$

$$
K E_{\text {tot }}=N \times\left(3 / 2 k_{B} T\right)
$$

$$
\rightarrow U=3 / 2 \mathrm{Nk}_{\mathrm{B}} \mathrm{~T}=3 / 2 \mathrm{nRT} \quad \text { (monoatomic) }
$$

Other substances: U is more complicated, depends on temperature
Diatomic: 2 rotational directions that take energy
(it takes no energy to rotate around long axis, since $\mathrm{I} \approx 0$)

$$
\rightarrow U=5 / 2 \mathrm{Nk}_{\mathrm{B}} \mathrm{~T}=5 / 2 \mathrm{nRT} \quad \text { (diatomic, around } 300 \mathrm{~K} \text {) }
$$

(no vibrational modes until higher temps)

Work done by a gas

$1 \mathrm{~m}^{3}$ of an ideal gas at 300 K supports a weight in a piston such that the pressure in the gas is $200,000 \mathrm{~Pa}$ (about 2 atm). The gas is heated up. It expands to $3 \mathrm{~m}^{3}$. How much work did the gas do as it expanded?

How do you know it did work? It exerted a force over a distance!

Result: $\mathrm{W}_{\text {by gas }}=\mathrm{P} \Delta \mathrm{V}$ $5^{\text {th }}$ edition (for constant P)
$\mathrm{W}_{\text {by gas }}>0$ when...

Work done on a gas

$$
\mathrm{W}_{\text {on gas }}=-\mathrm{P} \Delta \mathrm{~V}
$$

$$
6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }} \text { editions }
$$

(for constant P)
$\mathrm{W}_{\text {on gas }}>0$ when...

P-V diagrams

$$
\begin{aligned}
& \text { State postulate: any } \\
& \text { two (independent) } \\
& \text { variables determine the } \\
& \text { state: } \mathrm{P}, \mathrm{~V}, \mathrm{~T}, \mathrm{U}, \text { etc. }
\end{aligned}
$$

What's the work when the pressure is changing?

From warmup

The work done by a gas when expanding can be calculated by:
a. the area under the curve in the P-T diagram
b. the area under the curve in the $P-V$ diagram
c. the area under the curve in the T-V diagram

Isothermal = Constant Temperature

How to tell at a glance if the temperature has increased or decreased: Isothermal curves, contours of constant T

$\Delta \mathrm{U}$ for an isothermal process is \qquad because...

Isobaric = Constant Pressure

How do you find $\Delta \mathrm{U}$ for a constant P process?

$1^{\text {st }}$ Law of Thermodynamics

$$
\begin{aligned}
& \Delta U=Q_{\text {added }}+W_{\text {on system }} \\
& \quad\left(\text { note: } 5^{\text {th }} \text { edition uses }-W_{\text {by system }}\right)
\end{aligned}
$$

System: the object you are studying. Environment: what it interacts with

What does it mean?? Use $5^{\text {th }}$ edition version:
$\Delta U=Q_{\text {added }}-W_{\text {by system }} \rightarrow Q_{\text {added }}=\Delta U+W_{\text {by system }}$
Meaning of $1^{\text {st }}$ Law:
Heat added can go either towards

- increasing internal energy (temperature), or
- doing work by the gas

From warmup

The first law of thermodynamics is a statement of:
a. conservation of energy
b. conservation of (regular) momentum
c. conservation of angular momentum
d. conservation of mass

Final warning

Be careful with all the signs!!!
$\Delta \mathrm{U}$ is positive if:
$\mathrm{Q}_{\text {added }}$ is positive if:
$W_{\text {on system }}$ is positive if:

