Announcements - 3 Dec 2013

1. Exam 4 results Median was $71 \% \rightarrow 5$ pt curve!
2. Final exam info
a. Take in Testing Center any time during Finals week (Mon-Fri)
b. I plan 40-43 questions
i. 10-11 on new stuff (Chap 13 \& 14)
ii. 30-32 on Chapters 1-12 (midterms 1-4)
3. Instructor/course ratings due before Sun Dec 15
 http://studentratings.byu.edu
\rightarrow Please take the ratings and comments seriously!
4. I also plan to write my own survey, focusing on specific ways to improve the class for next time around.

"Simple harmonic motion"
 \rightarrow Sinusoidal oscillations

Demo: weight on spring

Plots of x, v, and a

Colton - Lecture 25 - pg 3

Reading info from graph

Amplitude $\mathrm{A}=$ \qquad
Period T=

\square sec
Frequency $\mathrm{f}=$ cycles/sec (Hz)

$$
f=1 / T
$$

Angular frequency $\omega=\ldots \quad \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \omega=2 \pi f \\
& \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Angular frequency?? Where's the angle??

Demo

SHM/Circular motion analogy

Clicker quiz 1: Where does it have the most kinetic energy?
a. position A

b. position B
C. position C

Clicker quiz 2: Where does it have the most potential energy?
a.position A
b. position B
c. position C

Colton - Lecture 25 - pg 6

Clicker quiz 3 (from warmup): Where does it have the largest acceleration?
a. position A
b. position B
c. position C

Clicker quiz
Given this oscillation,

a) $6 \cos (t)$
b) $3 \sin (2 t)$
c) $6 \sin (L+)$
d) $3 \sin (\pi t)$
e) $3 \cos (\pi t)$ \uparrow
what's the correct equation to describe the position vs. time?

$$
\begin{aligned}
& \begin{array}{l}
\text { a. } x(t)=6 \cos (t) \\
b . x(t)=3 \sin (2 t)
\end{array} \\
& \omega=?=\frac{2 \pi}{\pi} \quad \omega=\frac{2 \pi}{2}=\pi \\
& \text { c. } x(t)=6 \sin (2 t) \\
& \text { d. } x(t)=3 \sin (\pi t) \\
& \text { e. } x(t)=3 \cos (\pi t)
\end{aligned}
$$

Springs
Experiment: change mass on spring
Experiment: change spring, keep mass the same

$$
\begin{aligned}
& \begin{array}{ll}
\text { Summary: } & \omega=\sqrt{k / m} \\
\text { Frequency } & T=2 \pi \sqrt{\frac{m}{k}}
\end{array} \\
& \omega=2 \pi f \\
& \omega=\frac{2 \pi}{T}
\end{aligned}
$$

From warmup

Consider a mass m hanging on a spring. We pull the weight downward and then release it so that it oscillates up and down. If we repeat this on the moon with the same weight and the same spring, the frequency of the oscillation will be:
a. larger
b. smaller
c. the same

Pendulums

Clicker quiz: Does the pendulum period depend on amplitude?
a.yes
b. no
c. it depends

Experiment: change amplitude

Experiment: change mass

Worked Problem

A 70 kg trapeze artist swings on a long rope and takes 5 seconds to return to his starting spot.

How long will it take a woman of mass 50 kg to make the same swing?
\qquad sec

How long will it take for the 70 kg man to swing from his starting place to when he first reaches the bottom? 5/4 sec

How long is the rope?

From warmup

Ralph is confused about pendulums. He read in the textbook that the period T of a pendulum depends on its length L and on the acceleration of gravity g, but does not depend on its mass. Ralph thinks that heavier pendulums should swing with a longer period. After all, if he puts a heavier weight on the end of the spring, it oscillates more slowly. Can you help Ralph understand this?
"Pair share"-I am now ready to share my neighbor's answer if called on.
a. Yes

\rightarrow Oscillating motion that transfers energy but not mass
Direction: where the energy is going
Medium: what is doing the "waving"
Oscillation: how the medium is moving
Transverse-Oscillation is \perp to the direction of the wave Longitudinal-Oscillation is // to the direction of the wave

Demo: Suspended slinky

Wave Examples

Slinky (demo)

Rope (demo)

Water

Earthquake (P \& S)
http://en.wikipedia.org/wiki/S-wave
Sound

Light

Speed, frequency, wavelength

$$
v=f \lambda
$$

$$
f=97.5 \cdot 10^{6} \mathrm{~Hz}
$$

Worked Problem
You can listen to Utah Jazz games or FM 97.5. The number refers to a broadcasting frequency of 97.5 MHz . Find the wavelength and period of the radio waves. Hint: how fast do radio waves travel?

$$
\begin{aligned}
& T=\frac{1}{f}=\frac{1}{92.5 \cdot 10^{6}\left(\frac{1}{\mathrm{~s}}\right)}= \\
& V=\lambda f \rightarrow \lambda=\frac{v}{f}=\frac{3 \cdot 10^{-9} \mathrm{~s} / \mathrm{s} / \mathrm{s}}{97.5 \cdot 10^{6}\left(\frac{1}{\mathrm{~s}}\right)} \\
&=\frac{3.08 \mathrm{~m}}{}
\end{aligned}
$$

Answers: $3.08 \mathrm{~m}, 10.3 \mathrm{~ns}$

Waves on Ropes

What will changing the tension do?

For waves on a rope/string/etc
$m u=$ linear mass density

Note: the book uses symbol F for tension in this section (I don't know why)

Web demo

http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf

From warmup

Two students play with an extra-long Slinky. The student on the left end sends waves to the other student by shaking her end back and forth. After the waves die down, both students take a step backwards and try it again. How will the speed of the waves now compare to the previous waves?
a. They will be faster
b. They will be slower
c. They will go the same speed

Demo: rubber tubing

Question

What happens when you increase the wave speed while keeping the wavelength constant?

Demo: violin

Clicker quiz

Two guitar strings of the same length have the same tension, but one has four times the mass of the other. The speed of a wave on the heavier guitar string is \qquad that of the lighter string.

a. $1 / 4$
 b. $1 / 2$

c. the same as

d. $2 x$
e. $4 \times$

$$
\begin{aligned}
& \sqrt{\frac{1}{4}} \\
& =\frac{1}{2}
\end{aligned}
$$

Clicker quiz

$V=\lambda f$
A boy shakes a rope, mowing his hand up and down. He sends a wave crest out every 0.5 seconds. He sees the wave crests move away with a distance between them gr 25 cm . How fast is the wave moving?
a. $0-10 \mathrm{~cm} / \mathrm{s}$
b. $\quad 10-20 \mathrm{~cm} / \mathrm{s}$
c. $20-30 \mathrm{~cm} / \mathrm{s}$

d. $30-40 \mathrm{~cm} / \mathrm{s}$
e. more than $40 \mathrm{~cm} / \mathrm{s}$

$$
T=.5 \mathrm{sec}
$$

$$
f=2 H z
$$

Colton - Lecture 25 - pg 22

Reflections

Clicker quiz: What happens when an upward pulse hits the end and turns around?
a. the wave reflects back, upward
b. the wave reflects back, downward
c. it depends

Web demo, cont.
http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf

Boundaries

Rope: Light rope meets heavy rope
Light: Air meets glass
In both cases:

Sound: Thin air meets dense air
\rightarrow Also can cause reflections

