Announcements – 5 Dec 2013

- 1. Photo contest submissions due tomorrow night!
- 2. Online course evaluations due Sun, Dec. 15 http://studentratings.byu.edu

 \rightarrow Please take both the ratings and the comments seriously. I read every single comment, as does the Physics Department promotion/tenure committee.

3. TA-led final exam review—doodle.com survey again

Reflections

Clicker quiz: What happens when an upward pulse hits the end and turns around?

- a.the wave reflects back, upward
- b.the wave reflects back, downward
- c.it depends

Demo: rubber tubing

Web demo:

http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf

Boundaries

Rope: Light rope meets heavy rope Light: Air meets glass

In both cases:

Part of wave r_____ and part of wave t_____

Superposition/Interference

http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf

From warmup: What happens when two pulses on a string (one coming from each end) meet in the middle?

- a. The pulses pass through each other
- b. The pulses reflect off of each other

Demo: Shive wave machine

What about this case?

Review:

What gets transported by the wave?

What does the transporting?

What was wrong with the Star Wars video?

Demo

No sound in a vacuum

Sound

Clicker quiz: What type of oscillation is a sound wave?

- a.Longitudinal
- b.Transverse
- c. Neither

What is Sound?

Kind of like this:

http://www.acs.psu.edu/drussell/demos/waves/wavemotion.html

...but not entirely. (What's different?)

Compressions & Rarefactions

© 2006 Brooks/Cole - Thomson

Demo Hearing test! Frequency source & speaker

Audible sound waves: ~20 Hz to ~20 kHz (different for everyone)

How is sound produced?

- \rightarrow Speaker cutaway
- \rightarrow Demo: Tuning fork
- \rightarrow Demo: "singing rod"
- \rightarrow Demo: Air jet and spinning disk

Speed of sound

Gases

Air: v = 343 m/s at 20° C

Other temps: v = 331 m/s $\sqrt{\frac{T}{273K}}$

To impress your date: ~1 km in 3 seconds

(You need that for HW 26-1)

Helium: 972 m/s (at 0° C) Why so much faster?

Solids

Like the P (longitudinal) and S (transverse) waves in earthquakes

<u>Table in book:</u> Aluminum Copper

5100 m/sAlmost certainly these speeds are3560 m/sfor *longitudinal* waves

Speed of sound, cont.

Liquids

Only longitudinal. (Why are transverse waves not possible?)

Table in book:

Water 1490 m/s Methanol 1140 m/s

 \rightarrow Why would solids be the fastest?

Intensity

 \rightarrow How concentrated (or "focused") the wave is

Definition
$$I = \frac{P}{A}$$

(not just for sound)

Intensity vs distance

True also for most sound waves, even if not spherical, since $A \sim r^2$ for other shapes as well.

From warmup

If a loudspeaker emits spherical sound waves in all directions, what decreases as you go farther away from the loudspeaker?

- a. frequency
- b. intensity
- c. wavelength

Clicker quiz

You measure the sound intensity produced by a spherically-emitting speaker to be 10 W/m^2 at a distance of 1.5 meters. What will be the intensity at 3 meters away?

- a. 2.5 W/m² b. 5
- c. 10
- d. 20
- e. 40 W/m²

Worked Problem

Same situation (spherically emitting speaker, 10 W/m^2 at 1.5 meters). What is the total sound power (watts) being produced by the speaker?

Answer: 282.7 W

Clicker quiz

An earthquake that has a Richter scale magnitude of 8 is how much more "powerful" (in some sense) than one that has a magnitude of 7? Earthquake1 = $___$ × Earthquake 2.

- a. 1.1
- b. 1.1429
- c. 2
- d. 8
- e. 10

Decibels

- We hear over a <u>huge</u> range of intensities
- So use a *logarithmic scale* (like earthquakes)

multiplied by 10, for no apparent reason

"Decibel number"
$$\beta = 10 \log \frac{I}{I_o}$$
 where $I_o = 10^{-12} \text{ W/m}^2$
"log" = "logarithm, base 10"

\rightarrow adding <u>ten</u> to dB number = $\times 10$ to the intensity

From warmup

You go to a rock concert where the sound level where you are standing is 110 dB. How does the intensity (power/area) of sound waves compare to when you listen to the same music on your home stereo system, 90 dB at the spot you sit?

a.Concert intensity = Stereo intensity

- b.Concert intensity = $1.20 \times$ stereo intensity
- c. Concert intensity = $2 \times$ stereo intensity
- d.Concert intensity = $10 \times$ stereo intensity
- e.Concert intensity = $20 \times$ stereo intensity
- f. Concert intensity = $100 \times$ stereo intensity

Decibels, cont.

From table in book:

		W/m ²	dB
Jet on a runway	Instant pain,	1000	150
	damage		
Machine gun	damage	10	130
Rock concert (best seats)	pain, damage	1	120
Power mower	damage (if all day)	10 ⁻²	100
Vacuum cleaner	safe all day	10 ⁻⁵	70
Conversation		10 ⁻⁷	50
Whisper		10 ⁻⁹	30
Rub fingers by ear	Threshold	10^{-12}	0

OSHA

TABLE D-2 - PERMISSIBLE NOISE EXPOSURES

Duration per day,hours	Sound level dBA slow response	
8	90 92 95 97 100 102 105 110 115	

https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10625

From warmup

Ralph is confused about Table 14.2 (8th edition), where the book lists different intensity levels for different sources. For example, the table says a vacuum cleaner has an intensity of 70 dB. What confuses Ralph, is that it seems like a vacuum cleaner should sound louder to someone who is pushing the vacuum cleaner than to someone who is a little farther away. How can the intensity level be 70 dB for both people? How should you answer Ralph's question?

My answer: For once in Ralph's life, he got something right!!

Logarithm Review (base 10)

 $Log_{10}(x)$ is the inverse of $10^y \rightarrow if x = 10^y$ then $y = log_{10}(x)$

I.e. "10 to the what equals 22?" answer: 1.3424 (log(22))

 $log_{10}(100) = ?$ Translation: 10 to what number equals 100? (2) Test: $10^2 = 100 \checkmark$

$$ln(100) = ?$$
 ("In" = $log_e = log_{2.71828}$)
Translation: e to what number equals 100? (4.605)
Test with calculator: 2.71828^{4.605} = 99.983

If the problem just says log(100)...could be either log_{10} or In For us: assume log_{10}

Colton - Lecture 26 - pg 26

Clicker quiz

What is $log_{10}(1,000,000)$?

- a. 1
- b. 6
- c. 7.5
- d. 10
- e. 93

"Laws of Logs" Review

- 1. log(ab) = log(a) + log(b)
- 2. $\log(a^n) = n \log(a)$

Worked problem: If log(3) = 0.477, what is log(300)?

Decibels, cont.

$$\beta = 10 \log \frac{I}{I_o}$$

$$\beta = \text{``decibel number''}$$

$$I_0 = 10^{-12} \text{ W/m}^2$$

Compare two intensities:

If you increase I by a *factor* of 10, *add* ______ to β If you increase I by a *factor* of 100, *add* ______ to β If you increase I by a *factor* of 1000, *add* ______ to β

\rightarrow each factor of ten added to dB number = $\times 10$ to the intensity

Worked problem: If you increase *I* by ×2, what do you add to β ? (Given that log(2) = 0.301.)

You may need to know this for final

 \rightarrow each factor of ten added to dB number = $\times 10$ to the intensity

 \rightarrow each $\times 10$ to the intensity means you add 10 dBs

 \rightarrow each factor of 3 added to dB number = $\times 2$ to the intensity \rightarrow each $\times 2$ to the intensity means you add 3 dBs

Clicker quiz: If you increase I by a *factor* of 8, *add*_______to the decibel level (Hint: do it with 2's)

- a. 4
- b. 6
- c. 8
- d. 9
- e. 12

Worked problem

You hear an average of 82 dB in your workshop as three printing presses run. The next day you come in and find the sound level to be 88 dB. *How many* total printing presses are now running?

What if you need to solve for *I*?

(this equation is <u>not</u> given on final)

Answer: $I = I_0 \cdot 10^{\beta/10}$

Review quizzes

Clicker quiz 1: The *intensity* of a wave is its

- a. power
- b. power/area
- c. power \times area

Clicker quiz 2: T/F: If you double the sound intensity, the decibel number also gets doubled.

- a. true
- b. false

```
Clicker quiz 3: 10^{-4} W/m<sup>2</sup> has a dB level of _____ dB. (Eqn given on exam is: \beta = 10 \log(I / I_{0}) I_{0} = 10^{-12} W/m<sup>2</sup>.)
a.4
b.8
c.60
d.80
e.90
```