Announcements - 14 Oct 2014

1. Prayer
"Which of the problems from last night's HW assignment would you most like me to discuss in class today?"

Center of Mass

What is the center of mass?

How does the center of mass move?

Demo: Foam object

Worked Problem

An artillery shell of mass 20 kg is moving east at $100 \mathrm{~m} / \mathrm{s}$. It explodes into two pieces. One piece (mass 12 kg) is seen moving north at $50 \mathrm{~m} / \mathrm{s}$. What is the velocity (magnitude and direction) of the other piece?

Answers: $v_{x}=250 \mathrm{~m} / \mathrm{s} ; \mathrm{v}_{\mathrm{y}}=-75 \mathrm{~m} / \mathrm{s} ; \mathrm{v}=261 \mathrm{~m} / \mathrm{s}$ at 16.7° south of east

Circular Motion

Demo: Bicycle wheel

Complicated motion of rotating body: Different r, v, a 's for different parts

But same \qquad

From warmup

Which has greater linear speed, a horse near the outside rail of a merry-go-round or a horse near the inside rail?
a. outside horse
b. inside horse
c. both the same

Calvin \& Hobbes, Bill Watterson

COMPARE A POINT ON THE LABEL WITH A PONT ON THE RECORDS OUTER EDGE. THEY
BOTH MAKE A COMPLETE CIRCLE IN THE SMME AMOUNT

BUT THE POINT ON THE RECORDS EDGE HAS TO MAKE A BIGGER CIRCLE IN THE SAME TME, 50 IT GOES FRSTER. SEE. TWO POINTS ON ONE DISK MOVE AT THO SFEEDS. EYEE THOVGH THEY BOTH MAKE THE SAME REVOLUTIONS PER

Do revolutions relate to angles?

Question: Which angle is greatest:
a. 30 revolutions
b. 30°
c. 30 radians

Definition of radian

How many radians in one circumference?

How many radians in 360° ?
\rightarrow I will not give you these conversion factors on exam!

How many radians in an arc of length "s"?

What is angular speed? (aka angular velocity)

Clicker quiz: The symbol ω, used for angular velocity, is pronounced:
a. "al-pha"
b. "double-you"
c. "gam-ma"
d. "om-e-ga"
e. "pi"

From warmup

Which has greater angular speed, a horse near the outside rail of a merry-go-round or a horse near the inside rail?
a. outside horse
b. inside horse
c. both the same

Angular quantities

displacement $\Delta \theta=\theta_{f}-\theta_{i}$
 average velocity $\omega_{\text {ave }}=\frac{\Delta \theta}{\Delta t}$

average acceleration $\alpha_{\text {ave }}=\frac{\Delta \omega}{\Delta t}$

Units?

Kinematic equations (for constant angular acceleration)

$$
\text { Substitutions: } \begin{aligned}
& x \rightarrow \theta \\
& v \rightarrow \omega \\
& a \rightarrow \alpha
\end{aligned}
$$

Regular kinematic
Definition: $v_{\text {ave }}=\frac{\Delta x}{\Delta t}$
Definition: $a_{\text {ave }}=\frac{\Delta v}{\Delta t}$
For constant a:

$$
\begin{aligned}
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& v=v_{0}+a t \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

Angular kinematic

$$
\begin{aligned}
& \omega_{\text {ave }}=\frac{\Delta \theta}{\Delta t} \\
& \alpha_{\text {ave }}=\frac{\Delta \omega}{\Delta t}
\end{aligned}
$$

For constant α

$$
\begin{aligned}
& \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
& \omega=\omega_{0}+\alpha t \\
& \omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
\end{aligned}
$$

Some Guidance, a.k.a. What I Do

1. Pretend a problem involves regular distances \& velocities, and figure out how you would solve it
2. Then use the corresponding angular equations

Worked Problem

Friction slows down a 10 cm radius spinning top with angular deceleration of $7 \mathrm{rad} / \mathrm{s}^{2}$. It was initially spinning at $6 \mathrm{rad} / \mathrm{s}$.

How many radians/degrees/revolutions will it turn before stopping?
"Translated problem": Friction slows down a block, $a=-7 \mathrm{~m} / \mathrm{s}^{2}$. It was initially travelling at $6 \mathrm{~m} / \mathrm{s}$. How far will it go before stopping?

Worked Problem, cont.

Friction slows down a 10 cm radius spinning top with angular deceleration of $7 \mathrm{rad} / \mathrm{s}^{2}$. It was initially spinning at $6 \mathrm{rad} / \mathrm{s}$.

How long will it take to stop?
"Translated problem":

From warmup

If a woman walks 1 meter around the circumference of a 1 meter radius circle, what is the angular measure of her travel?
a. $1 / 2 \mathrm{rad}$
b. 1 rad
c. 2 rad
d. $\pi / 2 \mathrm{rad}$
e. $\pi \mathrm{rad}$
f. $2 \pi \mathrm{rad}$

Angular motion of the whole object vs. motion of a spinning point

Angular displacement $\Delta \theta$ vs "distance around circumference", s

Angular velocity $\omega \quad$ vs tangential speed v

Angular acceleration α vs tangential acceleration a

Important: You must use radians if you want to use these equations

Worked Problem, same situation as before

Friction slows down a 10 cm radius spinning top with angular deceleration of $7 \mathrm{rad} / \mathrm{s}^{2}$. It was initially spinning at $6 \mathrm{rad} / \mathrm{s}$.

Consider a point on the rim.
a. What is its initial velocity $(\mathrm{m} / \mathrm{s})$? (magnitude, direction)
b. What is its initial acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$? (magnitude, direction)

Answers: $v_{\tan }=0.6 \mathrm{~m} / \mathrm{s} ; a_{\tan }=-0.7 \mathrm{~m} / \mathrm{s}^{2} ; a_{\mathrm{c}}=3.6 \mathrm{~m} / \mathrm{s}^{2} ; a_{\text {tot }}=3.667 \mathrm{~m} / \mathrm{s}^{2} ;$ dir $=11.0^{\circ}$ away from inward

Intro to Torque

A force supplies a torque on an object when it is applied in such a way that could cause the object to \qquad

Definition: $\tau=r_{\perp} F$

Note: where do you measure the distance r from?
If the object is rotating:
If the object is standing still:
Above all, be \qquad

Clicker quiz

In order to apply the most torque, you should:
(a)

(b)

a. apply the force perpendicular to r
b. apply the force at a 45° angle from r
c. no difference

Positive vs. negative torques:

Is torque a vector?

