Announcements - Oct 16, 2014

1. Prayer
2. While waiting, see how many of these blanks you can fill out:

Centripetal Accel.:
Causes change in \qquad It points \qquad
but not \qquad Magnitude: $a_{c}=$ \qquad
How to use with N2: Always include on the \qquad
\qquad s \qquad
Tangential Accel.: Direction: \qquad
Causes speed to \qquad Causes angular speed to \qquad Therefore, causes: a \qquad a \qquad
Definitions: $\theta=\quad \omega=\quad \alpha=$
Connecting eqns: arc length $s=$ \qquad $v_{\text {tan }}=$ \qquad $a_{t a n}=$ \qquad
Angular Kinematic Equations: $x \rightarrow$ \qquad $v \rightarrow \ldots \quad a \rightarrow$ 1. \qquad
2. \qquad
3. \qquad
Angular acceleration is caused by t \qquad
"Which of the problems from last night's HW assignment would you most like me to discuss in class today?"

Torque

Definition: $\tau=r_{\perp} F$

Measure r from a "pivot point" (or potential pivot point)

From warmup

In order to apply the most torque to a bolt, you should:
a. use a wrench with a long handle
b. use a wrench with a short handle
c. there would be no difference

Demo: T-handle torque

Torque tug-of-war

"Lever Arm"

View 1:
 the force

View 2:

$$
\tau=r_{\perp} F=r F_{\perp}=r F \sin \theta
$$

Torque Summary

$$
\tau=r_{\perp} F=r F_{\perp}=r F \sin \theta
$$

\rightarrow but be careful about which angle you call θ !

Note: If you are familiar with vector cross products, you can write it like this: $\tau=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$

From warmup

Two people sit on a seesaw. They sit in positions such that the seesaw is balanced in a horizontal position. The two people must weigh the same amount.
a. true
b. false

Clicker quiz

Where should the large elephant stand in order to balance the seesaw? (big elephant mass $=4 \times$ the little elephant mass)
a. d
b. $d / 2$
c. $d / 4$
d. $d / 6$
e. $d / 8$

Clicker quiz

 $4 m$

When the see-saw is balanced, what is the upwards force from the pivot point? (Or, equivalently, the downward force on the pivot point.)
a. $m g$
b. $4 m g$
c. $5 m g$
d. $6 m g$
e. $8 m g$

Center of mass

Where is the center of mass of the elephants?

Demos: Center of mass (balanced objects)

Equilibrium

What concepts are involved?

1. If an object is not moving ("translational equilibrium"), then...
2. If an object is not rotating ("rotational equilibrium"), then...

A new blueprint equation!

From warmup

If an object is in equilibrium:
a. the net force on it must be zero
b. the net torque on it must be zero
c. both of the above
d. neither of the above

Blueprint advice

$$
\sum \tau=0 \quad \text { if }
$$

Think carefully about the p \qquad p and the s__ of the t

Worked problem

A 1500 N man is standing on a board supported by a wall and a rope. He is 1 meter from the right end. The board weighs 800 N and is 4 meters long. What is the tension in the rope?

1. Draw all of the forces present. Note: gravity acts at the center of mass

1b. Divide forces into components
2. Use $\Sigma \mathbf{F}$ blueprint equation(s)

3. Use $\Sigma \tau$ blueprint equation
\rightarrow which point to use as the "pivot point"?

4. Use the filled-in blueprints to solve for what you're looking for.

Additional question

What are the horizontal and vertical forces of the wall on the board?

Answers: $\mathrm{F}_{\mathrm{x}}=2641 \mathrm{~N}$ to right, $\mathrm{F}_{\mathrm{y}}=775 \mathrm{~N}$ up

From warmup

Ralph noticed that both torque and work are obtained by multiplying a force times a distance. He wants to know: how are they different? Do they have the same units? What can you tell Ralph to help him out?
"Think-pair-share"

- Think about it for a bit
- Talk to your neighbor, find out if he/she thinks the same as you
- Be prepared to share your answer with the class if called on

Clicker: I am now ready to share my answer if randomly selected.
a. Yes

Note: you are allowed to "pass" if you would really not answer.

Problem:

(Like HW 15-2)

A ladder leans against a frictionless wall. The ground has static coefficient of friction μ. What's the smallest angle θ such that the ladder doesn't slip? Length of ladder is d, mass of ladder is m.

Draw a FBD of ladder:

Clicker quiz: I have done so
a. yes

Clicker quiz

The ground's frictional force is \qquad compared to the wall's normal force.
a. more than
b. less than
c. the same
d. can't tell

Clicker quiz

The ground's normal force pushing upward is \qquad compared to the weight.
a. more than
b. less than
c. the same
d. can't tell

Clicker quiz

To solve the problem, we need to use $\Sigma \tau=0 \ldots$ but about which point should we compute the torques?
a. A
b. B
c. C

Solved problem

Numerical answers: if $\mu=0.5 \rightarrow \theta=45^{\circ} ; \quad \mu=0.7 \rightarrow \theta=35.5^{\circ} ; \quad \mu=0.9 \rightarrow \theta=29.1^{\circ}$ Answer: $\theta=\tan ^{-1}(1 /(2 \mu))$

Modification

Suppose the wall also has friction, μ. What's the angle θ now? (Think: bigger or smaller?)

New FBD:

Equations:

Solved problem

$$
\text { If } \mu=0.5 \rightarrow \theta=36.9^{\circ} ; \quad \mu=0.7 \rightarrow \theta=20.0^{\circ} ; \quad \mu=0.9 \rightarrow \theta=6.0^{\circ}
$$

Answer: $\theta=\tan ^{-1}(1 /(2 \mu)-\mu / 2)$

Worked Problem:

A 0.4 kg meterstick is suspended from pulleys and support pillars (not shown) via two strings at $\theta_{1}=41.4^{\circ}$ and $\theta_{2}=60^{\circ}$, with tensions of 2 N and 3 N , respectively. The strings are attached at 10 cm and 5 cm from the two ends of the meterstick. The stick is not in equilibrium until an additional mass is hung from a point in the middle. Find the unknown x and m.

