Announcements – 30 Oct 2014

- 1. Prayer
- 2. Exam 2 starts today!
 - a. Late fee on Monday Nov 3, after 2 pm
 - b. Closes on Tuesday Nov 4, 2 pm
 - c. Jerika exam reviews, both in room C295 ESC:
 - i. Wed Oct 29 7 8:30 pm (already happened)
 - ii. Thurs Oct 30 5:30 7 pm
 - d. Exam covers through angular momentum
 - i. Ch. 5, 6, 7.1-7.3, 8
 - ii. HW 10-17

"Which of the problems from last night's HW assignment would you most like me to discuss in class today?"

Buoyancy

Water in a thin rectangular plastic bag...

Does the water inside the bag have mass?

Does the water inside the bag have weight?

Why doesn't it accelerate down?

air

water

Buoyancy, view 2

Water in a thin rectangular plastic bag...

How much force is pushing downward on top?

How much force is pushing upward on bottom?

What's the net force?

Archimedes' Principle

The buoyant force equals the weight of the fluid that the object is displacing at the moment.

From warmup

The buoyant force of a submerged object always equals:

- a.the weight of the object
- b.the net force on the object

c. the weight of the water that would otherwise occupy the object's space

Demos

- Does a can of soda sink or float?
- Does aluminum foil sink or float?

Floating objects

Floating objects will rise out of the water until...

Worked Problem

A raft of wood of size $0.5 \text{ m} \times 6 \text{ m} \times 5 \text{ m}$ weighs 30,000 N. It is loaded with cannon balls until it is (barely) completely submerged. How much weight was loaded?

Answer: 117,000 N

Additional part: the balls are unloaded, and the raft now sits at equilibrium. How far is the raft submerged?

Answer: 10.2 cm

Archimedes was charged with determining if a crown was pure gold. One method he may have used: he balanced the crown with pure gold outside water. After immersing, the balance tipped as shown.

Clicker quiz: The crown has density

- a. more than gold
- b. less than gold
- c. same as than gold

Clicker quiz

Three cubes of the same size and shape are put in water. They sink. One is lead, one is steel and one is a dense wood (ironwood). $\rho_{\text{lead}} > \rho_{\text{steel}} > \rho_{\text{ironwood}}$. The bouyant force is greatest on the _____ cube

- a. lead
- b. steel
- c. wood
- d. same buoyant force

Clicker quiz

Two cubes of the same size and shape are made out of wood. The ironwood cube **sinks**, but the walnut cube **floats**. The bouyant force is greatest on the _____ cube

- a. ironwood
- b. walnut
- c. same buoyant force

Moving fluids

Disclaimer: **viscosity** exists \rightarrow Viscosity is <u>friction</u> in fluids

Friction cases a loss in ______ along the tube as fluid flows.

Friction effects depend on radius: bigger effects if radius is _____

Friction effects depend on length: bigger effects if length is _____

The power of viscosity (watch on your own): http://www.youtube.com/watch?v=W3YZ5veN_Bg

That being said, we'll now ignore all viscosity effects... ...assume "frictionless fluids" unless otherwise stated

Bernoulli effect

The pressure in a fluid changes with the s_____ of the fluid.

Demo Bernouilli effect in glass tube with varying diameter

 \rightarrow why does the speed change?

Result of demo: Where is pressure the largest?

Disclaimer 1: This pressure change is **on top** of pressure lost from viscosity effects.

Disclaimer 2: What this *doesn't* mean (i.e. must compare speed in same overall flow)

Detour: fluid speeds

Volume flow rate: m³/sec past any point

$$VFR = \frac{\Delta Volume}{\Delta t} = \frac{Area \ \Delta x}{\Delta t} =$$

Assume:

- No viscosity (friction)
- Incompressible (constant density) not true for gases
- No turbulence

Why does the pressure depend on speed?

in what direction is the net force?

Colton - Lecture 18 - pg 18

View #2: Energy & work, per volume

"Bernoulli's equation"

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

Another blueprint!

From warmup: In the reading assignment for today, Ralph noticed two different equations labeled "Bernoulli's Equation". One said,

$$"P_1 + \frac{1}{2} \rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g h_2";$$

the other said, $"P + \frac{1}{2}\rho v^2 + \rho gh = C"$.

He wants to know how they can both be the same equation when they look so different. And what does C stand for, anyway? What can you tell him?

"Think-pair-share"

- Think about it for a bit
- Talk to your neighbor, find out if he/she thinks the same as you
- Be prepared to share your answer with the class if called on

Clicker: I am now ready to share my answer if randomly selected. a. Yes

Note: you are allowed to "pass" if you would really not answer.

Review

From warmup: Water flows from a pipe with large diameter into a pipe with smaller diameter. The speed of the water in the small tube is the speed in the large tube.

- a. greater than
- b. less than
- c. equal to

From warmup: Same situation. The pressure in the small tube is the pressure in the large tube.

- a. greater than
- b. less than
- c. equal to

Worked Problem

Water flows from the big pipe into the little pipe. Ignore any friction or height change.

If the speed on the left is 1 m/s, what's the speed on the right?

Answer: 0.111 m/s

The faucet of radius $r_2 = 2$ cm puts water out at 15 liters/minute. The pressure at the opening of the faucet is about 1 atm. The water main ($r_1 = 6$ cm), is 3 meters below the faucet

a. What is the speed of the water in the narrow pipe?

b. What is the pressure in the water main?

Answers: 0.199 m/s, 1.304 \times 10⁵ Pa

The Bernoulli effect – what good is it?

Demos: Blowing on paper, Ball over blower, Venturi blower, funnel, metal plate and wood cylinder Video: Elder Nelson, April 1997 General Conference (1:58 - 3:45)

Airplane wings, and sails, and other "airfoils" (even racecars!)

Principle 1: air deflection, aka "put hand out the window" effect

93700 Horr Genff Stellar

Principle 2: Bernoulli

http://www.av8n.com/how/htm/airfoils.html#toc4 Colton - Lecture 18 - pg 27