Announcements – 8/30/10

- 1. Welcome to Physics 123 Section 2
 - o I'm Dr. Colton
 - o TA is Chris Mackprang
- 2. This section is for majors and minors, only. If you are not a physics major/minor, please take section 1... meeting right now in 445 MARB. (There are at least 7 students on the waiting list for this section.)
- 3. We'll go over the syllabus shortly.
 - o Hopefully you have already looked it over.
 - o If you haven't, please look it over while you're waiting for class to start
- 4. As most of you have found out already, I send out periodic class-wide emails via Route Y. Make sure your email address there is current.
- 5. Results of survey
- 6. Passing around two signup sheets
- 7. Math review today right after class, in Underground Lab study area (you can follow me there)

Introductory Stuff

Syllabus

- Course objectives: fluids, heat, waves, sound, light, special relativity
- Schedule

		Monday	Tuesday		Wednesday		Thursday	Friday		Saturday
	30	Lecture 1 Intro, Pressure Reading: syllabus, 14.1-14.2	31	1	Lecture 2; HW 1 Archimedes' Principle Reading: 14.3-14.4			3 Lecture 3; HW 2 Fluid motion Reading: 14.5-14.7		Begin Lab 1 (Pressure)
ptember	6	Labor Day Holiday	7 Lab 1 ongoing	8	Lecture 4; HW 3 Thermal expansion, Ideal gas law Reading: 19.1-19.5		Lab 1 ongoing	Lecture 5; HW 4 Kinetic Theory Reading: 21.1, 21.5 (and 21.6 if your book has it)		Lab 1 due Begin Lab 2 (Specific Heat)
	13	Add/drop deadline; Lab 2 ongoing Lecture 6; HW 5 Calorimetry Reading: 20.1-20.3	14 Lab 2 ongoing	15	Lecture 7; HW 6 Heat transfer Reading: 20.7		Lab 2 ongoing	17 Lab 2 ongoing Lecture 8; HW 7 1st Law of Thermodyn. Reading: 20.4-20.6		Lab 2 due
	20	Lecture 9; HW 8 Molar Specific Heats Reading: 21.2-21.4	21	22	Lecture 10; HW 9 Heat engines Reading: 22.1, 22.5	23		24 Lecture 11; HW 10 Refrigerators & Carnot Reading: 22.2-22.4		
	27	Lecture 12; HW 11 Entropy Reading: 22.6-22.7	28	29	Lecture 13; HW 12 What is entropy? Reading: 22.8			1 Lecture 14; HW 13 Waves Reading: 16.1-16.2	T	Begin Exam 1: hermodynamics
	4	Lecture 15; HW 14 Waves on a string Reading: 16.3-16.6; PpP 2.1-2.2	5 Exam 1 ongoing	6	Lecture 16; HW 15 Complex exponentials Reading: PpP 1.1-1.4	7	Exam 1 ongoing	8 Exam 1 ongoing Lecture 17; HW 16 Reflection, Transmission, Dispersion Reading: PpP 3.1-3.5, 5.1	L	End Exam 1 ate fee after 5 pm Begin Lab 3 (Dispersion)

- a. Reading assignments, lecture topics
- b. HW due dates (11:59 pm, but I think ESC closes earlier... 11 pm?)
- c. Lab start/end dates
- d. Exam start/end dates
- e. Term project dates

Grading: "guaranteed grade" curve

Grading: If you hit these grade boundaries, you are guaranteed to get the grade shown. I may make the grading scale easier than this in the end, if it seems appropriate, but I will not make it harder. Because the class is not graded on a curve, it is to your advantage to help each other!

A	93%	$\mathrm{B}+$	84%	C+	73%	D+	60%
A-	89%	В	80%	\mathbf{C}	69%	D	56%
		В-	77%	C-	64%	D-	50%

Grades will be determined by the following weights:

Clicker quizzes: 5%3 Midterm Exams: 30%

• Final Exam: 19%

• Term Project: 8%

• Labs/In-class writing: 8%

Homework: 30%

Clicker quizzes: start next time

- o Graded questions: 2 points if right, 1 point if attempted
- o Ungraded "thought" questions: 1 point if attempted
- \circ All questions from a day = 1 quiz
- o 4 free quizzes, no make-up quizzes
- o Register your clicker via class website by Wed!

Midterms, final, term project

→ More info when time comes

Labs: Lab assignments at back of course packet

→ First lab starts this Saturday

In-class writing: Done periodically, random student chosen

Extra credit: Read about that on your own

Class website:

physics.byu.edu → Courses → Class Web Pages → Physics 123 (Colton J)

Takes you to...

http://www.physics.byu.edu/faculty/colton/courses/phy123-fall10/

I'll talk more about

- Obtain CID (student ID number for the class)
- Register clicker
- Homework data sheets
- Check your course grade
- Lab 3 and Lab 6 info (simulation labs)
- Study aids
 - a. Videos of demos
 - b. Past exams
 - c. Class notes, possibly
 - d. Etc.

Your best study aid: the other students! Work together!

My office hours:

MWF 2-3 pm, Underground Lab study area

TA office hours: M 3-4 pm, W 2-3 pm, F 3-4 pm (same place)

The Computer-graded HW System

Syllabus packet contains problems:

- 1-1. Two boats start together and race across a 60-km-wide lake and back. Boat A goes across at [01] _______ km/h and returns at the same speed. Boat B goes across at 30 km/h and its crew, realizing how far behind it is getting, returns at 90 km/h. Turnaround times are negligible, and the boat that completes the round trip first wins.

 (a) Which boat wins and (b) by how much time?
- 1-2. In order to qualify for the finals in a racing event, a race car must achieve an average speed of 250 km/h on a track with a total length of 1600 m. If a particular car covers the first half of the track at an average speed of [02]

Get your missing numbers ('data'') from class website

→ Put in the [xx]_____ spaces before you work the problem set 1. [01] 3.43 [02] 8.20 [03] 22.2 [04] 30.2 [05] 39.8 [06] 4.0

Answer range in packet, at end of list of problems:

1-1b. 15.0, 60.0 min

etc.

1-2. 300, 800 km/h

1-3a. 150, 210 km

1-3b. 60.0, 70.0 km/h

Indicates <u>units</u>, <u>range</u> and <u>decimal places</u> of answer

Type into website form: 63.8

Submit all answers at once

Partial credit, aka "retries"

- Points for each successive try: 5, 5, 3, 0
- If you miss, correct answer is given to you
- Use new data each time

Special case:

• No retries on multiple choice problems

Late submissions:

- Four free late submissions, chosen to give you most points
- All other late work only worth 50%
- (Includes paper-only problems)

"Computer graded" vs "Paper only"

Homework: What to turn in

(To slot labeled "physics 123, section 2" in the boxes near room N375 ESC)

- 1. For computer-graded problems: work from which you got your answer (must not be "gibberish")
- 2. For paper-only problems: all your work, and your answer

Be neat! (You'll thank me later! And maybe earn bonus pts...)

First homework due Wednesday night!

...and now, for the Physics

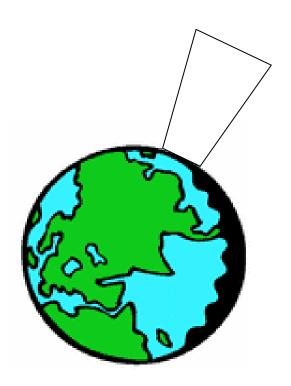
Chapters 1-13: Newtonian Mechanics

 \rightarrow covered in Physics 121

Chapter 14: Fluids (Static/Moving)

→ we'll start today

Pressure


$$P = \frac{Force}{Area}$$

Demos: pressure vs. force; bed of nails (with sledgehammer!)

Why do they never show anyone *standing* on a bed of nails?

Atmospheric pressure: 1 atm = $14.70 \text{ lbs/in}^2 \text{ (psi)}$ = $1.013 \times 10^5 \text{ N/m}^2$

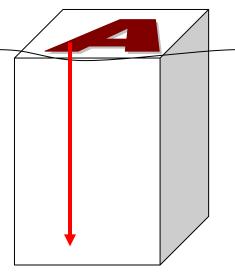
Comes from.....

Demos: collapsing can; "Magdeburg hemispheres" (von Guericke and the first vacuum pump, 1654 demo for Ferdinand III)

Density

$$\rho = \frac{mass}{volume}$$

$$\rho_{water} = 1000 \text{ kg/m}^3$$
= 1.000 g/cm³ original definition of a gram


"Specific Gravity" = $\rho_{material}/\rho_{water}$ (which is also the density in g/cm³ units)

SG of some common substances:

Air, standard	0.0013			
conditions				
Wood(Oak)	0.6 - 0.9			
Liquid nitrogen	0.81			
Ice	0.92			
Water	1.00			
Bricks	1.84			
Aluminum	2.70			
Steel	7.80			
Silver	10.50			
Lead	11.30			
Gold	19.30			
Platinum	21.40			

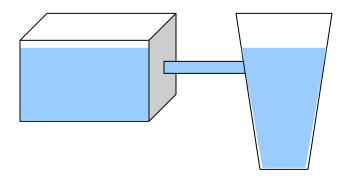
Pressure vs depth in a fluid

Weight of water above some area A at a depth of h.

w =

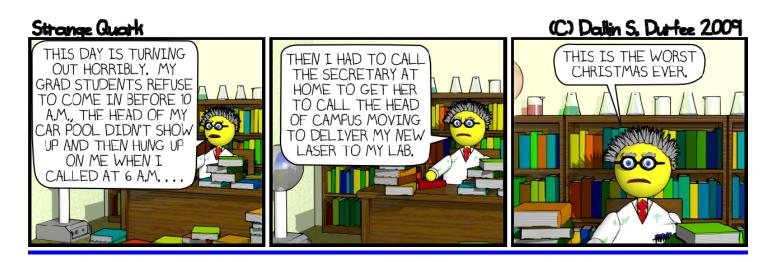
Pressure at h: (Include the pressure on the top of the fluid).

$$P =$$


Videos: pressure vs depth, pressure pushes on _____

Thought question: Where is the pressure greater, one meter beneath the surface of Lake Michigan or one meter beneath the surface of a swimming pool?

- a. Lake Michigan
- b. swimming pool
- c. the same


Pascal's principle: For a fluid at rest, the pressure in the fluid depends only on the depth, not the shape of the (open) container.

All parts of fluid at same have same

Demos: fluid levels; hydraulic "force amplification"

Summary: Work hard!

(More Strange Quark comics at Dr. Durfee's website, http://sqcomic.com/)

Summary: What you need to do ASAP

See also the "How to get started" section of the website.

Before class on Wednesday

- Get CID (via website, if you weren't emailed one)
- Get course packet
 - a. Read syllabus in detail
- Get textbook
- Get clicker
- Register clicker via course website
- Do reading assignment (section 14.3, 14.4)

Before Wednesday night

- Get individual homework data sheet via class website
- Do first homework assignment
- Submit HW via class website (this time around there are no paper-only problems)
- Turn in written work to HW box