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Physics 123 Class Schedule – Fall 2012 
Note 1: In the reading assignments below, PpP refers to “Physics phor Phynatics”. All other reading assignments refer to Serway & Jewitt. 
Note 2: Labs are set up and taken down on Saturday mornings. If a lab is due on a Saturday, you might not be able to do it that day. 

 Monday Tuesday Wednesday Thursday Friday Saturday 

27 Lecture 1 
 Intro, Pressure 
 Reading: syllab,14.1-14.2  

28   29  Lecture 2; HW 1
 Archimedes’ Principle
 Reading: 14.3-14.4

30  31  Lecture 3; HW 2 
 Fluid motion 
 Reading: 14.5-14.7
  

1  Begin Lab 1
  (Pressure)
 

3  

Labor Day Holiday 
4  

 
5 Lecture 4; HW 3

Thermal expansion,
Ideal gas

 Reading: 19.1-19.5

6  7 Lecture 5; HW 4 
 Kinetic Theory 
 Reading: 21.1 

8  Lab 1 due 
 Begin Lab 2
  (Specific Heat)

10  Lecture 6; HW 5 
 Maxwell-Boltz vel. distr., 
 Calorimetry 
 Reading: 21.5, 21.6*, 
 20.1-20.3 

11   

 
12 Lecture 7; HW 6
 Heat transfer
 Reading: 20.7
 

13  
 

14 Lecture 8; HW 7 
 1st Law of Thermodyn. 
 Reading: 20.4-20.6
  

15  Lab 2 due
 

S
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m
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17  Lecture 9; HW 8 
 Molar Specific Heats 
 Reading: 21.2-21.4 

18  19  Lecture 10; HW 9
 Heat engines
 Reading: 22.1, 22.5

20  21  Lecture 11; HW 10 
 Refrigerators & Carnot 
 Reading: 22.2-22.4
 
  

22 

24 Lecture 12; HW 11 
 Entropy 
 Reading: 22.6-22.7 

25   
 

26  Lecture 13; HW 12
 What is entropy?
 Reading: See below**

27  
 

28  Lecture 14; HW 13 
 Waves 
 Reading: 16.1-16.2
 
  

29 Begin Exam 1:
Thermodynamics

1  Lecture 15; HW 14 
 Waves on a string 
 Reading: 16.3-16.6; 
 PpP 2.1-2.2 

2 
 

3  Lecture 16; HW 15
 Complex exponentials
 Reading: PpP 1.1-1.4

4 
End Exam 1

5  Lecture 17; HW 16 
Reflection, Transmission, 

Intro. To Sound 
Reading: PpP 3.1-3.5, 

17.1, 17.2 

6  Begin Lab 3
(Standing Waves 1)

8  Lecture 18; HW 17 
 Sound: Intensity, Doppler 
 Reading: 17.3,17.4 

9  

 
 

10  Lecture 19; HW 18
Interference

Standing waves
 Reading: 18.1-18.3

11  
 

12  Lecture 20; HW 19 
 Standing waves, cont.,  
 Beats 
 Reading: 18.4-18.7 

13  Lab 3 due
 Begin Labs 4-5
(Standing Waves 2; 

Dispersion)
15  Lecture 21; HW 20 
 Uncertainty, Dispersion 
 Reading: PpP 4.1, 5.1 

16   17  Lecture 22; HW 21
 Fourier transforms
 Reading: PpP 6.1-6.5

18  
 

19  Lecture 23; HW 22 
 Fourier, cont. 
 Reading: PpP 6.6-6.7
  

20  Labs 4-5 due
 Begin Lab 6
  (Fourier Transf.)
 Proposal due

O
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22  Lecture 24; HW 23 
 Music 
 Reading: PpP 7.1-7.3 

23  24  Lab 6 due
 Lecture 25; HW 24

Optical Reflection &
Refraction, Dispersion

 Reading: 35.1-35.5

25  
 Begin Exam 2: 
 Waves

26  Lecture 26; HW 25 
 Huygens, TIR 
 Reading: 35.6-35.8 

27  Begin Lab 7
  (Brewster)

 

29  Lecture 27; HW 26 
 Polarization, Brewster 
 Reading: 38.6 

30  

 End Exam 2 
31 Lecture 28; HW 27
 Images from mirrors
 Reading: 36.1-36.2

1  2 Lecture 29; HW 28 
 Images from lenses 
 Reading: 36.3-36.4
  

3  Lab 7 due
 Begin Lab 8
  (Telescope)

5  Lecture 30; HW 29 
 Aberrations, camera, eye 
 Reading: 36.5-36.7 

6  
 

7  Lecture 31; HW 30
 Magnifier, telescope 
 Reading: 36.8, 36.10

8 9  Lecture 32; HW 31 
 Interference from slits 
 Reading: 37.1-37.3
  

10 Begin Labs 9-10
 (Interferometer; 
 Diffraction)
 Prog. Report due

12  Lecture 33; HW 32 
 More interference 
 Reading: 37.4-37.6, 37.7*  

13  
 

14  Lecture 34; HW 33
 Diffraction from wide slits
 Reading: 38.1-38.2

15  
  

16  Lecture 35; HW 34 
 Resolving, gratings 
 Reading: 38.3-38.5 

17  Labs 8-9 due
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19  Lecture 36; HW 35 
 Waves in 3-dimensions; 

Modern optical devices 
 Read: PpP 8.1-3, 10.1-4 

20  Class meets! 

 Lab 10 due 

 Lecture 37; HW 36 
 Intro to relativity 
 Reading: 39.1-39.3 

21  
No classes 

22  
Thanksgiving 

Holiday 

23  
Thanksgiving, cont. 

 
 

24 
 

 

26Begin Exam 3: Optics 
 Lecture 38; HW 37 
 Special relativity 
 Reading: 39.4 

27 
 
 

28  Lecture 39; HW 38
 Lorentz transformations
 Reading: 39.5

29 30  Lecture 40; HW 39 
 Lorentz, cont. 
 Reading: 39.6 

1  End Exam 3
 T.C. closes at 4 pm

3  Lecture 41; HW 40 
 E = mc2 
 Reading: 39.7-39.9 

4   5  Term Project due
 Lecture 42; HW 41
 Project Show & Tell
 Reading: none

6  
 

7 
Reading Day 

 

8 
Reading Day 

Late HW, extra- 
credit papers dueD

ec
em

b
er

 

10 
Begin Final Exam 

 

11 
 

12  13  
End Final Exam 

14 
(Last day of finals) 

15 
 

 

* if your edition of the textbook has it  
** Lecture 13 reading: 22.8, especially the marble example but not the “Adiabatic Free Expansion: One Last Time” example. Also: “What is 
entropy?” handout posted to website, through Example 1. 
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Physics 123 – Fall 2012 – Section 2 “Physics Majors and Minors” 
Dr. John S. Colton 

 
Instructor: Dr. John S. Colton,  

Office: N335 ESC, Phone: 422-3669 
Instructor Office Hours: TBA 
Research Lab: U130 ESC, Phone: 422-5286  

 Website: http://www.physics.byu.edu/faculty/colton/courses/phy123-Fall11/ 
You can navigate there via www.physics.byu.edu → Courses → Class Web Pages → Physics 123 (Colton).  

 
Prerequisites: Everyone should have had Physics 121 and differential & integral calculus. There is a “math 

review” posted to the course website, which you should look over at the start of the semester. 
 
Textbooks: (both available in the bookstore) 

 Physics for Scientists and Engineers, by Serway & Jewitt (6th, 7th, or 8th editions). You will need a 
textbook, or combination of textbooks, that covers chapters 14, 16–22, and 35–39. Inexpensive used 
versions are perfectly acceptable. 

 Physics phor Phynatics, by Dallin Durfee. This book contains supplementary material specific to this 
section of 123. It is a very inexpensive book, and Dr. Durfee does not receive any royalties. 

 
Learning Outcomes: This course focuses on these five fundamental areas of physics: fluids, thermodynamics, 

waves, optics, and special relativity. Specifically, after taking this course, you should be able to: 
 Fluids: Solve problems and answer conceptual questions using the basics of fluid statics and dynamics, 

including Bernoulli's principle and Pascal's law. 
 Thermodynamics: Answer conceptual questions and calculate changes in temperature, pressure, entropy 

and volume for quasistatic ideal gas processes and be able to determine work done and efficiency for gas 
engines, heat pumps, and refrigerators. Determine heat flow and temperatures in systems in steady state. 

 Waves: Solve problems and answer conceptual questions involving waves, using concepts such as wave 
speed, wavelength, frequency, superposition, beats, and resonance. Solve wave interference problems. 
Calculate group and phases velocities, solve for Fourier coefficients of periodic functions, and 
frequencies of notes in the equal temperament musical scale. 

 Optics: Find the location and magnification of images in single- and multiple-lens/mirror systems by 
calculation and by ray tracing, and be able to work general problems in optics using Snell's law and 
specular reflection. 

 Special Relativity: Solve problems in special relativity involving length contraction, time dilation, 
transformations to different reference frames, and relativistic energy & momentum. 

 
I also hope that as you learn more about the physical laws governing the universe you will learn to recognize 
physics principles at work in the world around you, and that your appreciation for the order, simplicity and 
complexity of God’s creations will increase. I sincerely believe that one can come to know the Creator better 
by studying His creations. Along those lines, I have been struck by these three quotes: 
 
Brigham Young: 

Man is organized and brought forth as the king of the earth, to understand, to criticize, examine, improve, 
manufacture, arrange and organize the crude matter and honor and glorify the work of God’s hands. This is a 
wide field for the operation of man, that reaches into eternity; and it is good for mortals to search out the 
things of this earth. 

 
Steve Turley (former BYU Physics Department chair): 
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My faith and scholarship also find a unity when I look beneath the surface in my discipline to discover the 
Lord’s hand in all things (see D&C 59:21). It is His creations I study in physics. With thoughtful meditation, I 
have found striking parallels between His ways that I see in the scriptures and His ways that I see in the 
physical world. In the scriptures I see a God who delights in beauty and symmetry, who is a God of order, who 
develops things by gradual progression, and who establishes underlying principles that can be relied on to 
infer broad generalizations. I see His physical creations following the same pattern.  
 

Dallin Durfee (former instructor of Physics 123):  
In addition to learning physics, I hope [Physics 123] will broaden your interest in and understanding of, well… 
life, the universe, and everything! My understanding of science and math has affected all aspects of my life, 
from the way I manage my finances to my understanding and appreciation of the gospel. It has sharpened my 
reasoning skills and awakened a fascination of the universe we live in. 

 
Class Identification Number: Each of you will receive a personal identification number for this course, called 

a “Class ID” (CID). The purpose of this number is to protect your privacy. If you did not receive your CID 
by e-mail, you can obtain it from the link on the class website. Include this number—and NOT your name—
on all work you turn in. 
 

Where to turn things in: Turn in assignments to the slot labeled “physics 123, section 2” in the boxes near 
room N375 ESC. Be sure to staple your assignments together with a real staple (not just a fold!) and write 
your CID number in at the top of each assignment. Assignments will be returned to the slots next to those 
boxes, sorted by the first two digits of your class ID. Because these “turn back” slots are open, other 
students will be able to see your work—so to maintain confidentiality, please do not write your name on 
your assignments.  

 
Student Email Addresses: I will periodically send class information via email to your email address that is 

listed under Route-Y. If that is not a current address for you, please update it.  
 
Mathematica: Some of the homework problems will require numerical calculations and plots. When a problem 

says, “Use a computer program such as Mathematica to make a plot,” a hand-drawn plot is NOT sufficient. 
A computer printout must be turned in, preferably also with the code used to generate the plot. Mathematica 
is the recommended program for this, but you can use other similar programs if you prefer. Mathematica 
will be the major topic of Physics 230 if/when you take that course. In the meantime, for a basic, concise 
introduction which contains everything you should need to know for this course, see my Basic Commands 
of Mathematica document on the course website. (Open it with Mathematica, not a word processor.) 
Mathematica is found on all departmental computers. You can gain access to these computers by following 
the instructions given here: http://www.physics.byu.edu/ComputerSupport/ComputerAccounts.aspx 
 

Grading: If you hit these grade boundaries, you are guaranteed to get the grade shown. I may make the grading 
scale easier than this in the end, if it seems appropriate, but I will not make it harder. Because students are 
not graded relative to each other, it is to your advantage to learn collaboratively! 
 

A 93%  B+ 84%  C+ 73%  D+ 60%  
A- 89%  B 80%  C 69%  D 56%  

B- 77%  C- 64%  D- 50% 
 
Grades will be determined by the following weights:  

 Pre-class “warm up” exercises: 3% 
 Clicker quizzes: 3% 
 3 Midterm Exams: 30%  
 Final Exam: 18% 

 Term Project: 8% 
 Labs: 6% 
 Homework: 32% 
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Your current grade can be viewed through the class web page. Please check your scores regularly to make 
sure they are recorded correctly.  

 
Pre-class “warm up” exercises: Reading assignments are shown on the schedule, and should generally be done 

the day before class. After reading the assignment, go to the course website to complete a short “warm-up” 
exercise. Your grade will be based solely on your answer to the question, “Did you carefully complete the 
reading assignment?”—2 points if yes, 1 point if no. You get 0 points if you don’t bother to visit the website 
to answer the question. There will be additional (non-graded) questions about the reading assignment, as 
well as feedback forms. These warm-up exercises will be due at 12:15 pm each class day, to give me some 
time to look them over before class. You will not be allowed to make up a missed warm-up exercise for any 
reason. However, to allow for sickness and other emergencies you will be allowed four free warm-ups: I 
will convert your four warm-up exercises with the most missed points into perfect scores. 

 
Clicker quizzes: There will be in-class clicker quiz questions to help me pinpoint misconceptions and 

encourage class discussion. On the reverse side of your clicker is an alphanumeric ID code for your 
transmitter. You must go to the course website as soon as possible and register your transmitter ID in order 
to get credit for your in-class quizzes. These quizzes will be graded on participation only, 1 point per 
question. All of the questions from a given class period constitute a single quiz which will be recorded in 
your grades. You will not be allowed to make up missed quizzes for any reason (tardy, excused absence, 
unexcused absence, registered late, forgot/lost clicker, etc.). However, so that you are not penalized unduly 
for missing class when circumstances necessitate, you will get four free quizzes: I will convert your four 
quizzes with the most missed points into perfect scores. I will bend the “no make-up quizzes” rule only if 
circumstances beyond your control have resulted in you missing more than four class periods. 
 

Midterm Exams: Three midterm exams will be given in the Testing Center and will be available for the days 
indicated on the schedule. Exams will include worked problems similar to homework problems, as well as 
conceptual questions related to things we discussed in class such as thought questions, demonstrations, etc.  
 

Final Exam: A comprehensive final exam will be given during the regularly scheduled time for our class, as 
indicated on the schedule. 

 
Term Project: The term project is an opportunity for you to propose and conduct a simple experiment or to 

theoretically, mathematically, or computationally investigate an aspect of the course in more depth. There 
are three parts to the term project: a proposal, a progress report, and a final report. Due-dates for each of the 
three parts are indicated on the class schedule. Additional term project guidelines, as well as a list of 
possible projects and examples of projects done in prior semesters are available on the class web page.  

 
Labs: You will perform several short experiments. Most will be similar to the “walk-in labs” in Physics 121, 

and will be set up in room S415 ESC. Two of the labs will be computer simulations available through the 
class website. The availability and due-dates of the labs are listed on your schedule. Each lab has a 
worksheet with instructions and questions to be answered; the worksheets are located at the end of this 
syllabus packet. You are encouraged to work and discuss the labs in groups, but everyone must be present 
and participate, and all analysis must be your own work. Because you are given a week in which to do each 
lab, labs typically may not be made up. 

 
Homework: This will be a very homework-intensive class, and homework scores will count as a substantial 

fraction of your overall course grade. The homework problems for this course are found later in this packet. 
Problems 1-1 through 1-7 belong to Homework 1, problems 2-1 through 2-8 belong to Homework 2, etc. 
Some problems require numeric answers which will be graded by the computer, others (labeled “Paper 
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only”) do not require you to enter your answers into the computer. A few problems contain both computer-
graded and paper-only questions in different parts of the problem.  
 
Be they computer-graded or paper-only problems, you must turn in your work for all homework problems, 
and your work must be legible with all steps clearly presented. Practice good problem solving skills: draw 
pictures of the problems, write and solve equations with symbols as much as possible before plugging in 
numbers, write neatly, and use plenty of space. Substitute units with your numbers into your algebra, and 
check to see that the units work out right on your final answer. Think about whether your final answer 
makes physical sense before submitting it. 
 
You are strongly encouraged to work with other students to figure out the problems; however, don’t copy 
others’ work or allow others to copy your work. Any assignment handed in must be your own work. If you 
do get help on a homework problem, be sure to learn the strategy, concepts and steps used to solve the 
problem, and think about how they would apply to related situations. 
 
Assignments are due on the dates marked on the schedule. Your work on paper is due any time before the 
building closes; your computer-graded answers must be submitted via the website by 11:59 pm. To allow for 
emergencies or adding the class late, you will get four free late assignments (chosen to maximize your 
points); after that, late work only counts for half credit. I will bend this rule only if circumstances beyond 
your control have prevented you from turning in more than four homework sets on time. No homework 
assignments will be dropped. 
 
Each homework assignment will include a standard 5 points to be given at the TA’s discretion, used to grade 
the legibility of your work. If the assignment is reasonably neat and complete, you will get the full 5 points. 
If it is messy, missing sections, not stapled, etc., then the TA will reduce your points accordingly.  
 
Computer-graded homework details: The computer-graded problems use a custom-designed system 
created by BYU Physics Department faculty members. You may have used this system in Physics 121. This 
system offers several major advantages to students and professors: 

 Students get instant feedback as to whether they did the problem correctly. 
 Because the HW problems are not assigned directly from the textbook, students can purchase cheap 

older editions instead of all being forced to use the same, newest edition. 
 Students get multiple tries to get the problems right. Specifically, I have arranged things so that you 

get two attempts at a problem for full credit; after that, you start losing points. 
 Each student gets a slightly different—but closely related—problem to work; this makes copying off 

of other students more difficult. (Yes, sadly even at BYU this is sometimes a problem.) 
 
Data for the problems: Each of you will do the problems using different numbers (“data”), resulting in 
different numerical answers. Blanks are left in the problem statements where you can write in your own 
data. Your data for the entire semester is available via the internet: once you have a CID, go to the class 
website, click on “Online Homework”, and then click on “Homework Data Sheet”. You can get your same 
personal data again anytime during the semester if you lose your original data sheet. Assume that the 
numbers given in the problem and in your data sheet are exact. If you are given 2.2 m/s, it means 
2.2000000..., to as many digits as you wish to imagine. 
 
Answer ranges and precision: At the end of the list of homework problems, there is information about the 
answers. You are given a range of possible values for each answer, along with the units in which you must 
submit your answer. For example, “400, 800 J” means that your answer will lie between 400 and 800 J, and 
that you must give your answer in Joules (not kJ, BTU, ergs, foot-pounds, or any other energy units). These 
numbers also indicate the accuracy to which you must calculate the answer. This is simply the number of 
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digits shown—for example, “400, 800 J” means that the answer must be given to the nearest 1 J. As another 
example: “15.0, 60.0 N” means that the answer must be given to the nearest 0.1 N. In some cases, the 
accuracy is indicated via a plus/minus sign. For example, “32000, 39000 ±100 km” means the answer must 
be given to the nearest 100 km. You can always submit a more precise answer with no penalty. Tip: When 
working a problem, do not round off any numbers until you get your final answer; rounding along the way 
can lead to compounded errors that cause the final answer to be outside the specified precision range. That is 
one reason I recommend that when possible you should write and solve your equations with symbols before 
plugging in numbers. 
 
How to submit answers: After working the problems, you must submit your answers over the internet. Go to 
the class website, click on “Online Homework”, and then click on the assignment number. Fill in the 
numerical answers as indicated. Do not put units on your answer, but make sure that the number you submit 
is given in the units specified by the answer range. If a very large or very small value needs to be written in 
scientific notation, as specified by the answer range, indicate the exponent of 10 with an “e”. For example, 
2.998  108

 would be written 2.998e8, and 1.6  10-19 would be written 1.6e-19. Do not put any spaces, 
commas, or “x”s in the number. Do put in negative signs where appropriate.  
 
Grading and viewing correct answers: Your submission will be graded immediately: after submitting your 
answers, you should see a status window that shows you which problems you got right and which you got 
wrong. You can see the status report again at any time by going to the class website, clicking on “Online 
Homework”, and selecting “Homework Status”. In addition to your score, the computer will show you the 
correct answers for the problems you missed; that should help you figure out where you went wrong. 
 
Try again: You have 3 tries to get the problem right before the 11:59 pm deadline. After each try, a new set 
of data will appear at the bottom of the homework status page (because you will have been given the 
answers for the old set of data). Use this new data for the next try. You only need to resubmit the parts that 
you missed in the previous try. Retries will also be graded immediately. 
 
Points per problem: You will receive 5 points for each part of each problem done correctly on the first or 
second tries, 3 points for the third try, and no points thereafter.  
 
Special case: Multiple choice questions: Some computer-graded problems are multiple choice. Each correct 
multiple choice answer is also worth 5 points. Multiple choice problems will have drop-down boxes for 
submitting your answers. There are no retries for multiple choice problems. 
 
Paper-only problems: Problems, or parts of problems, that do not involve computer grading will be graded 
by the TA out of a maximum score to be set relative to the difficulty of the problem, typically 5-20 points. 
 
Late credit details: You can turn in problems late if you did not turn in an entire assignment, or if you did 
not attempt one or more of the problems on an assignment you did turn in. (I.e., you can’t redo problems 
that you submitted but got wrong.) Any points received for problems turned in after the deadline will be 
marked as “late points”. You will receive full credit for late points on your four assignments with the most 
late points. That is, you get four free late assignments, chosen to maximize your points. You will receive 
half credit for all other late points. You will get no credit for any HW turned in after the deadline marked on 
the schedule (the second reading day). 
 
IMPORTANT: If you are turning in late problems for an assignment that you partially completed on time, in 
addition to your late problems you must turn in the rest of the corresponding assignment (that was already 
graded). That is so the T.A. can know what you already got credit for and what you didn’t on the section 
that was submitted on time. In addition to getting “late points” in this fashion, you may also possibly recoup 
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some of the T.A.’s discretionary points if they were taken off for incompleteness. An example of this would 
be a student who turned in homework 2 but couldn’t yet access Mathematica and thus took a zero on 
problem 2.7. If such a student has since gained access to Mathematica, he or she can turn in a completed 
problem 2.7, along with the returned graded copy of homework 2. The completed Mathematica problem will 
then be graded as late points and added to the original score for the problem. 
 
Extra credit: Some of the HW problems are marked as extra credit. These problems will be graded the 
same as regular problems, except you will not be penalized if you skip them. If you do them, they allow you 
to increase your score beyond the listed maximum for that assignment. 
 
Getting help: There are multiple ways for you to get help solving homework problems.  
 
Other Students. One of your first lines of defense should be the other students in the class. Introduce 
yourself to people you sit next to. Be proactive: call others to discuss the homework, form study groups to 
work on homework or review for exams, etc. It has been shown in several studies that personal contact with 
classmates (and with faculty members) is one of the most important factors in a student’s success in college. 
Students in this class in the past who have gotten to know their fellow students have formed friendships that 
have lasted well beyond Physics 123, and which have helped their studies in future courses as well. 
 
Dr. Colton’s Office Hours. You should take full advantage of my office hours, which are held in the 
Underground Lab. (The secret passageway to the Underground Lab is located on the ground floor of the 
ESC, on the north end of the building. There you’ll find a door without a lock which opens to a long, 
descending staircase going down to the Underground Lab.)  I recommend that you get as far as you can on 
the homework on your own, and then come down to the UGL study area during my office hours. You will 
find other students from the class to work with, and you will have ready access to me when you have 
questions that your classmates can’t answer. 
 
Course TA. The course TA will also hold regular office hours where you can get help on upcoming 
homework problems or find out why you missed points on past homework problems. 
 
Tutorial Lab. A physics tutorial lab is provided in N304 and N362 ESC (it changes each semester; check the 
signs on the doors). Teaching assistants will be available roughly from 9 am to 9 pm every weekday, and for 
several hours on Saturday. The exact schedule can be found via a link on our course website. One cautionary 
note: the TAs in the tutorial lab will likely focus on the 123 section 1 homework problems, so they may not 
always be able to help with the section 2 problems. 
 

 Homework Solutions: My own handwritten homework solutions will be posted in the display cases around 
the corner from the homework turn-in boxes, close to room N362. Typically the most recent several HW 
assignments will be posted, so that you can see how I myself did the problems. 

 
Extra Credit: In addition to extra-credit homework problems mentioned above, there are extra-credit papers 

you can write during the semester.  
 
1. Book review. This is a book review of a physics-related book that you read during the semester, written in 
a style similar to book reviews that you find on amazon.com. A list of allowed books is included later in this 
syllabus packet; if you want to write a review of a book not on the official list, you must get my permission 
first. At a minimum you must include this information in your review: (1) title and author of the book, (2) a 
rating out of five stars, (3) a paragraph description of what the book was about, and (4) a paragraph with 
your personal assessment of the quality of the book. Your review will be graded out of 8 points based on the 
quality of the writing and helpfulness/completeness of the review, the maximum score being the equivalent 
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of +8 points on one of your midterms. This extra credit item can be done once during the semester. Send 
your review to Dr. Colton via email.  
 
2. Physics-related lecture. This is a brief report of a physics-related lecture you attended during the semester. 
At a minimum you must include this information in your report: (1) name of speaker, (2) time/place of 
lecture, and (3) some info about what kind of physics was discussed, (4) at least one thing you learned that 
you (hopefully) found interesting. This could be one of the weekly Physics Department colloquia (warning: 
these often—but not always—get very technical), an honors lecture, a university forum, a planetarium show, 
or any other physics-related science lecture that you can find. If you wonder if a certain lecture is 
appropriate, please ask me. Your report will be graded out of 2 points, the maximum score being the 
equivalent of +2 points on one of your midterms. This extra credit item can be done twice during the 
semester. (A planetarium show can only count for one of the two, though.) Send your report(s) to Dr. Colton 
via email.  
 

 
Final Thoughts from Dr. Colton: In a BYU seminar for new faculty that I attended, experts on student learning 

taught that most student learning is done outside of the classroom. I expect this class to follow that same 
trend. For the most part, you learn how to solve physics problems by solving physics problems: figuring out 
what needs to be done by yourself or with help from others and doing it—not by listening to someone tell 
you how to solve physics problems during a lecture. This will therefore likely be a very homework-intensive 
class for you, with labs, extra credit assignments, and a term project in addition to the regular homework 
problems. The BYU Undergraduate Catalog states that “The expectation for undergraduate courses is three 
hours of work per week per credit hour for the average student who is appropriately prepared; much more 
time may be required to achieve excellence”. To me, for this particular three credit hour class, that means an 
average student should spend at least six hours per week on study and work outside of class, in order 
to get an average grade. Many of you will spend many more hours than that. However, I hope that will not 
be an undue burden. We have a lot of cool things going on in this class, in my opinion, and if you are in the 
right major/minor, you should find them cool, too! 

 
 
BYU Policies:  

 
Prevention of Sexual Harassment: BYU’s policy against sexual harassment extends to students. If you 
encounter sexual harassment or gender-based discrimination, please talk to your instructor, or contact the 
Equal Opportunity Office at 801-422-5895, or contact the Honor Code Office at 801-422-2847. 
 
Students with Disabilities: BYU is committed to providing reasonable accommodation to qualified persons 
with disabilities. If you have any disability that may adversely affect your success in this course, please 
contact the University Accessibility Center at 801-422-2767, room 1520 WSC. Services deemed appropriate 
will be coordinated with the student and your instructor by that office. 
 
Children in the Classroom: The serious study of physics requires uninterrupted concentration and focus in 
the classroom. Having small children in class is often a distraction that degrades the educational experience 
for the entire class. Please make other arrangements for child care rather than bringing children to class with 
you. If there are extenuating circumstances, please talk with your instructor in advance. 
   



Book Review Extra Credit Book List 
 

Please see the main syllabus packet for instructions about the book review extra credit assignment. If you 
want to get credit for reading/writing a report for a book not on this list, you must get prior approval from 
Dr. Colton first. 
 
A Brief History of Time, by Stephen Hawking  
A Briefer History of Time, by Stephen Hawking 
A Short History of Nearly Everything, by Bill 

Bryson 
Albert Einstein – A Biography, by Alice 

Calaprice and Trevor Lipscombe  
Benjamin Franklin: An American Life, by 

Walter Isaacson  
Beyond Star Trek: Physics from Alien Invasions 

to the End of Time, by Lawrence Krauss  
Einstein: His Life and Universe, by Walter 

Isaacson 
The First American: The Life and Times of 

Benjamin Franklin, by H.W. Brands  
From Clockwork to  Crapshoot:  A History of 

Physics, by Roger G. Newton 
Front Page Physics, by Arthur Jack Meadows  
Galileo's Daughter: A Historical Memoir of 

Science, Faith, and Love, by Dava Sobel  
Genius: The Life and Science of Richard 

Feynman, by James Gleick 
How Math Explains the World: A Guide to the 

Power of Numbers, from Car Repair to 
Modern Physics, by James D. Stein 

In Search of Schrödinger's Cat: Quantum 
Physics and Reality, by John Gribbin 

Isaac Newton, by James Gleick 
Lise Meitner: A Life in Physics, by Ruth Lewin 

Sime 
Measured Tones, by Ian Johnston 
Miss Leavitt's Stars: The Untold Story Of The 

Woman Who Discovered How To Measure 
The Universe, by George Johnson  

Mr. Tompkins in Paperback/ Mr. Tompkins in 
Wonderland (essentially the same book), by 
George Gamow 

Parallax: The Race to Measure the Cosmos, by 
Alan Hirshfeld 

Physics for Future Presidents: The Science 
Behind the Headlines, by Richard Muller 

Physics of the Impossible: A Scientific 
Exploration into the World of Phasers, 

Force Fields, Teleportation, and Time 
Travel, by Michio Kaku 

Quantum: A Guide for the Perplexed, by Jim Al-
Khalili 

Six Easy Pieces, by Richard P. Feynman 
Stephen Hawking: A Biography, by Kristine 

Larsen 
Symmetry and the Beautiful Universe, by Leon 

M. Lederman and Christopher T. Hill 
The Accelerating Universe: Infinite Expansion, 

the Cosmological Constant, and the Beauty 
of the Cosmos, by Mario Livio  

The Elegant Universe: Superstrings, Hidden 
Dimensions, and the Quest for the Ultimate 
Theory, by Brian Greene 

The Fabric of the Cosmos: Space, Time, and the 
Texture of Reality, by Brian Greene 

The God Particle: If the Universe Is the Answer, 
What Is the Question? by Leon Lederman 

The Making of the Atomic Bomb, by Richard 
Rhodes 

The New Cosmic Onion: Quarks and the Nature 
of the Universe, by Frank Close  

The Physics of Baseball, by Robert K. Adair  
The Physics of Basketball, by John Joseph 

Fontanella  
The Physics of NASCAR: How to Make Steel + 

Gas + Rubber = Speed, by Diandra Leslie-
Pelecky 

The Physics of Star Trek, by Lawrence Krauss 
The Physics of Superheroes, by James Kakalios 
The Quantum World: Quantum Physics for 

Everyone, by Kenneth Ford 
The Ring of Truth: How We Know What We 

Know, by Philip and Phylis Morrison 
The Universe and Dr. Einstein, by Lincoln 

Barnett  
The Universe in a Nutshell, by Stephen Hawking  
Thirty Years that Shook Physics: The Story of 

Quantum Theory, by George Gamow 
Voodoo Science: The Road from Foolishness to 

Fraud, by Robert Park 
 
 



How to Solve Physics Problems 
 
Here’s the “Colton method” for solving physics problems. It’s not just the way I do problems, though; if 
you look at the worked problems in the book, you’ll find they all follow this same sort of procedure.  
 
Picture – Always draw a picture, often with one or more FBDs. Make sure you understand the situation 

described in the problem. 
Equations – Work forward, not backward. That means look for equations that contain the given 

information, not equations that contain the desired information. What major concepts or “blueprint 
equations” will you use? Write down the general form of the equations that you plan to use. Only 
after you’ve written down the main equations should you start filling things in with the specific 
information given in the problem.  

Algebra – Be careful to get the algebra right as you solve the equations for the relevant quantities. Use 
letters instead of numbers if at all possible. Even though you (often) won’t have any numbers at this 
stage, solving the algebra gives you what I really consider to be the answer to the problem. And write 
neatly! 

Numbers – After you have the answer in symbolic form, plug in numbers to obtain numerical results. 
Use units with the numbers, and make sure the units cancel out properly. Be careful with your 
calculator—punch in all calculations twice to double-check yourself. 

Think – Does your final answer make sense? Does it have the right units? Is it close to what you were 
expecting? In not, figure out if/where you went wrong. 

 
Example problem: Using a rocket pack, a lunar astronaut accelerates upward from the Moon’s 
surface with a constant acceleration of 2.1 m/s2. At a height of 65 m, a bolt comes loose. (The 
free-fall acceleration on the Moon’s surface is about 1.67 m/s2.) (a) How fast is the astronaut 
moving at that time? (b) How long after the bolt comes loose will it hit the Moon’s surface? (c) 
How high will the astronaut be when the bolt hits? 
 
Colton solution: (notice how I use the five steps given above) 
 
 
 
 
 
 

When I first did part (c), I got 0 m. This didn’t seem right 
(using the final step, “Think”), so I had to figure out what 
went wrong. I had used the wrong acceleration. 



Some things to remember before you begin Homework #1: 
 
• Be sure to put your HW in the right box! If your HW is handed into the wrong box it will be counted 

late. 

• Be sure to staple your assignments (with a REAL staple) or you will lose points. 

• Work all numerical answers to the number of digits specified by the answer key (located at the end of 
the HW problems). Typically that is 3 significant figures, but sometimes it is more. For intermediate 
results, keep more sig figs than that so that you do not accumulate rounding errors. 

• Use the system described on the previous page (you can call it the PEANuT system, if you like): 

o Picture 

o Equations 

o Algebra 

o Numbers 

o Think 

• Don't be shy about asking for help from fellow classmates, the TA, or Dr. Colton. 

• DO ALL OF YOUR HOMEWORK.  This is how you will learn the material, and this is the BEST 
way to prepare for exams. You will learn far more by completing—and understanding—the 
homework problems than you will learn from (for example) listening to Dr. Colton in class. 

 
OK, now you can go to the next page and start your homework. 
 



Physics 123 Homework Problems, Fall 2012

Section 2, John Colton

1-1. A [01] -kg ballet dancer stands on her toes during a performance with

26.5 cm2 in contact with the floor. What is the pressure exerted by the floor over the

area of contact (a) if the dancer is stationary, and (b) if the dancer is jumping upwards

with an acceleration of 4.41 m/s2?

1-2. A 127-lb student hangs from a suction cup stuck to the ceiling. The pressure inside the

suction cup is [02] atm. What is the contact area between the suction cup

and the ceiling? Please note the handy conversion table inside the back cover of your

textbook.

1-3. If a certain nuclear weapon explodes at ground level, the peak over-pressure (that is, the

pressure increase above normal atmospheric pressure) is [03] atm at a

distance of 6.0 km. What force due to such an explosion will be exerted on the side of a

house with dimensions 4.5 m× 22 m? Give the answer in tons (1 ton = 2000 lb).

1-4. Piston 1 in the figure has a diameter of

[04] in.; piston 2 has a diameter of

1.5 in. In the absence of friction, determine the

force F necessary to support the 500-lb weight.



1-5. A U-tube of uniform cross-sectional area and open to

the atmosphere is partially filled with mercury. Water

is then poured into both arms. If the equilibrium

configuration of the tube is as shown in the figure, with

h2 = [05] cm, determine the value of h1.

1-6. (Paper only.) Work the problems on the math review posted to the course website.

Check your answers against the solutions, also posted to the website, and learn how to do

any problems that you missed. Turn in a statement saying that you have done this.

1-7. (Extra credit.) The tank shown in the figure is filled

with water to a depth of h = [06] m. At

the bottom of one of the side walls is a rectangular

hatch 1.00 m high and 2.00 m wide. The hatch is

hinged at its top. Determine the net force exerted by

the atmosphere and water on the hatch. Hint: Since

the pressure is not constant, you will have to

integrate in order to get the force. If you divide the

hatch into narrow horizontal stripes, P × width× dy
will be the force on each stripe (since

force = pressure× area), where P is the pressure

that is changing with depth.

Extra problems I recommend you work (not to be turned in):

• Visit the Cartesian diver exhibit on the north-west side of the lobby of the Eyring

Science Center. Play with the diver, and read the explanation on the wall. Why is the

diver inside the bottle affected when you squeeze the outside of the bottle?

2-1. A rectangular air mattress is 2.1 m long, 0.48 m wide, and [01] m thick. If it

has a mass of 2.3 kg, what additional mass can it support in water?



2-2. A raft is made of solid wood and is 2.31 m long and 1.59 m wide. The raft is floating in a

lake. A woman who weighs [02] lb steps onto the raft. How much further into

the water does the raft sink? You do not need the thickness of the raft or the density of

the wood to solve this problem.

2-3. A light spring of constant k = 163 N/m rests vertically on the bottom of a large beaker

of water. A 5.29-kg block of wood (density=[03] kg/m3) is connected to the

spring and the mass-spring system is allowed to come to static equilibrium. (a) Draw a

free-body diagram of the block. (b) What is the elongation ∆L of the spring?

2-4. A 10.0-kg block of metal is suspended from a scale and

immersed in water as in the figure. The dimensions of the

block are 12.0 cm × 10.0 cm × [04] cm. The

12.0-cm dimension is vertical, and the top of the block is

5.00 cm below the surface of the water. What are the

forces exerted by the water on (a) the top and (b) the

bottom of the block? (Take atmospheric pressure to be

1.0130× 105 N/m2.) (c) What is the buoyant force? Think

about how your answers to (a) and (b) relate to your

answer to (c). (d) What is the reading of the spring scale?

2-5. A geological sample weighs 10.3 lb in air and [05] lb under water. What is its

density in g/cm3?



2-6. An extremely precise scale is used to measure an iron weight. It is found that in a room

with the air sucked out, the mass of the weight is precisely [06] kg. If you add

the air back into the room, by how many grams will the new measurement differ from the

old? Use a positive answer to indicate the scale reading has increased, and a negative

answer to indicate the scale reading has decreased. Use the densities of iron and air given

in the book for 0◦C and 1 atm.

2-7. (Paper only.) As is mentioned in the syllabus, you will periodically use Mathematica to

plot functions or otherwise help you do homework problems. For problems such as the

following you should turn in a printout which includes both your Mathematica code and

the plots that Mathematica generated for you. (Alternate computer programs are

acceptable if they have the same capability. If you want to use an alternate program,

then tailor the following instructions accordingly. You still have to turn in hard-copy

printouts, and if possible the code you used.)

(a) Find and gain access to a computer with Mathematica. There are instructions on

how to do this in the syllabus, on page 3. Use Mathematica to open up Dr. Colton’s

Basic Commands of Mathematica document, posted to the class website. Read that up

to and including the “How to plot a function” section.

(b) Define the following function: f(x) = 3 sin(2x). Evaluate the function at x = 1, 2,

and 3. Give your answers as numerical results to five decimal places.

(c) Plot the function from x = 0 to 10.

2-8. (Extra credit; paper only.) A lead weight is placed on one end of a cylindrical wooden log

having cross-sectional area A, in a fluid with density ρ. Because of the weight, the log

tips vertically out of the fluid, with the weight on the bottom. The combined mass of the

log and the weight is m. Show that if the log is pushed down from its equilibrium

position, it will undergo simple harmonic motion. What will the period of the motion be?

Use the letter g to represent the acceleration due to gravity. Hint: To show that the log

will undergo SHM, show that the net force on the log equals a constant times the

displacement from equilibrium, just like the force on a mass from a spring. Then, the

period of oscillation is 2π ×
√
m/constant, again just like a mass on a spring.



3-1. A cowboy at a dude ranch fills a horse trough that is 1.53 m long, 61 cm wide, and 42 cm

deep. He uses a 2.0-cm-diameter hose from which water emerges at [01] m/s.

How long does it take him to fill the trough?

3-2. Suppose the wind speed in a hurricane is [02] mph (mi/h). (a) Find the

difference in air pressure outside a home and inside a home (where the wind speed is

zero). The density of air is 1.29 kg/m3. (b) If a window is 61 cm wide and 108 cm high,

find the net force on the window due to the pressure difference inside and outside the

home.

3-3. What gauge pressure must a pump generate to get a jet of water to leave its nozzle with

a speed of 5.2 m/s at a height of [03] m above the pump? Assume that the

area of the nozzle is very small compared to that of the pipe near the pump.

3-4. A U-tube open at both ends is partially filled with water, as in Figure (a). Oil

(ρ = 754 kg/m3) is then poured into the right arm and forms a column

L = [04] cm high, as in Figure (b). (a) Determine the difference h in the

heights of the two liquid surfaces. (b) The right arm is then shielded from any air motion

while air is blown across the top of the left arm until the surfaces of the two liquids are

at the same height, as in Figure (c). Determine the speed of the air being blown across

the left arm. Assume that the density of air is 1.29 kg/m3.



3-5. (Paper only.) Imagine that you had a cylindrically-shaped paper cup filled to a height h

with water sitting on a level table top. If you poked a small hole in the side of the cup,

water would shoot out in an arc and hit the table. (a) If you want to maximize the

distance that the water goes before hitting the table, how far from the bottom of the cup

should you poke the hole? Hint: To maximize the distance, you will have to calculate a

derivative and set it equal to zero. (b) If you place the hole at that location, how far will

the water travel before hitting the table? Assume the hole is small enough that the

height of the water in the cup doesn’t change significantly over the time that you make

the measurements, and assume that you can neglect viscosity.

3-6. (Paper only.) Now let’s test it out: Find a paper or Styrofoam cup. A cylindrical one

would be best, but those are hard to come by, so just get one as close to cylindrical as

you can find. Punch a small hole at the correct height to maximize the distance that the

water will go before hitting the table. The hole should be small so you can make your

measurements before the height of the water in the cup changes appreciably, but not too

small or viscosity will change your results. If you use a pencil to make your hole, you will

probably do well, but you will have to watch what happens quickly before the water level

in the cup drops. Now place your cup on the table and mark where you expect the water

to hit the table. Put your finger over the hole, and fill the cup with water. Quickly

remove your finger and note how close to your mark the water hits. (a) How close were

you? (b) Now put tape over your hole and punch a new hole which is higher and try

again. Did the water go farther or not as far? (c) Now do the same with a hole below the

optimum height. Did the water go farther or not as far?

3-7. (Paper only.) This is a continuation of the introduction to Mathematica problem from

the previous assignment. (a) Continue reading the Basic Commands of Mathematica

document; up to and including the “How to differentiate a function” section.

(b) Define the following function: f(x) = 3x3 sin(2x). Find the function that is the

integral of f(x).

(c) Define a new function, g(x) = e−5x2
. Find the numerical value of the integral of this

function, integrated from -0.5 to 0.5.

(d) Define a new function, h(x) = cos(x)
√

1 + πx. Find the numerical value of the

derivative of this function at x = 3.



Extra problems I recommend you work (not to be turned in):

• I find that I can blow 1000 cm3 of air through a drinking straw in 2 s. The diameter of

the straw is 5 mm. Find the velocity of the air through the straw. (Answer: 25.46 m/s.)

• A horizontal pipe 11.5 cm in diameter has a smooth reduction to a pipe 5.2 cm in

diameter. If the pressure of the water in the larger pipe is 84.1 kPa and the pressure in

the smaller pipe is 60.0 kPa, at what rate (kg/s) does water flow through the pipes?

(Answer: 36.56 kg/s.)

4-1. Imagine that we want to invent a new temperature scale, called the BYU scale, where

0◦B is the same as −40◦C, and 100◦B is the same as [01] ◦C. What would

absolute zero be on the BYU scale?

4-2. The figure shows a circular steel casting with a gap. If the

casting is heated, (a) does the width of the gap increase or

decrease? (b) The gap width is 1.6000 cm when the

temperature is 30◦C. Determine the gap width when the

temperature is [02] ◦C.

4-3. An underground gasoline tank at 54◦F can hold [03] gallons of gasoline. If the

driver of a tanker truck fills the underground tank on a day when the temperature is

90◦F, how many gallons, according to his measure on the truck, can he pour in? Assume

that the temperature of the gasoline cools to 54◦F upon entering the tank. Use the

coefficient of volume expansion for gasoline given in the textbook.

4-4. A grandfather clock is controlled by a swinging brass pendulum that is 1.3 m long at a

temperature of 20◦C. (a) By how much does the length of the pendulum rod change

when the temperature drops to [04] ◦C? (b) If a pendulum’s period is given by

T = 2π
√
L/g, where L is its length, does the change in length of the rod cause the clock

to run fast or slow? (c) Assuming the clock kept perfect time before the temperature

drop, over the course of 24 hours how many seconds does the clock gain or lose? Give

your answer as a positive number.



4-5. Inside the house where the temperature is 20◦C, we measure the length of an aluminum

rod with a micrometer made of steel. (A micrometer is a device which measures

distances very accurately.) We find the rod to be 10.0000 cm long. If we repeat this

measurement outside where the temperature is [05] ◦C, what result would we

obtain? Caution: the size of the micrometer is also affected by the temperature, so we no

longer obtain the true length of the rod when we measure it with the micrometer. We

want to find the length of the cold rod according to the cold micrometer.

4-6. A tank having a volume of 100 liters contains helium gas at 150 atm. How many balloons

can the tank blow up if each filled balloon is a sphere [06] cm in diameter at

an absolute pressure of 1.20 atm? Don’t worry about the fact that when the pressure in

the tank gets below 1.2 atm, the tank wouldn’t be able to force the helium into any more

balloons.

4-7. (Paper only.) This is a continuation of the introduction to Mathematica problem from

the previous assignments. (a) Continue reading the Basic Commands of Mathematica

document; up to and including the “How to find the maximum/minimum of a function”

section.

(b) Define the following function: f(x) = sin(x)e−x. Plot f(x) from x = 0 to 10.

(c) Find the location close to x = 2, where f(x) = 0.1.

(d) Find the location close to x = 1, where f(x) has a maximum.

Extra problems I recommend you work (not to be turned in):

• The volume expansion coefficient for mercury is 1.82× 10−4/◦C. So how can the mercury

level in a mercury thermometer go from almost one edge of the tube to almost all the

way to the other edge when the temperature changes by less than 100◦C?

• An air bubble has a volume of 1.50 cm3 when it is released by a submarine 100 m below

the surface of a lake. What is the volume of the bubble when it reaches the surface where

the atmospheric pressure is 1.00 atm? Assume that the temperature and the number of

air molecules in the bubble remains constant during the ascent. (Answer: 16.01 cm3.)



• A tire is filled to 35 psi (gauge pressure) on an unusually hot day in autumn (90◦F).

What will be the pressure on an unusually cold morning in December (−20◦F)? Hint:

Don’t forget to include the 14.7 psi of atmospheric pressure before computing the change.

Then convert back to gauge pressure. Ignore any thermal contraction of the tire.

(Answer: 25.05 psi gauge pressure.)

• The specifications on a particular scuba tank says that it should be filled to a pressure of

4350 psi (= 295.9 atm). It also claims that the volume of air that it holds is 90 cubic

feet—but what they really mean is that the air that it holds at 4350 psi, if expanded at

constant temperature until it was at atmospheric pressure, would fill that amount of

volume. (a) What is the actual volume of the tank? (b) If the average mass of the

molecules in the air is 4.81× 10−26 kg, how much does the mass of the tank change when

it is pressurized from 1 atm to 295.9 atm at 25◦C? (Answers: 0.3042 cu ft, 3.006 kg.)

5-1. With specialized equipment, it is routine to achieve vacuums with pressures below

10−10 torr (1 torr = 1 mm of Hg = 133.3 Pa). However, special care must be taken in

cleaning and baking the walls of the stainless steel chamber, or “outgassing” of

contaminants will seriously increase the pressure (by orders of magnitude). If the

pressure is 1.00× 10−10 torr and the temperature is [01] ◦C, calculate the

number of molecules in a volume of 1.00 m3.

5-2. In a 30.0-s interval, 492 hailstones strike a glass window with an area of 0.624 m2 at an

angle of [02] ◦ to the window surface. Each hailstone has a mass of 5.00 g and

a speed of 8.00 m/s. If the collisions are elastic, what are the average (a) force and

(b) pressure on the window?

5-3. Twenty cars are moving in the same direction at different speeds on the highway. Their

speeds are [03] , 42, 44, 45, 49, 51, 52, 57, 59, 62, 66, 66, 67, 67, 71, 72, 77, 79,

81, and [04] mi/h. (a) What is their average (mean) speed? (b) What is their

rms speed? Advice: use a computer program such as a spreadsheet or Mathematica;

don’t do the calculations with a hand calculator.



5-4. (a) How many atoms are required to fill a spherical helium balloon to a diameter of

30.0 cm at a temperature of [05] ◦C? Take the pressure to be 1.00 atm.

(b) What is the average kinetic energy of individual helium atoms?

(c) What is the root-mean-square speed of the atoms?

5-5. (Extra credit.) If you push on an object from all sides, it will compress a bit. The

amount it compresses is measured by the bulk modulus B. If a pressure increase of ∆P

reduces the volume of the object from V to V + ∆V (where ∆V is negative because the

object is getting smaller), the bulk modulus is defined as:

B = − ∆P
∆V/V

.

Imagine that you make a copper sphere and embed it in a block of some super material

which has an extremely high bulk modulus and a linear thermal expansion coefficient of

[06] ◦C−1. Assume that the sphere is in contact with the block at all points

on its surface. Assume that the sphere is a perfect fit for the cavity in the block—it’s a

really snug fit, but the copper is not being compressed by the block. If you then heat the

block and copper sphere by 20◦C, with what pressure (in atm) will the copper push on

the block? The bulk modulus and linear expansion coefficient of copper can be found in

the textbook. Hint: Since α∆T << 1, you can use the approximation that β = 3α.

Extra problems I recommend you work (not to be turned in):

• Suppose that Moses consumed on average 2 liters of water per day during his lifetime of

120 yrs. If this water is now thoroughly mixed with the Earth’s hydrosphere

(1.32× 1021 kg), how many of the same water molecules are found today in your 1-liter

bottle of water? (Answer: 2.22× 109.)



6-1. The mean free path l is the average distance a molecule travels between collisions. As

discussed in the 6th edition of the textbook (but omitted in later editions), it is related

to the number of molecules per volume n, and the average diameter of the molecules d, in

this way:

l =
1√

2πd2n

(That equation is derived in the 6th edition by visualizing the cylinder that is swept out

by the motion of a molecule, and comparing it to the average spacing between molecules.

And some hand-waving.)

The mean free path also relates to the average time between collisions τ , through the

average velocity vavg:

vavg =
l

τ

For an ultra high vacuum situation similar to that described in the previous homework

assignment, suppose there are [01] molecules per cubic meter. The

temperature is 300K. Determine (a) the mean free path and (b) the time between

collisions for diatomic nitrogen molecules (d ≈ 10−10 m).

6-2. (Paper only.) Use a program such as Mathematica for this problem.

(a) Make a plot of the Maxwell-Boltzmann probability density function (which is the Nv
function given in the book, divided by N) for oxygen molecules at 500 K. Go up to high

enough velocities that you can see the full shape of the curve.

(b) Verify that this function is properly normalized: that the integral from 0 to infinity

equals 1.

(c) Use these statistical definitions to calculate vmp, vavg, and vrms for this situation:

vmp = the velocity where f(v) is a maximum (i.e., where the derivative = 0)

vavg =
∫ ∞

0

vf(v)dv

vrms =

√∫ ∞
0

v2f(v)dv

Verify that the equations given for those quantities in the textbook produce the same

numerical results.



(d) If there are 1020 molecules in your distribution, how many will have speeds between

300 and 400 m/s? (This is the total number of molecules times how much area the

probability density function has between 300 and 400 m/s.)

6-3. A 3000-lb car moving at [02] mi/h quickly comes to rest without skidding the

tires. The kinetic energy is converted into heat in each of the four 15-lb iron rotors. By

how much will the temperature rise in the rotors?

6-4. Suppose your water heater is broken, so you plan to heat your bath water by converting

potential energy to heat. You hoist buckets of water up really high, then tip them over so

that the water falls down into the bathtub. If you want to increase the temperature of

the water by [03] ◦C, how high will you have to lift the buckets?

6-5. Most electrical outputs in newer homes can deliver a maximum power of about 1800 W.

Using this much power, how long would it take to heat up a bathtub containing

[04] m3 of water from 25◦C to 40◦C?

6-6. (Paper only.) Imagine an ideal aluminum calorimeter with a mass of 150 g (i.e., an

aluminum cup that is thermally isolated from the rest of the world). The calorimeter

contains 200 g of water in thermal equilibrium with the calorimeter at a temperature of

25.00◦C. You then heat an 80 g piece of an unknown metal to a temperature of 100◦C

and put it into the water. The system comes to equilibrium some time later at a

temperature of 27.32◦C. (a) What is the specific heat of the metal? (b) From the table in

your book, determine what the metal is.

6-7. A [05] -g block of ice is cooled to −78.3◦C. It is added to 567 g of water in an

85-g copper calorimeter at a temperature of 25.3◦C. Determine the final temperature.

Remember that the ice must first warm to 0◦C, melt, and then continue warming as

water. The specific heat of ice is 2090 J/kg·◦C.

6-8. What mass of steam that is initially at 121.6◦C is needed to warm [06] g of

water and its 286-g aluminum container from 22.5◦C to 48.5◦C?

Extra problems I recommend you work (not to be turned in):

• The escape velocity for the Earth is 11.2 km/s. At what temperature will the most

probable velocity in a gas of nitrogen molecules be greater than the Earth’s escape

velocity? (Answer: 2.113 ×108 K.)



• An aluminum rod is 20 cm long at 20◦C and has a mass of 350 g. If 15.5 kJ of energy is

added to the rod by heat, what is the change in length of the rod? (Answer: 0.2362 mm.)

• A 0.42-kg iron horseshoe that is initially at 652◦C is dropped into a bucket containing

19 kg of water at 22◦C. By how much does the temperature of the water rise? Neglect

any energy transfer to or from the surroundings. (Answer: 1.487◦C.)

• A 20 kg iron shell from a tank goes off course and lands in a frozen lake. If the shell is

moving at 300 m/s and is at a temperature of 40◦C when it hits the 0◦C ice, how much

ice will melt? (Answer: 3.779 kg.)

7-1. A Styrofoam box has a surface area of 0.832 m2 and a wall thickness of 2.09 cm. The

temperature of the inner surface is 4.8◦C, and that outside is 25.5◦C. If it takes

[01] h for 5.54 kg of ice to melt in the container, determine the thermal

conductivity of the Styrofoam.

7-2. Suppose you have two solid bars, both with square cross-sections of 1 cm2. They are

both [02] cm long, but one is made of copper and one of iron. You place the

two side by side and braze them together, making a composite bar with a cross-section of

2 cm2. If one end of this rod is placed in boiling water and the other end in ice water,

how much power will be conducted through the rod when it reaches steady state?

7-3. A sheet of copper and a sheet of aluminum with equal thickness are placed together so

that their flat surfaces are in contact. The copper is in thermal contact with a reservoir

at [03] ◦C, and the aluminum is in contact with a reservoir at 0◦C. What is

the temperature at the interface between the metals?



7-4. (Paper only.) The light from the sun reaches the Earth’s orbit with an intensity of

1340 W/m2. That means that a 1 m by 1 m perfectly absorbing square, oriented directly

at the sun, would absorb 1340 J of heat every second. Assuming that the emissivity of

the Earth is the same for all wavelengths of light, calculate the temperature of the Earth

in steady state by balancing the heat gained from sunlight (which intersects the Earth’s

cross-section) with the heat lost from blackbody radiation (which radiates out from the

entire surface area of the Earth).

You should get something close to—but a bit colder than—the actual average surface

temperature of the Earth, believed to be about 15◦C. The primary reason why the Earth

is not as cold as your result is due to the fact that the emissivity of the Earth depends

strongly on wavelength via the so-called “greenhouse effect”. Because of the atmosphere,

the Earth absorbs and emits visible radiation much better than infrared radiation. Since

the sun is very hot, it emits a lot of visible light which is absorbed by the Earth. The

colder Earth, however, emits mainly infrared light. The clouds are very reflective in the

infrared, so the emissivity is small right where the Earth would be radiating most of its

blackbody radiation otherwise.

7-5. (Paper only.) In your job as an intergalactic pizza deliverer, you accidentally deliver a

pizza to the wrong location—so far off, in fact, that there aren’t even any stars nearby.

The pizza, initially at 340 K, cools through emitting blackbody radiation.

(a) How warm is the pizza after 1 sec? 1 min? 1 hr? 1 day? 1 month (30 days)? Specify

any assumptions you make to solve the problem. Hint: Combine the radiation equation

(left hand side is dQ/dt, right hand side should be negative because heat is being lost)

with the differential of the specific heat equation (left hand side will be dQ). Then move

all of the temperature quantities to the left hand side, all of the time quantities to the

right hand side, and integrate both sides with definite integrals.

(b) Use a program such as Mathematica to plot the temperature as a function of time for

the first month. Force the vertical scale to go from 0 to 340 K.



7-6. (Extra credit; paper only.) A cylindrical insulating bucket is filled with water at 0◦C.

The air above the water has a temperature of −12◦C. If the air remains at this

temperature, how long will it take for a 1 cm layer of ice to form on the surface of the

water? Hint: How much heat gets transferred through when the ice thickness is “x”. You

will have to figure out how to set things up so that you can integrate from x = 0 to

x = 0.01. My answer was between 600 and 700 seconds.

Extra problems I recommend you work (not to be turned in):

• Water is being boiled in an open kettle that has a 0.52-cm-thick circular aluminum

bottom with a radius of 12.0 cm. If the water boils away at a rate of 0.355 kg/min, what

is the temperature of the lower surface of the bottom of the kettle? Assume that the top

surface of the bottom of the kettle is at 100.0◦C. (Answer: 106.46◦C.)

• A typical 100 W incandescent light bulb has a filament which is at a temperature of 3000

K. Typically, of the 100 W that goes into the bulb, 97.4 W is conducted or convected

away as heat, and only 2.6 W is radiated as light (and most of that is invisible infrared

light—now you see why incandescent lights are so inefficient). (a) If you assume the

emissivity of a tungsten filament to be about 0.4, what is the filament’s surface area? (b)

If the temperature were raised, one would expect that the losses due to conduction and

convection would go up by about the same factor as the temperature increase, but that

the radiation power would scale as T 4. Given those scaling factors, if you could increase

the temperature of the filament by 50% to 4500 K, how much light power would now be

radiated? (Assume the same 100 W total power.) Unfortunately, if the filament gets too

hot, it will melt or vaporize. This is why almost all incandescent bulbs run at about the

same temperature—as hot as possible without quickly destroying the tungsten filament.

This is also the secret to halogen bulbs: the halogen gas in the bulb reduces the rate at

which the tungsten evaporates from the filament, allowing it to operate at higher

temperatures for more brightness and efficiency. (Answer: 9.009 W.)



8-1. We have some gas in a cylinder like that in the figure. The diameter of the

cylinder is 8.1 cm. The mass of the piston is [01] kg. The

atmospheric pressure is 9.4× 104 Pa. (a) Find the pressure of the gas. (Both

the weight of the piston and the pressure of the atmosphere on top of the

piston contribute to the pressure of the gas inside the cylinder.) (b) If we

heat up the gas so that the piston rises from a height of 12.3 cm to 15.6 cm

(measured from the bottom of the cylinder), find the work done on the gas.

Note that the pressure of the gas remains constant as it is heated up.

8-2. A gas expands from I to F along the three paths indicated in

the figure. Calculate the work done on the gas along paths

(a) IAF, (b) IF, and (c) IBF. Pi = [02] atm and

Pf = [03] atm.

8-3. A monatomic ideal gas undergoes the thermodynamic

process shown in the PV diagram in the figure.

Determine whether each of the values (a) ∆Eint, (b) Q,

(c) W for the gas is positive, negative, or zero. (Note

that W is the work done on the gas.)

8-4. We have some gas in a container at high pressure. The volume of the container is

[04] cm3. The pressure of the gas is 2.52× 105 Pa. We allow the gas to

expand at constant temperature until its pressure is equal to the atmospheric pressure,

which at the time is 0.857× 105 Pa. (a) Find the work done on the gas. (b) Find the

change of internal energy of the gas. (c) Find the amount of heat we added to the gas to

keep it at constant temperature.



8-5. (Paper only.) An ideal gas is initially at 1 atm with a volume of 0.3 m3.

(a) The gas is then heated at constant volume until the pressure doubles. During this

process 1200 J of heat flow into the gas. How much work does the gas do?

(b) What is the change in the internal energy of the gas as it is heated?

(c) Now the pressure of the gas is kept at 2 atm and the gas is heated while its volume

increases to twice its initial volume. In the process, the internal energy of the gas

increases by 1000 J. How much work does the gas do?

(d) How much heat flows into the gas during the expansion?

(e) Draw a P-V diagram of this sequence of processes. Label the initial state of the

gas A, the state after the constant volume process B, and the state after the constant

pressure process C.

Extra problems I recommend you work (not to be turned in):

• One mole of an ideal monatomic gas is at an initial temperature of 305 K. The gas

undergoes an isovolumetric process, acquiring 728 J of energy by heat. It then undergoes

an isobaric process, losing this same amount of energy by heat. What is the final

temperature of the gas? (Answer: 328.3 K.)

• An ideal gas is contained inside a cylinder with a moving piston on the top. The piston

has a mass m which keeps the gas at a pressure P0. The initial volume of the gas is V0.

For this whole problem give your answers in terms of P0 and V0. (a) The gas is heated

until the volume has expanded to twice its initial volume. How much work is done by the

gas during this process? (b) By what factor does the temperature increase during this

expansion? (c) The piston is then locked in place and the gas is cooled back to its original

temperature. What is the pressure of the gas after it is cooled? (d) How much work is

done on the gas as it is cooled? (e) The cylinder is then placed in a bucket of water which

keeps the temperature constant (at the original temperature), and the piston is released

and allowed to slowly drop until the gas returns to its initial pressure P0. How much

work is done on the gas during this process? (f) Draw a P-V diagram of this sequence of

processes. Label the initial state of the gas A, the state after expanding B, and the state

after it is cooled C. (Answers to parts (a)–(e): P0V0, ×2, 1
2 P0, 0, P0V0ln2.)



9-1. One mole of a monatomic ideal gas is compressed adiabatically from an initial pressure

and volume of 2.00 atm and 10.0 L to a final volume of [01] L.

(a) Using W = −
∫ V2

V1

P dV , find the work done on the gas. Be sure to include the sign if

negative.

(b) Find the final pressure.

(c) Find the final temperature.

(d) Use the first law together with the knowledge of the initial and final temperatures to

find the work done on the gas. Hint: Your answer should agree with part (a).

Now that you have learned the easy way to determine the work in an adiabatic process,

you will never again have to integrate PdV to get the work for an adiabatic change!

9-2. [02] moles of a monatomic ideal gas have a volume of 1.00 m3, and are

initially at 354 K. (a) Heat is carefully removed from the gas as it is compressed to

0.50 m3, causing the temperature to remain constant. How much work was done on the

gas in the process? (b) Now the gas is expanded again to its original volume, but so

quickly that no heat has time to enter the gas. This cools the gas to 223 K. How much

work was done by the gas in this process?

9-3. We have a container of a hot ideal monatomic gas. The volume of the container is

25 liters. The temperature of the gas is [03] ◦C, and its pressure is

0.858× 105 Pa. We allow the gas to cool down to room temperature, which at the time is

21◦C. We do not allow the volume of the gas to change. (a) Find the final pressure of the

gas. (b) Find the amount of heat that passed from the gas to its surroundings as it

cooled (a positive number), by finding the change in internal energy and the work done

on the gas, and using the First Law of Thermodynamics. (c) Find the amount of heat

that passed from the gas to its surroundings as it cooled, by using CV , the molar heat

capacity for constant volume changes.



9-4. We have some air in a cylinder like that in the figure. Assume that air is an

ideal diatomic gas, with γ = 7/5. The diameter of the cylinder is 5.3 cm. The

mass of the piston is negligible so that the pressure inside the cylinder is

maintained at atmospheric pressure which is 1.00 atm. The height of the

piston is 9.7 cm, measured from the bottom of the cylinder. The temperature

of the air is [04] ◦C. We heat the gas so that the piston rises to a

height of [05] cm. The pressure of the air remains constant.

(a) Find the final temperature of the air. (b) Find the amount of heat that

was put into the air, by finding the change in internal energy and the work

done on the gas, and using the First Law of Thermodynamics. (c) Find the

amount of heat that was put into the air, by using CP , the molar heat

capacity for constant pressure changes.

9-5. What are the number of degrees of freedom for

(a) helium at room temperature?

(b) oxygen at room temperature?

(c) water vapor at 200◦C?

(d) hydrogen (H2) at 6000 Kelvin? Hint: see Fig 21.7 (8th edition; might be a different

figure number in other editions.).

9-6. (Paper only.) We’ve talked about degrees of freedom for molecules in gases, but how

about for atoms in a solid? One view is that each atom in a solid should have 6 degrees

of freedom: three from vibrational kinetic energy and three from vibrational potential

energy. In other words, the total energy of an atom in a solid is
1
2mv

2
x + 1

2mv
2
y + 1

2mv
2
z + 1

2kx
2 + 1

2ky
2 + 1

2kz
2, where k represents the “spring constant”

of the restoring force holding each atom in place. If this view is correct, the molar heat

capacity of all solids should be equal to C = 6R/2 = 3R. That is called the Dulong-Petit

law.

(a) Let’s test it out with real data. Make a list of the specific heats (units J/kg·◦C) for

the elements given in the table in your book. (The elements are on the left hand side of

the specific heat table.) For each element, convert its specific heat c into its molar heat

capacity C (J/mol·◦C) by multiplying each specific heat by the appropriate molar mass

(kg/mol). For each element, calculate the percent difference between the real value you

obtained for C, and the value predicted by the Dulong-Petit law. Feel free to use a



spreadsheet program to do all these calculations. You should find very good agreement

for all but two of the elements. Wikipedia has this to say about the Dulong-Petit law:

“Despite its simplicity, the Dulong-Petit law offers fairly good prediction for the specific

heat capacity of solids with relatively simple crystal structure at high temperatures. It

fails, however, at room temperatures for light atoms bonded strongly to each other

[because there is not enough thermal energy to excite the higher frequency vibrational

modes of the light elements].” Does that match what you found? Think about the

atomic weights of the two elements that did not fit the law well.

(b) Explain why I just used the symbol C to represent the molar heat capacity in the

problem above instead of CV or CP .

Extra problems I recommend you work (not to be turned in):

• Consider a gas composed of 3.5 moles of nitrogen molecules (N2) at a temperature low

enough that the vibration modes of the molecule are “frozen out”. In other words, the

molecules have 5 degrees of freedom: 3 translational and 2 rotational. (a) What is the

molar specific heat at constant volume? (b) What is the molar specific heat at constant

pressure? (c) If the gas is in a rigid container, how much will the temperature of the gas

change if 75 J of heat are added to the gas? (d) If the gas is in a container kept at a

constant pressure, how much will the temperature of the gas change if that same amount

of heat is added to the gas? (e) In which case will the gas do more work as it is heated?

(Answers to parts (a)–(d): 5
2R,

7
2R, 1.031◦C, 0.736◦C.)

• (a) Explain in your own words why the molar specific heat at constant pressure should

always be higher than the molar specific heat at constant volume. (b) Explain why the

change in internal energy (∆Eint) for a gas always equals nCV ∆T , even when it

undergoes a process in which the volume changes.



• During the compression stroke of a certain gasoline engine, the pressure increases from

1.00 atm to 18.4 atm. Assuming that the process is adiabatic and that the gas is ideal,

with γ = 1.40, (a) by what factor does the volume change and (b) by what factor does the

absolute temperature change? If the compression starts with 0.0160 mol of gas at 27◦C,

find the values of (c) Q, (d) W , and (e) ∆Eint that characterize the process. (Answers:

decreases by a factor of 8.006, increases by a factor of 2.298, 0, −129.6 J, 129.6 J.)

10-1. A heat engine performs [01] J of work in each cycle and has an efficiency of

32.9%. For each cycle of operation, (a) how much energy is absorbed by heat and

(b) how much energy is expelled by heat?

10-2. A nuclear power plant has an electrical power output of 1000 MW and operates with an

efficiency of 33%. If the excess energy is carried away from the plant by a river with a

flow rate of [02] kg/s, what is the rise in temperature of the flowing water?

10-3. One mole of an ideal monatomic gas is taken through

the cycle shown in the figure, where

P1 = [03] atm and P2 = P1/5. The process

A→ B is a reversible isothermal expansion. Calculate

(a) the energy added by heat to the gas, (b) the energy

expelled by heat from the gas, and (c) the net work

done by the gas, (d) the efficiency of the cycle. Hint:

the easiest way to get the net work is almost always by

subtracting Qc from Qh, since the net work done by

the gas equals the net heat added (because ∆U = 0 for

a cycle).



10-4. Suppose your gasoline car has a compression ratio of [04] to 1. The specs for

the car indicate that the engine produces 105 hp when being operated at 6000 rpm.

(a) Assuming that the air (or more properly, air-fuel mixture) is composed entirely of

diatomic molecules with 5 degrees of freedom at these temperatures, and assuming that

the actual cycle can be perfectly approximated as the ideal Otto cycle, find how much Qin

per second is required to run the engine at that rpm. (b) If you can travel at 100 mph at

that rpm (watch out for cops!), how many miles per gallon will your car get? Gasoline

produces about 47000 kJ for each kg burned, and the density of gasoline is 0.75 g/cm3.

10-5. (Paper only.) Show that the efficiency for an engine working in the Diesel cycle

represented ideally below is

e = 1− 1
γ

(
TD − TA
TC − TB

)
.

Diesel cycle: Adiabatic compression AB heats the gas

until ignition at B when fuel is introduced (no spark

plug needed). A constant pressure expansion BC takes

place as combustion adds heat. Adiabatic expansion CD

accomplishes additional work before the exhaust is

exchanged for new air during what can be thought of as

a constant volume cooling DA.

10-6. (Paper only.) Many people believe that a higher octane fuel means “more power”. That’s

not quite correct; what higher octane means, is that the fuel does not self-ignite as easily

as the fuel heats up during compression. Higher power engines often use higher

compression ratios, because (as can be seen by doing the first optional problem below) a

higher compression ratio will give you a higher efficiency. Therefore high power gas

engines often require higher octane fuel to prevent the fuel from igniting before the spark

plugs fire—hence the confusion. However, if the normal compression ratio is low enough

that low octane fuel will not self-ignite, a higher octane fuel will provide absolutely no

benefit. Some websites say that with 91 octane fuel, compression ratios up to about 11.5

can safely be used. Use this information to estimate the temperature at which an air-fuel

mixture using 91 octane gasoline will spontaneously ignite. Assume an ambient air

temperature of 25◦C and a specific heat ratio γ of 7/5.



Extra problems I recommend you work (not to be turned in):

• (a) In the Otto cycle, the ratio of maximum volume to minimum volume is called the

“compression ratio” r. Use a program such as Mathematica to make a plot of the Otto

cycle’s efficiency vs. the compression ratio.

(b) In the Diesel cycle, the ratio of maximum volume to minimum volume is called the

compression ratio r, and the ratio of the intermediate volume to the minimum volume is

called the “cut-off ratio” rc. The equation you derived for efficiency of the Diesel cycle

can be written as:

e = 1− 1
rγ−1

(
rγc − 1
γ(rc − 1)

)
Use a program such as Mathematica to make plots of the Diesel cycle’s efficiency vs. the

compression ratio, for cut-off ratios of 1, 2, 3, and 4. Use γ = 7/5. Hint: for the first

graph, you will actually have to use r = 1.000001, or something like that, because if you

use r = exactly 1, Mathematica will throw a divide by zero error.

• Prove that the two Diesel cycle efficiency equations given above are equivalent.

• An engine absorbs 1678 J from a hot reservoir and expels 958 J to a cold reservoir in

each cycle. (a) What is the engine’s efficiency? (b) How much work is done in each cycle?

(c) What is the power output of the engine if each cycle lasts for 0.326 s? (Answers:

42.91%, 720 J, 2209 W.)

• Work out any of the cycle problems (given a cycle, find the efficiency) that are on the old

exams posted to the class website.

11-1. A refrigerator has a coefficient of performance equal to 5.21. Assuming that the

refrigerator absorbs [01] J of energy from a cold reservoir in each cycle, find

(a) the work required in each cycle and (b) the energy expelled to the hot reservoir.

11-2. A refrigerator keeps its freezer compartment at −10◦C. It is located in a room where the

temperature is 20◦C. The coefficient of performance (heat pump in cooling mode) is

[02] . How much work is required to freeze one 26-g ice cube? Assume that we

put 26 g of water into the freezer. The initial temperature of the water is 20◦C. The final

temperature of the ice cube is −10◦C. The refrigerator removes the heat from the freezer

compartment, maintaining its temperature at about −10◦C.



11-3. Consider a heat pump which is used to cool down a home during the summer. Its

coefficient of performance in cooling mode is [03] . On a particular hot day,

the temperature outside the home is 90◦F, and the temperature inside the home is

maintained at 70◦F. If the heat pump consumes 500 W of electrical power, at what rate

does it remove heat from the home?

11-4. Suppose you want to keep the inside of your freezer at a temperature of −5◦C when your

house is at [04] ◦C. (a) What is the maximum possible coefficient of

performance for a refrigerator operating between those two temperatures? (b) If 350 J of

heat leak from the environment into your freezer each second, what is the minimum

theoretical power that your freezer will consume to keep the temperature inside the

freezer at −5◦C. (c) How much per year (365 days) would it cost you to operate such a

freezer if you never open it up? Use 8 cents/(kilowatt·hour) as the price for electricity.

11-5. (Paper only.) A sample of a monatomic gas is taken through the Carnot cycle ABCDA.

For your convenience, the cycle is drawn with the mathematical relationships of each

part shown. Complete the table for the cycle.

P V T

A 1400 kPa 10.0 L 720 K

B

C 24.0 L

D 15.0 L

Avoid rounding intermediate steps so that errors do not accumulate. You may find it

beneficial to solve for the unknowns in the order requested below.

First determine the number of moles from the data in row A.

(a) Find PD.

(b) Find the value of TD and TC , which are equal.

(c) Find PC .

(d) Find TB .

(e) Find VB .

(f) You should then be able to find that PB = 875 kPa (provided here as a check).



11-6. (Paper only.) For the parameters in previous problem, complete the table below.

Q Won ∆Eint

AB

BC

CD

DA

Hint: Curves AB and CD are constant temperature, meaning that the internal energy is

constant on the curves. Curves BC and DA are adiabatic, meaning that no heat flows

into or out of the gas.

11-7. (Paper only.) (a) From the temperatures found in the problem before last, compute the

theoretical maximum efficiency for this cycle. (b) From the heats and work found in the

last problem, calculate the actual efficiency of the cycle using the definition of efficiency.

It should match your answer to part (a).

Extra problems I recommend you work (not to be turned in):

• A reversible engine draws heat from a reservoir at 399◦C and exhausts heat to a reservoir

at 19◦C. (a) Find the efficiency of the engine. (b) Find the heat required to do 100 J of

work with this engine. (Answers: 56.53% , 176.9 J.)

• Would you save money if you were to somehow pipe the heat from your refrigerator’s

heat-exchanging coils (in the back of the refrigerator) to outside the house?



• Let’s derive the efficiency for a general Carnot cycle.

Take a look at the P-V diagram of the Carnot cycle

as given in the figure. Efficiency is defined to be

e = W/Qh = (Qh −Qc)/Qh.

Unless otherwise noted, give all answers in terms of

n, Th, Tc, VA, VB , VC , VD, γ, and fundamental

constants.

(a) Find the heat that enters the gas during the adiabatic processes from B-C and from

D-A. (In other words, what are QBC and QDA?)

(b) Find the change in the internal energy of the gas during the isothermal processes. (In

other words what are ∆EAB and ∆ECD?)

(c) How much work is done on the gas during each isothermal process? (In other words,

what are WAB and WCD?)

(d) Use your results above to find Qh and Qc.

(e) Use the adiabatic transitions to find a relationship between (VB/VA) and (VC/VD).

(f) Use what you found above to write the Carnot efficiency in terms of just Th and Tc.

12-1. We have 2.451 moles of air in some container at 25.2◦C. Assume that air is an ideal

diatomic gas. We put [01] J of heat into the air. (a) Find the change of

entropy of the air if we hold the volume constant. (b) Find the change of entropy of the

air if we hold the pressure constant.

12-2. (a) A container holds 1 mol of an ideal monatomic gas. A piston allows the gas to

expand gradually at constant temperature until the volume is [02] times

larger. What is the change in entropy for the gas?

(b) What is the change in entropy for the gas if the same increase in volume is

accomplished by a reversible adiabatic expansion followed by heating to the original

temperature?

(c) What is the change in entropy for the gas if the same increase in volume is

accomplished by suddenly removing a partition, which allows the gas to expand freely

into vacuum?



12-3. We drop a [03] -g ice cube (0◦C) into 1000 g of water (20◦C). Find the total

change of entropy of the ice and water when a common temperature has been reached.

Caution: calculate the common temperature to the nearest 0.01◦C.

12-4. Heat is added to 4 moles of a diatomic ideal gas at 300K, increasing its temperature to

400K in a constant pressure process. The heat is coming in from a reservoir kept at a

constant temperature of [04] K. What was the change in entropy of the

universe during this process? (Hint: find the change in entropy for the gas and for the

reservoir separately, then add them together. You can assume that the heat lost by the

reservoir is equal to the heat added to the gas.)

12-5. (Paper only.) The goal of this problem is to figure out an equation for the change in

entropy of an ideal gas for an arbitrary state change from state A to state C. Since

entropy is a state variable, the entropy change of an arbitrary process from A to C will be

the same as an entropy change of a specific process going from A to C. So, let’s consider

a specific process made up of two sections: a constant volume change from A to B (B

having the same volume as A, and the same pressure as C) followed by a constant

pressure change from B to C. The gas has n moles of molecules and a molar heat

capacity at constant volume of CV .

(a) Draw a P-V diagram of the situation just described: pick two arbitrary points A and

C on the diagram, locate the appropriate point B, and draw arrows indicating the two

parts of the overall state change.

(b) How much will the entropy change if the gas undergoes a constant volume change

during which the temperature changes from TA to TB?

(c) How much will the entropy of the gas change if it undergoes a constant pressure

change during which the temperature changes from TB to TC?

(d) Use the ideal gas law to find a relation between the ratio of the temperatures before

and after the isobaric process (TB/TC) and the ratio of the volumes before and after the

process (VB/VC).

(e) Use what you have found in parts (b) through (d) to derive the general formula for

the entropy change for any process (even irreversible ones) in an ideal gas:

∆S = nCV ln
Tf
Ti

+ nR ln
Vf
Vi



Extra problems I recommend you work (not to be turned in):

• One mole of a diatomic ideal gas (5 degrees of freedom), initially having pressure P and

volume V , expands so that the pressure increases by a factor of 1.8 and the volume

increases by a factor of 2.2. Determine the entropy change of the gas in the process.

(Answer: 35.16 J/K.)

• Prove that ∆S of the universe will always increase for calorimetry-type situations if the

two objects start off at different temperatures. Hint: Add together the change in entropy

for each object. Also, you may find what Wikipedia calls the “First mean value theorem

for integration” to be helpful.

13-1. Assume that our classroom has a volume of [01] m3 which is filled with air at

1.00 atm and 25◦C.

(a) Calculate the probability that all of the air molecules will be found in the forward

half of the room. Represent this remote possibility as 1 part in 10x, where x is some large

number. Give the value of x. NOTE: 2N = 10N log 2.

(b) How much more entropy is present when the air is distributed throughout the room

rather than confined to the front half only?

13-2. Consider a fictitious gas whose (non-interacting) atoms have only three available energy

levels that electrons can occupy: the ground state, a level that is [02] eV

above the ground state, and a level that is [03] eV above the ground state.

The gas is at [04] K. If there are 1023 atoms in the gas, how many are in the

highest excited state?



13-3. (Paper only.) This problem involves flipping a fair coin and counting how many times

you get heads, H, and how many times you get tails, T. You may want to refer to the

similar example problem in the textbook where they describe choosing red and green

marbles from a bag. The “microstates” are the specific ordered lists of heads and tails

that you get (“HHTTHTHH” would be one possible microstate for a collection of 8 flips);

the “macrostates” are the overall number of heads (or tails) that you get. (The above

microstate would belong to the “5 heads”, or “5H” macrostate.) Hopefully it’s obvious

that each macrostate will likely be associated with many different microstates. The

probability of a given macrostate occurring is proportional to how many microstates are

associated with it. Specifically, the probability of a particular macrostate is the number

of microstates associated with it, divided by the total number of microstates. That may

sounds complicated, but should make much more intuitive sense as you start doing the

problem below.

(a) Suppose you flip the coin once. List the 2 possible microstates. For each of the 2

possible macrostates (0H and 1H), list how many microstates are associated with it.

(Don’t worry, this is not supposed to be complicated yet.)

(b) Suppose you flip the coin twice. List the 4 possible microstates. For each of the 3

possible macrostates (0H, 1H, and 2H), list how many microstates are associated with it.

(c) Repeat for three flips. There are 8 possible microstates and 4 possible macrostates

(0H, 1H, 2H, and 3H).

(d) Repeat for four flips. OK, that should be enough. Think about this question: what’s

the probability of getting exactly 3 heads if you flip a coin four times? The answer is

4/16. Hopefully you can see why, from your list.

(e) Fill in the first four rows of this chart. Leave the table entries blank if not applicable.

Do you see the pattern? Fill in the fifth row based on the pattern.

Hopefully you have recognized Pascal’s triangle. Each entry in the next row can be

obtained by adding together two entries from the previous row. If you don’t recall



learning about Pascal’s triangle, Google it. Among other things, it gives you the

coefficients to the expansion of (x+ y)n. Who would have thought that FOIL was related

to flipping coins?

(f) Two important facts about Pascal’s triangle that you might not have run across

before are: (1) the numbers in the nth row add up to 2n. (For our situation, that’s the

total number of microstates. Hopefully it’s clear to you why they must add up to 2n.)

(2) The kth number in the nth row is given by the “choose” formula, the left hand side of

this equation being read as “n choose k”:(
n
k

)
=

n!
k!(n− k)!

(k is the column label, which starts at 0 and goes to n.) This is essentially what

mathematicians call the “Binomial Theorem”. If you haven’t seen that before, you

should verify the formula for a few entries in your table before proceeding.

Use those facts to easily answer this question: If you toss the coin 100 times, what is the

probability you will get exactly 50 heads and 50 tails? Give your answer as an exact

expression as well as a numerical percentage.

13-4. (Paper only.) If you toss a fair coin, you should expect to get heads half the time, right?

Well, hopefully the previous problem has convinced you that with large numbers of flips,

getting heads exactly half the time is actually a pretty rare event. But you should expect

to get heads close to half the time. How close is close? Understanding that is the point of

this problem. You will analyze that by looking at the fluctuations around the expected

value of 50%. You are welcome to work in groups for this, just make sure you are a full

participant and that you understand everything that’s going on.
(a) Toss a coin 50 times. After each toss write down how many total heads you have

gotten, along with the fraction of total tosses which have resulted in heads. I recommend

you keep track of this in a spreadsheet program as you go along. Here’s some sample

data I made up, just to show you what I mean:



(b) Now calculate the difference between your “Fraction of heads” and the expected

value of 0.5. (Again, I’d use a spreadsheet program for all of this.) That’s the statistical

fluctuation in your results. Using statistical techniques similar to the previous problem,

it can be shown that most of the time the absolute value of the difference from the

expected value will be less than 1/
√
N . To show that that is indeed the case, plot your

difference as a function of N , the number of tosses. On the same graph plot these two

functions: f1(N) = 1/
√
N and f2(N) = −1/

√
N . Your graph should nearly always stay

in between the f1 and f2 curves.

This type of thing becomes important time and time again in experimental physics. One

situation that immediately springs to mind is in detecting light. In my lab we have

detectors which can measure batches of individual photons. However, there are always

statistical fluctuations present in the numbers of photons we detect, that are just like the

fluctuations we saw above. Therefore, if we expect to see 1,000,000 photons each second,

what we will actually see are photon numbers ranging from 1,000,000 + 1,000 down to

1,000,000 − 1,000 (because one thousand is the square root of one million). For very low

light levels, this so-called “shot noise” becomes the dominant source of noise in most

optical experiments.



13-5. (Paper only.) Another example of the “square root effect” discussed in the previous

problem is found in electronic noise, where the time over which an electronic signal is

averaged takes the place of the number of measurements, N , discussed in the last

problem. As the noise in a heads/tails coin flip measurement decreases with the number

of coin flips, so does the noise in a voltage measurement decrease as the time over which

the signal is averaged is lengthened. In direct analogy, the fractional noise is equal to

1/
√
time, analogous to the 1/

√
N result of the last problem.

The graph represents 100 measurements that were performed between 0 and 1 s, on a

voltage source putting out a voltage around 3 V. Each data point represents the average

of the voltages collected during the previous 0.01 s. The standard deviation, a

measurement of the voltage fluctuations of the graph, is 0.112 V. What would be the

standard deviation if the voltage recorded for each point were averaged for 1 s? 10 s?

0.001 s? (Hint: You don’t need any standard deviation formulas–it’s just a measure of

the statistical noise. Also, please note that the graph extends to much larger times; only

the first 1 second is shown here.)

13-6. (Paper only.) Imagine that you are doing exit polls to determine the winner of an

election between two candidates. It is a very close election, with each candidate receiving

very close to half the votes. You are very careful to poll a balanced cross-section of

voters. You may assume that the fluctuations in the poll results will be approximately

1/
√
N . (a) If you poll 100 people, how close can the election be (in percentage points) if

you want to be reasonably certain that you predict the right winner based on your poll?

(b) What if you poll 10,000 people?



14-1. (a) An AM radio station transmits at [01] kHz. What is the wavelength of

these radio waves? Radio waves travel at the speed of light, 3.00× 108 m/s. (b) Repeat

for an FM radio station which transmits at [02] MHz.

14-2. At position x = 0, a water wave varies in time as shown in the figure. (The curve is at

the 10-cm mark at both edges of the figure.) If the wave moves in the positive x direction

with a speed of [03] cm/s, write the equation for the wave in the form,

y(x, t) = A sin(kx− ωt− φ).

Give the values of (a) A, (b) ω, (c) k, and (d) φ. (Give the value of φ between 0 and 2π

rad.) HINT: When taking an inverse sine to find φ, you must be careful to use the right

quadrant. Your calculator by default will use the 1st and 4th quadrants. Check your

final answer to make sure that it actually fits the curve everywhere. To change

quadrants, use sin−1 x→ π − sin−1 x.

14-3. Suppose you are watching sinusoidal waves travel across a swimming pool. When you

look at the water right in front of you, you see it go up and down ten times in

[04] s. At the peaks of the wave, the water is [05] cm below the

edge of the pool. At the lowest points of the wave the water is 6.0 cm below the edge of

the pool. At one particular moment in time you notice that although the water right in

front of you is at its maximum height, at a distance [06] m away the water is

at its minimum height. (This is the closest minimum to you.) (a) What is the

frequency f for this wave? (b) What is ω for this wave (rad/s)? (c) What is λ for this

wave? (d) What is k for this wave (rad/m)? (e) What is the amplitude A of this wave?

(f) What is the speed of water waves in this pool?



14-4. (Paper only.) A particular transverse traveling wave has the form,

y(x, t) = A sin(kx− ωt− φ), where A = 1 cm, k = 0.15 cm−1, ω = 7 s−1, and φ = 1 rad.

(a) What is the amplitude of the wave?

(b) What is the wavelength?

(c) What is the period?

(d) What is the direction of the velocity?

(e) What is the magnitude of the velocity?

(f) Use a computer program such as Mathematica to plot the shape of the wave, i.e.,

y(x), at time t = 0, and also at a time one fifth of a period later, on the same graph.

Label the two plots. The wave at t = 0.2 period should be offset in the direction

corresponding to your answer in (d).

(g) Verify that the peaks of the wave at t = 0.2 period have shifted by the amount

predicted by your answer to (e). (One method would be to combine Mathematica’s

FindRoot command with its derivative command, in order to find out where a specific

peak is.)

14-5. (Paper only.) Consider a transverse traveling wave of the form:

y(x, t) =
1

(x− 10t)4 + 1

(You may assume that the numbers have the appropriate units associated with them to

make x, y, and t be in standard SI units.)

(a) Is the wave moving in the +x or −x direction?

(b) Write an equation for a wave which is identical to this wave, but which is moving in

the opposite direction.

(c) What is the wave’s velocity?

(d) What is the transverse velocity of a section of the medium located at x = 0, at

t = 0.05 s?



Extra problems I recommend you work (not to be turned in):

• As we will study in a future unit, light is a wave. Lasers can generate waves which are

almost perfectly sinusoidal. The wavelength of light from a certain laser pointer is

620 nm. The speed of light is 2.9979× 108 m/s. Find the (a) wavenumber, (b) frequency,

(c) period, and (d) angular frequency of the light from this laser. (Answers:

1.013× 107 rad/m, 4.835× 1014 oscillations/sec, 2.068× 10−15 s, 3.038× 1015 rad/sec.)

15-1. A phone cord is 4.89 m long. The cord has a mass of 0.212 kg. A transverse wave pulse is

produced by plucking one end of the taut cord. That pulse makes four round trips (down

and back) along the cord in [01] s. What is the tension in the cord?

15-2. Imagine a clothesline stretched across your yard. It has a mass of 0.113 kg and a length

of 6 m. When you flick the line, the pulse you generate travels down the line at a speed

of [02] m/s. When the pulse gets to the end, it is completely absorbed

without reflection by the flexible pole it is tied to. If you stand near the other end of the

line and wiggle it sinusoidally for one minute with an amplitude of 10 cm at a frequency

of 3 Hz, how much energy will the flexible pole absorb?

15-3. (Paper only.) Two triangular shaped pulses are traveling

down a string, as shown in the figure. The figure

represents the state of the string at time t = 0. The pulse

on the left is traveling to the right, and the pulse on the

right is traveling to the left, as indicated by the arrows.

The speed of waves on the string is 1 m/s. Draw the shape

of the string at the following times: t = 2 s, t = 2.5 s,

t = 3.5 s, and t = 5 s.



15-4. (Paper only.) Imagine your slinky stretched to a length L and fixed at both ends.

(a) Write the slinky’s tension T and linear mass density µ in terms of the mass m, spring

constant k, and length L. Assume that the stretched length of the slinky is long enough

compared to the length when it is not stretched that the unstretched length is negligible.

What is the wave speed for transverse waves on a slinky in terms of m, k, and L?

(b) Have someone hold one end of your slinky (or attach it to something like a doorknob).

Take the other end and stretch the slinky until it is about five feet long. Now strike one

end of the slinky to make a transverse pulse and watch as the pulse travels to the other

end and then reflects back. Time how long it takes for the pulse to go out and back

10 times, and use this to calculate the wave speed for transverse waves on the slinky.

(c) Now predict what the wave speed would be if the slinky were stretched to about

10 feet.

(d) Stretch the slinky until it is about 10 feet long and measure the wave speed the same

way you did before. Compare your answer to your prediction in (c).

15-5. (Paper only.) (a) If a transverse pulse travels down your slinky and reflects off of the end

which is being held fixed by a friend, will the reflected pulse look the same as the

incoming pulse, or will it be inverted?

(b) Test our your prediction by having someone hold one end of your slinky (or attach it

to something like a door knob) while you take the other end and pull it back until the

slinky is stretched about 10 feet (don’t stretch it too far or it won’t slink back together

again and the slinky will be ruined). Quickly strike the top of the slinky with your hand

to make a transverse pulse. Watch carefully as the pulse reflects off of the fixed end. Did

it match your prediction?

(c) Now hold one end of your slinky up high and let the other end dangle downward

(don’t let it touch the floor). If you whack the end of the slinky to make a transverse

pulse, what do you think will happen to the pulse when it reaches the bottom? Will it

reflect? Will the reflection be inverted? I want an honest educated guess; you won’t lose

points if your prediction is incorrect.

(d) Try it and see what happens. Did the dangling end of the slinky act as a free end,

fixed end, or something else?



Extra problems I recommend you work (not to be turned in):

• (a) If you hold one end of a rope up high and let the other end dangle downward without

touching the floor, how will the wave speed change as a function of the distance from the

bottom of the rope? Hint: Pick a point on the rope a distance x up from the bottom of

the rope, and draw a free-body diagram for that point. There’s some weight (but not all

the weight) pulling down and some tension pulling up. That should give you tension as a

function of distance. You already know how the wave speed depends on tension. (b) Use

your answer to predict the time it would take for a transverse pulse to travel from the

bottom of the rope to the top. Hint: Doing this requires some calculus. You should have

found the speed dx/dt as a function of x. The best way to solve this equation is to bring

all of the x quantities to the left hand side, all of the t quantities to the right hand side,

and integrate both sides of the equation.

• You are abducted by aliens and placed in a holding cell on an unknown planet. Due to

your diligent study of the Starfleet Planetary Guide, you know that if you could

determine g, the gravitational acceleration on the planet, you would be able to figure out

where you are. So you pull a thread from your uniform which is 1.55 m long and which

weighs 0.500 grams. You tie the end to your shoe, which weighs 0.21 kg. You then hold

the top of the string with the shoe hanging at the bottom, and you pluck the string near

the top. The pulse takes 0.112 seconds to travel down to the shoe. (a) What is the value

of g predicted by the wave speed? (b) To double-check your results, you now start the

shoe oscillating back and forth. You time 5 periods in 68 s. What is the value of g

predicted by the motion of the pendulum? Ignore the length of the shoe. (Answers:

0.29 m/s2, 0.33 m/s2.)

• A light string of mass 15.2 g and length

L = 3.23 m has its ends tied to two walls

that are separated by the distance

D = 2.41 m. Two objects, each of mass

M = 2.03 kg, are suspended from the

string as in the figure. If a wave pulse is

sent from point A, how long does it take

to travel to point B? (Answer: 33 ms.)



• (a) Consider the function y = Ae(x−vt)2/a2
(where A, and a are constants, and v is the

speed of waves on the string). Plug this into the linear wave equation and show that it is

a solution. (b) Show that y = A sin(bxt) is not a solution to the wave equation (where A

and b are constants). (c) By plugging things into the wave equation, show that if yA(x, t)

and yB(x, t) are solutions to the wave equation, yA + 2.13yB is also a solution.

16-1. Parts (a) and (b): Write the complex number z̃ = a+ bi (where a = [01] and b

= [02] ) as a real number times the exponential of an imaginary number. In

other words, if I write z̃ as Aeiφ, what are the real numbers (a) A and (b) φ?

Parts (c) and (d): Write the complex number z̃ = Aeiφ, (where A = [03] and

φ = [04] rad) as a real number plus an imaginary number. In other words, if I

write z̃ as a+ ib, what are the real numbers (c) a and (d) b?

16-2. (Paper only.) Note: many students have calculators that can do the following types of

complex number problems automatically. However, I don’t want you to use your

calculator’s complex number functions for these problems—instead, do them by hand

(addition and subtraction can be done in rectangular form; multiplication and division

should be done by converting to polar form).

(a) If z1 = 2 + 3i and z2 = 3− 5i, what is z1 + z2 (in rectangular form)? What is z1 × z2

(in polar form)?

(b) If z1 = 1− i and z2 = 3 + 4i, what is z1 − z2 (in rectangular form)? What is z1 ÷ z2

(in polar form)?



16-3. (Paper only; no partial credit.) Suppose you have two random cosine functions with

frequency ω = 2 rad/s. The first one has amplitude and phase of [05] and

[06] , respectively. The second one has amplitude and phase of [07]

and [08] , respectively. (Phases given in radians.) (a) Use a computer program

such as Mathematica to plot the sum of the two random functions. You should find that

their sum is also a cosine function at 2 rad/s, but with a different amplitude and phase.

(b) Add the two cosines together using the complex exponential technique discussed in

class, and obtain the amplitude and phase of the sum. Plot the cosine function with that

amplitude and phase, and show that it really is the same as the combined function you

plotted in part (a). Your grade will be based entirely on whether your plotted function in

(b) is an exact match for your plotted function in (a). Remember to turn in your

Mathematica code that you used to generate the plots.

16-4. (Paper only.) Use Euler’s formula to prove that cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

and that sin(a+ b) = sin(a) cos(b) + cos(a) sin(b). Hint: First note that ei(a+b) = eia · eib.
Then apply Euler’s formula to each of the exponentials. Finally, note that the real part

of the stuff on the left side of the equation must be equal to the real stuff on the right

side, and the imaginary stuff on the left must equal the imaginary stuff on the right. This

lets you separate your equation into two equations which will lead to the two equations

you are trying to prove.

16-5. (Paper only.) (a) The equation of motion for a simple harmonic oscillator is:

d2x

dt2
= − k

m
x.

That simply comes from Newton’s 2nd Law, ΣF = ma, where I’ve plugged in the spring

force, reversed the left and right hand sides, and divided by m. To solve equations like

that, physicists often guess what the solutions are, then plug their guess into the

equation to see what results. In this case, you should know that this equation produces

simple harmonic motion, so guess a solution of the form x(t) = A cos(ωt). Plug that x(t)

into the equation, take the derivatives, and show your guess solves the equation if ω has a

particular dependence on k and m. You should get a very familiar result. (Note: this

guess doesn’t describe all solutions, since, for example, there could be a phase shift in the

cosine function.)



(b) As given in Physics phor Phynatics, the equation of motion for a damped harmonic

oscillator is:
d2x

dt2
= − γ

m

dx

dt
− k

m
x.

The difference between this equation and the last is the damping term, a

non-conservative force that is proportional to the velocity and measured by the “damping

constant” γ. Guess a solution of the form x(t) = Ae−t/τ cos(ωt). That is a decaying

cosine function; τ is the characteristic time it takes for the decay to occur. Plug your

guess into the equation, take derivatives, and show that although it’s a pain, you can

figure out what τ and ω must be (in terms of k, m, and γ). Hint: You will get an

equation with various sine and cosine terms in it. The sine terms on the left side of the

equation must be equal to the sine terms on the right side; same for the cosine terms.

This lets you separate your equation into two equations which will let you solve for τ and

ω. Another hint: If you look closely, you should be able to see that your answer for ω is

the same as your answer to part (a), times a factor of the form
√

1− stuff.

(c) Now guess a solution of the form x(t) = Ae−t/τeiωt, realizing that the real solution

will only be the real part of that. This is the same solution you guessed in part (b), only

written in complex form. Plug your guess into the equation, take derivatives, and show

that you get the exact same results for τ and ω as in part (b)—but that the algebra is far

easier! Hint: If you write x(t) as Aet(−1/τ+iω), the time derivatives are easy. You will get

an equation with various real and imaginary terms. The real terms on the left side of the

equation must be equal to the real terms on the right side; same for the imaginary terms.

This leads to the exact same two equations as in part (b).

Extra problems I recommend you work (not to be turned in):

• Use the techniques/principles of complex numbers to write the following as simple

phase-shifted cosine waves (i.e. find the amplitude and phase of the resultant cosine

wave). (a) 5 cos(4t) + 5 sin(4t). (b) 3 cos(5t) + 10 sin(5t+ 0.4). (Answers: 7.07, −45◦;

6.96, −7.61◦.)



• Suppose you pick a lot of different values for φ and plot the real and imaginary

components of 5eiφ for each one. (The real component is the x-coordinate and the

imaginary component is the y-coordinate, of course.) What geometric shape will be

defined by your plot?

17-1. A beam of light crossing a boundary between two media at normal incidence (i.e.

perpendicular to the boundary) shares many features with waves on strings reflecting and

transmitting from boundaries. Among those features is the dependence of reflection and

transmission coefficients on wave speed. Suppose you have a light ray going from air into

glass. Light travels at 2.9979× 108 m/s in the air and at [01] m/s in the

glass. What percent of the incident light power will reflect off of the surface of the glass?

17-2. Imagine that you have a copper wire with a round cross section, 0.411 mm in diameter.

You splice the end of that wire to another wire with the same cross section, but which is

made of an unknown metal with density of [02] kg/m3. (Copper has a density

of 8920 kg/m3.) You then pull on the joined wires until they are under a tension of

T = [03] N. (a) What is the ratio of the wave velocity on the copper wire to

that on the unknown wire (i.e., what is vcopper/vunknown)? (b) What is the ratio of the

wave numbers for the two wires (kcopper/kunknown) for a sine wave with an angular

frequency 500 rad/s? (c) If I send a sine wave down the copper wire, what fraction of the

power in the incident sine wave is transmitted to the unknown wire?

17-3. If you splice a copper wire with a round cross section, [04] mm in diameter, to

an iron wire with a different diameter, what should the diameter of the iron wire be if

you don’t want waves to reflect at the junction when the wire is pulled tight? Copper has

a density of 8920 kg/m3, and iron has a density of 7860 kg/m3.



17-4. (Paper only.) As given in Serway chapter 17, the speed of all mechanical waves follows an

expression of the general form:

v =

√
elastic property
inertial property

,

For the speed of sound in air, the elastic property is the bulk modulus B and the inertial

property is the density ρ. For longitudinal sound waves in a solid rod the inertial

property is still the density, but the elastic property is Y , “Young’s modulus”.

Young’s modulus was discussed back in chapter 12, but in case you missed it, Young’s

modulus of a material is defined by the following equation:

Y =
stress
strain

,

where the stress is the force per cross-sectional area that’s being applied, and the strain

is the fractional change in length ∆L/L, that occurs in response.

(a) Consider a solid rod. Derive the “spring constant” of the rod k, in terms of its

Young’s modulus Y , cross-sectional area A, and length L. Do this simply by comparing

the definition of Young’s modulus to Hooke’s law.

(b) The velocity equation for a solid rod works well for slinkies, too, if you use your

answer to part (a) to write Young’s modulus in terms of the spring constant of the slinky.

Do that, and derive an expression for the longitudinal wave speed of a slinky in terms of

A, L, k, and the slinky’s mass m.

(c) Specifically, how does the speed of compression waves change with L?

(d) Stretch your slinky until it is 5 feet long (hook it to something or have a friend hold

the other end), and then whack the end to make a compression wave. Measure the time

that it takes for the pulse to travel back and forth 10 times and calculate the speed of

compression waves on your slinky.

(e) Now do the same thing with the slinky stretched to 10 feet. Does the speed of

compression waves vary with length as you predicted?

(f) Compare the speed of longitudinal waves to the speed of transverse waves that you

measured and predicted in an earlier assignment.



Extra problems I recommend you work (not to be turned in):

• Show that in the limit as µ2 → 0 or µ2 →∞, our equations for the transmitted and

reflected amplitudes and powers are consistent with what we deduced earlier for a string

with a fixed or a free end.

18-1. A family ice show is held at an enclosed arena. The skaters perform to music with level

81.7 dB. This is too loud for your baby who yells at [01] dB. (a) What total

sound intensity engulfs you? (b) What is the combined sound level?

18-2. A stereo speaker (considered a small source) emits sound waves with a power output of

[02] W. (a) Find the intensity 10.5 m from the source. (Assume that the

sound is emitted uniformly in all directions from the speaker.) (b) Find the intensity

level, in decibels, at this distance. (c) At what distance would you experience the sound

at the threshold of pain, 120 dB?

18-3. A firework explodes [03] m directly above you. You record the explosion with

a microphone and you find that the average intensity of the sound was [04] dB

and that the sound lasted for 2.32 ms. How much was the total sound energy released by

the explosion (in Joules)? Assume that the sound waves were spherical.

18-4. A bat flying at [05] m/s emits a chirp at 40.95 kHz. If this sound pulse is

reflected by a wall, what is the frequency of the echo received by the bat? (Hint: This is

exactly the same as the situation where the source and observer are both moving towards

each other.) Use 345 m/s for the speed of sound.

18-5. A train is moving close to and parallel to a highway with a constant speed of 22 m/s. A

car is traveling in the same direction as the train with a speed of [06] m/s.

The car horn sounds at a frequency of 519 Hz, and the train whistle sounds at a

frequency of 327 Hz. (a) When the car is well behind the train, what frequency does an

occupant of the car observe for the train whistle? (b) When the car is well in front of the

train, what frequency does a train passenger observe for the car horn after the car

passes? Assume that the speed of sound is 343 m/s. There is no wind.



18-6. One day as I stepped out onto the street, I was very nearly hit by a car. Fortunately, the

car honked its horn and I jumped out of the way. But I noticed that the frequency of the

horn as the car approached me was a factor [07] higher than its frequency

after the car passed me and was moving away from me. Calculate the velocity of the car.

The speed of sound is 343 m/s.

18-7. When we analyze the light coming from a distant galaxy, we find a particular absorption

line with a wavelength of [08] nm. This same absorption line in light from the

sun has a wavelength of 625 nm. (a) Is the galaxy moving towards us or away from us?

(b) Calculate the magnitude of the velocity of the galaxy relative to us. Note that for

light waves, the Doppler shift is given by

f ′ = f

√
c± v
c∓ v

where c is the speed of light and v is the relative velocity of the source and observer. Use

the upper signs when the source and observer are moving towards each other and the

lower sign when the source and observer are moving away from each other.

Extra problems I recommend you work (not to be turned in):

• The intensity level of an orchestra is 80.5 dB. A single violin achieves a level of 68.2 dB.

How does the intensity of the sound of the full orchestra compare with that of the violin’s

sound? Find the ratio of the intensities. (Answer: 16.98.)

• Two small speakers emit spherical sound

waves of different frequencies. Speaker A

has an output of 1.51 mW, and speaker B

has an output of 2.09 mW. Determine the

sound level (in decibels) at point C (see

figure) if (a) only speaker A emits sound,

(b) only speaker B emits sound, (c) both

speakers emit sound. Assume that the two

waves are incoherent so that intensities add.

(Answers: 66.82 dB, 69.20 dB, 71.18 dB.)



• I am sitting 2.37 m from a speaker listening to some music. How close to the speaker

should I sit if I want the music to be 14.3 dB louder? (Answer: 0.46 m.)

• On a very quiet morning, you drop a tuning fork vibrating at 512 Hz from a tall bridge.

How long until you will hear a frequency of 475 Hz? Take the speed of sound in air to be

343 m/s and the acceleration of gravity to be 9.80 m/s2. Hint: Don’t forget to include

the time it takes for the sound to return to the point of release. (Answer: 2.832 s.)

19-1. You notice a supersonic jet flying horizontally overhead before the sonic boom arrives.

As the jet recedes from view, you judge that its position makes a [01] -degree

angle with the horizon when you finally hear the sonic boom. What is the Mach number

(i.e., the speed of the plane divided by the speed of sound)?

19-2. A jet airplane flies with a speed of 1120 mph (mi/h) at an altitude of [02] ft.

It passes directly over my head. How soon after it passes directly above me will I hear

the sonic boom? The speed of sound is 343 m/s. (Caution: I am not asking how much

time it took for the sound to travel from the airplane when it was directly overhead. The

sonic boom originates from the airplane sometime before it reached the point directly

overhead.)

19-3. A pair of speakers separated by [03] m are driven by the same oscillator at a

frequency of 690 Hz. An observer, originally positioned at one of the speakers, begins to

walk along a line perpendicular to the line joining the two speakers. (a) How far must

the observer walk before reaching a relative maximum in intensity? (b) How far will the

observer be from the speaker when the first relative minimum is detected in the

intensity? (Take the speed of sound to be 345 m/s.)



19-4. In the arrangement shown in the figure, an object of mass m = [04] kg hangs

from a cord around a light pulley. The length of the cord between point P and the pulley

is L = 2.0 m. When the vibrator is set to a frequency of 150 Hz, a standing wave with six

loops is formed. What must be the linear mass density of the cord?

19-5. A steel piano string is [05] inches long. The diameter of the string is

0.0421 inches. When struck, this string produces the musical note B which has the pitch

of 123 Hz. (a) Find the tension of this string. Give the answer in pounds. The density of

steel is 7.86 g/cm3. (b) There are 228 strings in a piano. (Some notes use more than one

string.) If we assume that the tension in every string is the same, find the total force (in

tons, 1 ton = 2000 lb) exerted on the frame of the piano. (Add together the tensions of

all of the strings.) Piano frames are made of steel so that they can withstand this kind of

force.

19-6. (Paper only.) The high E string on Dr. Durfee’s guitar has a linear mass density of

3.93× 10−4 kg/m (he calculated it from information found at the string manufacturer’s

web site) and a length of 25.5 inches (64.77 cm). The frequency of the fundamental mode

of this string is 330 Hz. (This mode is also known as the “first harmonic”.) (a) What is

the tension in the string? (b) When the string is plucked, a whole bunch of modes are

excited. If the string is then touched right in the middle, all of the modes will be damped

out except the ones that have a node at that point. After touching the string in the

middle, what is the frequency of the lowest frequency mode which is still ringing?

(c) What if the string is touched at a point 2/3 of the way from one end to the other?



19-7. (Paper only.) Transverse standing waves on a slinky:

The picture represents a transverse wave on a slinky

oscillating in the fundamental mode. The distance

along the slinky is in the x-direction; because the

wave is transverse, the displacement from

equilibrium is in the y-direction.

(a) Make a sketch of the displacement vectors of this

mode, at a frozen moment in time where the

displacement in the middle is a maximum, for a number of evenly-spaced positions along

the slinky. The displacement vectors are arrows which indicate how far away from

equilibrium (and in which direction) the wave is at a given position. Make similar

sketches for the second, third, and fourth harmonics, for similarly frozen moments in

time.

(b) Stretch your slinky to a fixed length feet of 5− 10 feet. Either measure the wave

velocity for this length, or else go back to your notes from the problem in a previous HW

assignment where you measured the velocity and predicted the dependence as a function

of length.

(c) Use the measured velocity along with the known wavelengths of the first three

harmonics to predict the frequency of oscillation of the first three harmonics.

(d) Test it out: verify your sketches in part (a), and measure the frequencies of the first

three harmonics. Do this by measuring about 10 oscillations and dividing the time for the

ten oscillations by 10 to get the period for a single oscillation with greater accuracy. Then

use the period to find the frequency. Compare with your predicted values from part (c).

Extra problems I recommend you work (not to be turned in):

• Two speakers emitting 651 Hz are separated by a distance of 2.0 m. A student is

positioned directly in front of the first speaker and along a path 90◦ from the line that

joins the two speakers. As she walks directly toward the first speaker she notices minima

in the sound level. (a) How many minima does she experience if she begins from far

away? (b) How far is she from the speaker for the first minimum she encounters? Use

343 m/s for the speed of sound. (Answers: 4, 7.46 m)



• Suppose we excite a two-loop standing wave in a rope using a tension of 1.5 N. What

tension should we apply to the rope if we want to excite a one-loop standing wave with

the same frequency? (Answer: 6 N.)

• Two sine waves traveling down a string interfere to create a standing wave. The

displacement of the string is given by y(x, t) = (3.21 cm) sin(0.342 rad
m · x) cos(32.2 rad

s · t).
(a) What is the amplitude of each of the two interfering waves? (b) What is the

wavelength of each of the two interfering waves? (c) What is the speed at which the two

interfering waves are traveling? (Answers: 1.605 cm, 18.37 m, 94.15 m/s.)

20-1. A pipe open at both ends has a fundamental frequency of [01] Hz when the

temperature is 0◦C. (a) What is the length of the pipe? (b) What is the fundamental

frequency at a temperature of 30◦C? Assume that the displacement antinodes occur

exactly at the ends of the pipe. Neglect thermal expansion of the pipe.

20-2. A pipe is open at both ends. Its length is 22.81 cm. If I excite standing waves in the pipe

by blowing air over one of its ends, I hear a pitch of [02] Hz. (a) Find the

distance between the antinodes at the two ends of the pipe. This is not the same as the

actual length of the pipe, since the antinodes are not exactly at the ends of the pipe. The

speed of sound is 343 m/s. (b) How far past the physical ends of the pipe do the

antinodes extend? Assume that it is the same amount for each antinode. (c) If I close

one end of the pipe, what pitch will I hear? The node at the closed end is exactly at the

position of the closed end. The antinode at the open end extends past the physical end of

the pipe by the same amount found in part (b).

20-3. Two identical mandolin strings under 205.6 N of tension are sounding tones with

fundamental frequencies of 523 Hz. The peg of one string slips slightly, and the tension in

it drops to [03] N. How many beats per second are heard?

20-4. While attempting to tune the note C at 523.0 Hz, a piano tuner hears 2 beats/s between

a reference oscillator and the string. (a) When she tightens the string slightly, the beats

frequency she hears rises smoothly to [04] beats/s. What is the frequency of

the string now? (b) By what percentage should the piano tuner now change the tension

in the string to bring it into tune?



20-5. A speaker at the front of a room and an identical speaker at the rear of the room are

being driven at 456 Hz by the same sound source. A student walks at a uniform rate of

[05] m/s away from one speaker and toward the other. How many beats does

the student hear per second? (Take the speed of sound to be 345 m/s.)

20-6. We place a speaker near the top of a drinking glass. The speaker emits sound waves with

a frequency of [06] kHz. The glass is 14.1 cm deep. As I pour water into the

glass, I find that at certain levels the sound is enhanced due to the excitation of standing

sound waves in the air inside the glass. Find the minimum depth of water at which this

occurs (distance from surface of water to bottom of glass). The standing sound wave has

a node at the surface of the water and an antinode at the top of the glass. Assume that

the antinode is exactly at the top of the glass. The speed of sound in air is 343 m/s.

20-7. Suppose that your shower stall is [07] m tall. (a) As you sing in the shower,

how many frequencies in the range 300–1500 Hz will resonate? Ignore side-to-side sound

waves and take the shower stall to be closed at both ends. Use 343 m/s for the speed of

sound. (b) What is the lowest resonant frequency in that range? (c) What is its

harmonic number? (d) What is the highest resonant frequency in that range? (e) What

is its harmonic number?

20-8. (Extra credit; paper only.) Dr. Durfee recounts the following: One evening I took a tall

glass from my cupboard and measured the frequency of the fundamental mode of the air

in the glass. I did this by whacking the bottom of the glass while my wife held a

microphone above the glass. The microphone was connected to my computer, and I

measured the frequency using “Spectrum Lab”, a free program which you can download

from the class web page. The inside of the glass is a cylinder which is 7 cm in diameter

and 14.3 cm tall. The lowest frequency I measured when I whacked the glass was

570.8 Hz.

(a) If the glass were very narrow (i.e. if the diameter were much smaller than the height)

then the waves would propagate almost as if they were one-dimensional. Otherwise you

need to use a three-dimensional wave theory to get precise results. Assuming that the

waves in the glass are one dimensional, calculate the velocity of sound using the height of

the glass and the frequency of the fundamental mode. (Note: Although this assumption

is not really very good in this case, you should still get an answer which is within 5% of

the “expected” answer of 343 m/s. This is due to the fact that the wideness of the glass



introduces two errors which partially cancel each other. First, the fact that the waves

propagate in the glass three-dimensionally means that the wavenumber k is really the

sum of three components k =
√
k2
x + k2

y + k2
z , resulting in a wavelength for the

fundamental mode which is shorter than it would be if the diameter of the glass were

smaller. Second, the wide mouth of the glass introduces an “edge effect”. Because the

mouth is so wide, the oscillating wave pokes out of the cup and the pressure just outside

the cup is not fixed at atmospheric pressure. This effectively increases the length of the

cup, thereby increasing the wavelength of the fundamental mode.)

(b) I then filled the glass with water and found the frequency of the first harmonic to be

3168 Hz. Use this frequency to calculate the speed of sound in water. (Note: This answer

won’t turn out as nicely. You still have the shorter wavelength due to the

three-dimensional nature of the oscillation. But the “edge effect” is gone because there is

no water outside of the glass: because the air above the glass has such a different wave

speed than the water in the glass, the oscillation doesn’t penetrate out of the glass very

far. Still, your answer should be within 25% of the expected value of 1480 m/s.)

(c) Then I put milk into the glass and measured a frequency of 3100 Hz. What is the

speed of sound in milk?

(d) I then shook up the milk and found that the frequency of the first harmonic was cut

in half. However, over the course of a few seconds the frequency drifted back up. This is

because microscopic air bubbles in the milk decrease the density of the milk (air is less

dense than milk) and decrease the bulk modulus (air is more compressible than milk).

Which changed by a bigger factor, the density or the bulk modulus?

(e) (Optional.) This is a fun thing that you ought to try. You can do it with water and

hear the pitch go down after you shake it. But water releases its air bubbles rather fast.

It is easier in milk because the fat in milk increases the viscosity and holds onto the

bubbles longer. And it works a lot better if you add ice cream. Make yourself a

milkshake in the blender, pour it into a rigid cup (one made of glass works best), and

then hit the bottom of the glass. You should hear a very deep, low frequency “thunk”.



Extra problems I recommend you work (not to be turned in):

• (a) Find the speed of sound in helium gas at 38.5◦C. (b) If an organ pipe produces a tone

(pitch or fundamental frequency of the pipe) with frequency 484 Hz in air at room

temperature, find the frequency of its tone in helium gas at 38.5◦C. The speed of sound

in air at room temperature is 343 m/s. (Answers: 1038 m/s, 1465 Hz.)

• Two speakers emit sound waves with frequency 584 Hz. They are driven by the same

oscillator so that they are in phase with each other. We place the speakers so that they

are a few meters apart and facing each other. Along the line joining the two speakers, the

sound waves from the two speakers are traveling in opposite directions. This creates a

standing wave between the two speakers. How far apart are the antinodes in that

standing wave? Neglect the effect of reflection of waves from the speakers. The speed of

sound is 343 m/s. (Answer: 29.4 cm.)

• Download and install Spectrum Lab on a computer with a microphone. Measure

resonances in a glass, yourself. Compare your measured values to Dr. Durfee’s.

• The wavelength of one sound wave is 0.81 m. The wavelength of a second sound wave is

a little bit longer. When the two sound waves are superimposed on each other, we hear a

2.3 Hz beat. Find the difference in their wavelengths. The speed of sound is 343 m/s.

(Answer: 4.4 mm.)



• Download the program “Spectrum Lab” from the class web page, if you haven’t already.

Install it and run it. Click on “View/Windows” and then on “Spectrum Lab

Components.” In the top left-hand corner of the window that opens is a box called

“Signal Generator.” Make sure that the switch below it points to the right. Make sure

the “Mono” box on the far right hand side is green and set for “DAC”. (Click it once if

it’s set to “(off)”.) Now click on “View/Windows” and open the “Test Signal

Generator”. You can use this new window to make different tones. (a) Turn it on and

generate two sine waves (with no AM or FM) at 440 and 441 Hz. Listen to the beats.

(b) Play around with the program on your own. Try combining many different

frequencies. What happens when you combine frequencies that are closer? Farther away?

That are multiples of each other? Can you simulate the beat effect by using a single

frequency but with amplitude modulation on? Etc.

21-1. (Paper only.) Longitudinal standing waves on a

slinky: The following picture represents a

longitudinal wave on a slinky oscillating in the

fundamental mode. The distance along the slinky is

in the x-direction; because the wave is longitudinal,

the displacement from equilibrium is also in the

x-direction.

(a) Make a sketch of the displacement vectors of this

mode, at a frozen moment in time where the displacement in the middle is a maximum,

for a number of evenly-spaced positions along the slinky. Make similar sketches for the

second, third, and fourth harmonics, for similarly frozen moments in time. Hint: Be

careful with directions. Keep in mind that the longitudinal displacement vectors point in

the same direction as the slinky’s length.

(b) Stretch your slinky to a fixed length of 5− 10 feet. Either measure the velocity of

longitudinal waves for this length, or else refer to your notes from a problem in a

previous HW assignment where you measured the velocity of a longitudinal wave and

predicted the dependence as a function of length.

(c) Use the measured velocity along with the known wavelengths of the first three

harmonics to predict the frequency of oscillation of the first three harmonics.



(d) Test it out: verify your sketches in part (a), and measure the frequencies of the first

three harmonics. (The third one may be tricky; if too difficult, just do the first two

harmonics.) Compare with your predicted values from part (c).

21-2. (Paper only.) Imagine that I have a string which I can use to transmit waves. I make

various measurements of the speeds of different sinusoidal waves and determine that they

travel at a velocity given by vsine = 0.637 ω2, where the number 0.637 has the

appropriate units to make v and ω be SI quantities. I then form a wave pulse by

combining a large (infinite) number of sinusoidal waves with different wavenumbers,

centered around k = 1.42 radians per meter. (a) What are the units of the 0.637

number? (b) What is the dispersion relation ω(k) for waves on the string? (c) What will

be the phase velocity of the pulse? (d) What will be its group velocity? (e) At which of

those two velocities will the center of the pulse travel down the string?

21-3. (Paper only.) Consider the following two functions, which are just sums of sinusoidal

waves having different amplitudes.

y1(x, t) =
60∑

n=40

e−n
2/1000 cos (2πn(x− t))

y2(x, t) =
60∑

n=40

e−n
2/1000 cos

(
2πn(x− n0.25t)

)
Notice that the components making up the first function all have the same velocity

(v = 1), whereas the components making up the second function have velocities which

depend on their frequencies.

(a) Estimate the phase velocity and group velocity of function y1. Using a computer

program such as Mathematica, plot the function at times t = 0, 0.1, and 0.5. Start with

the x-axis range going from −0.5 to 0.5, then adjust the range so that the peak stays

centered. The y-axis scale should go from −2 to 2. (In Mathematica that’s done via the

PlotRange option for the Plot command.) With what velocity is the peak moving? (That

will the peak’s position on the t = 0.5 graph, divided by 0.5.) Does it match your

prediction? Does the peak maintain its shape? Does it spread out?

(b) Repeat, for function y2. Evaluate the group and phase velocities at the average k,

which corresponds to n = 50. In Physics Phor Phynatics the average k is referred to as k̄.



In this case, please plot the function for times t = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. How does

the measured speed of the peak compare to your predicted group and phase velocities?

(Be sure to track the correct pulse.) Does the peak maintain its shape? Does it spread

out?

Extra problems I recommend you work (not to be turned in):

• In the animated gif I created to show an example of phase and group velocities going in

different directions, this is the equation I used: f(x, t) = cos(kx+ k−2t). I then added up

a bunch of different waves having k values equally spaced between 0.9 and 1.1, and

plotted the sum at various times.

(a) What was the “dispersion relation” of this wave, ω as a function of k?

(b) What was the phase velocity? (Assume all numbers are in SI units.)

(c) What was the group velocity?

(d) At what speed was the peak of the wave traveling?

(Answers: ω = −1/k2; -1 m/s; 2 m/s; 2 m/s.)

22-1. (Paper only) The function f(x), graphed below, is defined as follows: it is zero most of

the time, but equal to 1 when −2 < x < −1 and when 1 < x < 2. It repeats with a

period of L = 10.

(a) Find the Fourier coefficients of f . If any of the terms have obvious values, state the

reason why. Hint: integrate from -5 to 5 instead of from 0 to 10.

(b) Write f(x) as an infinite series, and use a program such as Mathematica to plot the

series for the first 1 term, the first 10 terms, and the first 100 terms (in three separate

graphs). The Sum command in Mathematica should make this easy. You can easily

check your answer to (a): if correct, your graph of the first 100 terms should look nearly

exactly like the graph below.



22-2. (Paper only) At a particular time, a wave has the shape

shown in the figure (y = 0.5x from 0 ≤ x ≤ 2, repeated).

You might get this type of wave, albeit not repeated, by

(for example) plucking a guitar string very close to the

right end.

(a) Calculate the Fourier coefficients, and prove that this

wave can be represented by:

y(x) =
1
2
− 1
π

∞∑
n=1

1
n

sin(nπx)

(b) Give a brief argument through symmetry as to why all of the cosine terms except the

DC offset (if you want to call that a cosine term) were zero. If you want to save yourself

a little bit of work, you can do this part before part (a).

(c) Verify that that function reproduces the above graph, by using a program such as

Mathematica to plot the function with the summation having 1, 10, and 100 terms. (The

Sum command in Mathematica should make this easy.)



22-3. (Paper only.) The power that comes out of the electrical outlets in your home is AC or

“alternating current” power, characterized by a voltage that oscillates sinusoidally.

Conversely, most electronic devices require a constant voltage (known as DC or “direct

current” power). One way to generate DC power from AC power is to use a device called

a diode to “kill” the negative part of the sine wave, resulting in a wave like the one

shown below. Then the wave is filtered to keep only the DC component (i.e. the constant

term of your Fourier series). The wave shown below is known as a “half-wave rectified”

wave (“rectified” because it is only positive, and “half” because only half of the wave is

left). If I wanted to make a 5 V DC power supply this way, what does V0 (the amplitude

of the pre-rectified wave) need to be? (Note: the x-axis is plotted in units such that a

period is just one unit.)

Extra problems I recommend you work (not to be turned in):

• Work out any of the Fourier series problems that are on the old exams posted to the class

website.

• We discussed the equation for the time-averaged power carried by a sine wave traveling

down a string: P = 1
2µω

2A2v. For a more complicated wave, the power is just the sum of

the powers carried by each of the sine waves that make it up. Show that the square wave

whose Fourier coefficients were solved in the text (see PpP equation 6.18) carries infinite

time-averaged power. (This is one reason that you can’t ever make a true square wave on

a string, you can only make an approximate one.)



23-1. (Paper only.) A string of length L is fixed at both ends. At time t = 0 the string is

stretched into the shape shown in the figure.

Mathematically, the shape of the string is given by the equation:

y(x) =

 0, if 0 < x < 7
16L

h, if 7
16L < x < 9

16L
0, if x > 9

16L

We want to use a Fourier transform to write y(x) as a sum of the harmonic modes of the

string. (These are sine functions only.)

(a) If we want to perform a Fourier transform to write y(x) in terms of the harmonic

modes of the string, what should be the size and shape of the basic repeating unit?

(Hint: if you just repeat the given shape, the periodic function will be even and you will

have cosine terms only.) In the integral(s) that you have to do below, it’s probably

easiest to integrate from −period/2 to period/2.

(b) Calculate the constant term of the Fourier series. If it equals zero due to a symmetry

argument, state the argument.

(c) Calculate the sine coefficients. If they equal zero due to a symmetry argument, state

the argument.

(d) Calculate the cosine coefficients. If they equal zero due to a symmetry argument,

state the argument.

(e) Using your answers to parts (a) through (d), write y(x) as a sum of harmonic modes

on the string.

(f) Verify that the function you obtained reproduces the above graph, by using a

program such as Mathematica to plot the function with the summation having 1, 10, and

100 terms. Use h = L = 1; force the x-axis to display from 0 to 1 and the y-axis to

display from −0.2 to 1.2.



23-2. (Paper only.) Several of the BYU physics department faculty members have Ti:sapph

lasers (pronounced “tye-saff”; short for “titanium-doped sapphire”, the active medium)

which produce pulses of light as short as about 25 femtoseconds long (1 fs = 10−15

seconds). Use the uncertainty principle to estimate the minimum bandwidth that the

laser gain medium needs to have to produce such pulses. The bandwidth is the maximum

frequency of light that it will amplify minus the minimum frequency it will amplify,

labeled ∆f .

23-3. (Paper only.) Find a piano. A grand piano would be best. Push down the sustain pedal,

then sing a note into the strings. What do you hear after you stop singing? The piano is

doing a Fourier transform of your voice. Each string only resonates with certain

frequencies. Those strings which have a harmonic at the same frequency as one of the

frequencies present in the note you sang will absorb sound and begin to oscillate, largely

reproducing the sound of your voice.

24-1. (Paper only.) I found a few websites that say the lowest note a piccolo can play is d2, the

D that is an octave and a note above middle C. The highest note a piccolo can play is c5,

the note that is four octaves above middle C. (a) What is the frequency ratio of these

two notes (using an equal temperament scale)? (b) What is the wavelength of the d2

note? Assume the speed of sound is 343 m/s. (c) Does that wavelength make sense with

this homework problem I found in Serway, that states: “The overall length of a piccolo is

32.0 cm. The resonating air column vibrates as in a pipe open at both ends.” Why/why

not? (d) When the piccolo is playing its highest note, what is the distance between

adjacent antinodes?

24-2. (Paper only.) While you are practicing the piano, a car races past outside. You notice

that as the car approached, the engine made a noise which was exactly in tune with a

middle A (440.0 Hz). After the car passed, the pitch dropped down two half steps to a G.

How fast was the car going? Assume that the piano is tuned to an equal temperament

scale and that the speed of sound is 343 m/s.



24-3. (Paper only.) Guitar players often tune their instrument using harmonics. Imagine that I

use an electronic tuner to tune my low E string to 164.814 Hz, precisely the correct

frequency for an equal temperament scale referenced to a frequency for middle A of

440.000 Hz. Now I tune my next string, the A string which is 5 half-steps higher in

frequency, using harmonics. Since 5 half-steps is a musical fourth, which corresponds to a

frequency ratio of 4/3, I can do this by lightly touching the E string 1/4 of the way from

the end of the string and lightly touching the A string 1/3 of the way from the end of the

string. (a) Why is that? (b) I then play both strings and adjust the A string to make the

beat frequency as low as possible. If I tune the beats completely away, how far off (in Hz)

will the frequency of the A string be from the ideal frequency for this string according to

the equal temperament scale?

24-4. (Paper only.) Find a piano. A grand piano would be best. Push down the sustain pedal,

then clap your hands near the strings. Listen carefully to see which is the highest note

excited by your clap. It may take several tries before you are convinced you have

identified the correct note. Determine the frequency of that note. Now use the

uncertainty principle to estimate the duration of your clap.

24-5. (Paper only.) Find a piano. (a) Gently push down the C below middle C lightly enough

that no sound is made. Keep holding it down. Now strike middle C. Let go of the higher

note while still holding down the lower one. Can you still hear middle C? That’s because

the second harmonic of the low C has nearly the same resonance frequency as the

fundamental of the note that is one octave higher. This means that the low C strings can

absorb energy at this frequency and begin to oscillate. (b) Now try holding down the low

C and playing different notes to see which ones share harmonics with it. Find at least

three such notes, and explain how/why they were able to excite the low C strings.

24-6. (Paper only.) Find a piano. Push lightly on one of the low notes such that it doesn’t

make a sound. While holding down that key, loudly strike the note which is one octave

higher. You should now hear the lower strings oscillating at the fundamental frequency of

the higher strings. (You observed that in the previous problem.) Now lightly strike and

hold the higher note again. Chances are if you listen carefully, you will be able to hear

beats. (a) Why? (b) How many beats did you hear, and what specifically does that tell

you? (If you don’t hear any beats, try a different set of notes.)



Extra problems I recommend you work (not to be turned in):

• The lowest string on a 6-string guitar is usually tuned to an E at a frequency of 82 Hz

(not including the decimal places). (a) If this E is referenced to an equal temperament

scale for which middle A is exactly 440 Hz, give the frequency of this E to four decimal

places. (b) Sometimes guitar players will loosen the tension in this string to drop it down

two half-steps to a D to hit lower notes in a particular song. This is known as “drop D

tuning”. What is the frequency of the D just below the E you found above? (to four

decimal places) (c) By how much do you need to reduce the tension in the string to go

from the E down to the D? (Answers: 82.4069 Hz, 73.4162 Hz, reduce by 20.6%.)

25-1. A ray of light passes through a pane of glass which is 1.0 cm thick. The index of

refraction of the glass is 1.53. The angle between the normal to the surface of the pane

and the ray in the air as it enters the pane is [01] ◦. (a) Find the angle

between the normal to the surface of the pane and the ray inside the glass. (b) Find the

angle between the normal to the surface of the pane and the ray in the air after it exits

the pane.

25-2. Light passes through a glass prism, as shown in the figure.

The cross-section of the prism is an equilateral triangle. (a)

Find the incident angle, if we want the light ray inside the

prism to be parallel to the base of the prism. Use

[02] for the index of refraction of glass. Remember

that the incident angle is measured with respect to a line

normal to the surface of the prism. You may use n = 1 for the

index of refraction of air. (b) The index of refraction of glass for blue light is 1.528.

Using the incident angle from part (a), find the angle at which blue light exits the prism.

This is not the angle of deviation δ shown in the figure. We want the angle between the

light and a line normal to the surface from which the light exits. (c) Repeat part (b) for

red light, for which the index of refraction is 1.511. Caution: In parts (b) and (c), the

light ray inside the prism is no longer parallel to the base of the prism.



25-3. (Paper only.) An optics researcher sets up two mirrors as

shown by the black lines in the figure below. She shines a

laser towards the mirrors along the path marked by the

gray arrows. Find the angle between the incoming and

outgoing beams of light, φ, in terms of the angle between

the mirrors, θ. Perhaps surprisingly, the angle φ does not

depend on how the two mirrors are oriented relative to the

incident light ray. Hint: There are likely many ways to do this problem. The way I chose,

was to call the incident angle x (relative to the surface, not relative to the normal). Then

I worked out all of the other angles in the picture in terms of x. In the end, when I

solved for φ, all of the x’s canceled out.

25-4. (Paper only.) When the sun heats a hot desert, the air near the ground heats up and

becomes less dense than the air above it, such that the density of the air increases with

the distance from the ground. Explain why this creates a mirage.

25-5. (Extra credit; paper only.) (From Peatross and

Ware, Physics of Light and Optics.) Ole Roemer

made the first successful measurement of the speed

of light in 1676 by observing the orbital period of Io,

a moon of Jupiter with a period of 42.5 hours. When

Earth is

moving toward Jupiter, the period is measured to be shorter than 42.5 hours because

light indicating the end of the moon’s orbit travels less distance than light indicating the

beginning. When Earth is moving away from Jupiter, the situation is reversed, and the

period is measured to be longer than 42.5 hours.

(a) If you were to measure the time for 40 observed orbits of Io when Earth is moving

directly toward Jupiter and then several months later measure the time for 40 observed

orbits when Earth is moving directly away from Jupiter, what would you expect the

difference between these two measurements be? Take the Earth’s orbital radius to be

1.5× 1011 m. To simplify the geometry, just assume that the Earth moves directly

toward or away from Jupiter over the entire 40 orbits. (See the figure.) Hint: Find the

Earth’s orbital speed from its orbital radius (given) and period (you should know!). You

will need to determine how far the Earth moves closer to Jupiter in the 40× 42.5 hrs



observation period when it’s moving straight towards Jupiter (imagine straight-line

motion during this time).

(b) Roemer did the experiment described in part (a), and experimentally measured a

22 minute difference. What speed of light would one deduce from that value?

Extra problems I recommend you work (not to be turned in):

• Some rooms (such as many sealing rooms in LDS temples) have two parallel mirrors

facing each other, so that when people look in the mirrors they see images of themselves

“forever”. Estimate sizes and positions of the mirrors in a typical configuration. Based

on the angle that you need to use in order to look past the side of your head, about how

many images, at most, will you actually be able to see?

• The speed of sound in air is 343 m/s. In water it is 1480 m/s. If a directed sound wave in

air strikes the surface of a lake at an angle of 23◦ from the normal, at what angle from

the normal will the transmitted sound wave travel in the water? (You would likely need

an array of speakers, properly phased relative to each other, to produce such a sound

wave. As we have discussed, sound waves typically travel outwards in all three

dimensions rather than going in a specific direction like a laser beam.)

26-1. You are a fish in deep, dark water with index 1.33. As you look up from

[01] m below the smooth surface, you see a bright circle through which light

enters from the outside world.

(a) Why is that?

(b) What is the radius of the circle?

26-2. A rectangular block of clear plastic is sitting on the

ground. A beam of light enters the left face of the plastic

at an angle θ from the perpendicular, as shown in the

figure. The transmitted beam then strikes the top of the

block. What is the maximum angle θ which will result in

total internal reflection off of the top surface? The index of

refraction for the plastic is [02] .



26-3. (Paper only.) Fermat’s Principle of Least Time. Fermat realized that if you imagine all

possible paths that light rays could take between the source and the destination, the

actual path is the one that takes the least amount of time. It’s kind of like this situation:

suppose you are a lifeguard at position A below and must rescue a drowning swimmer at

position B? What path should you take to get there the quickest? Let’s prove that the

fastest time is given by the path predicted by Snell’s Law. Consider a light ray traveling

from point A to point B, from a lower index of refraction (n1) to a higher index of

refraction (n2). The light ray travels across a total horizontal distance L and vertical

distances of h and d, as shown in the figure. Without using Snell’s Law, find the time it

takes for a ray to travel the path shown when it enters the n2 medium an arbitrary

distance x from the left, in terms of the n’s and c (and the given distances). Then, find

the condition for x that produces the minimum time by taking the derivative with

respect to x and setting it equal to zero. Show that this condition does in fact give you

Snell’s Law.

26-4. (Paper only.) A swimmer is a distance h under smooth water, a distance L from shore,

and is named Jane.

(a) Is it possible for light from the swimmer to reach the eyes of her boyfriend on the

shore (i.e., can he see her?), or will this be prevented by total internal reflection? Explain

why or why not. (Yes, you have been given all of the information you need.)

(b) In light of your answer to this problem, why is it often difficult to see someone who is

swimming under water?

(c) If the boyfriend cruelly shines a powerful laser at the water, will it always be possible

for him to hit her with the light (assuming he has excellent aim), or will this be

prevented somehow? Explain why or why not.

(d) What if she wants to hit him with a laser?



26-5. (Extra credit; paper only.) Huygen’s Principle. Huygen’s principle says that each point of

an advancing wave front can be considered as a point source of new circular (spherical,

really) waves. The new waves add up to propagate the wave front. It’s often used to

describe/explain diffraction through a slits, but it can be also used to describe/explain

refraction.

In the Wikipedia article on Huygen’s principle,

this picture is provided in order to graphically

illustrate refraction. Stare at the picture until you

can visualize that the green lines tangent to the

circles (the parallel lines at the bottom of the

picture) connect “matching” wavefronts. That is,

if you label the wavefronts 1, 2, 3, etc., from the

top of the picture on down, the first green line is

tangent to all of the waves originating from

wavefront #11, the second green line would be

tangent to the waves from wavefront #12 (if those

were drawn in), and so forth.

I want you to produce the same sort of picture, being as precise as you can with

rulers/compasses/etc, to show that the graphical prediction of refracted angle from the

Huygens’ principle picture matches the numerical prediction from Snell’s Law for at least

one incident angle (you pick the angle). Draw an interface between an n = 1 and an

n = 2 material. Draw the wavefronts of a wave hitting the interface at an angle. Just like

the Wikipedia picture, treat each point where the wavefronts strike the interface as the

source of circular waves propagating into the n = 2 material. Key: the wavelength of the

circular waves (distance between wavefronts) must be exactly half the wavelength of the

incident light because λ is reduced in the material by a factor of n. Draw many circular

waves going into the n = 2 material from at least four point sources and connect the

matching wavefronts by drawing tangent lines like the green lines in the Wikipedia

picture. Then measure the incident angle and the refracted angle and (hopefully!) prove

that the refracted angle constructed this way is just the same as what Snell’s law would

predict.



Extra problems I recommend you work (not to be turned in):

• A particular optical fiber is made from a glass core which

is 2 microns in diameter with an index of refraction of 1.7,

covered by a thin “cladding” (an outer shell made out of a

different material) with an index of refraction of 1.5.

Calculate the radius of the smallest cylinder you could

wrap the fiber around without destroying total internal

reflection at the core/cladding interface and allowing light

to leak out of the fiber core and into the cladding.

Hint: If the fiber/cladding combo (gray-blue, diameter d) were wrapped around a white

cylinder of radius r, it would look something like the figure shown. The blue reflections

on the upper-left would have no problem doing TIR. The red line on the right, however,

represents a worst-case scenario that might run into trouble because of its steeper angle.

(Answer: 15.0 µm.)

27-1. You wish to attenuate a polarized laser beam by inserting two polarizers. The second

polarizer is oriented to match the original polarization of the beam to ensure that the

final polarization remains unchanged. The first polarizer is then rotated through various

angles to control the intensity. Through what angle should the first polarizer be rotated

to reduce the final intensity by a factor of [01] ? Assume perfect polarizers

with no losses.

27-2. Light from incandescent light bulbs is unpolarized. I shine light from a light bulb with an

intensity of [02] W/m2 onto a perfect linear polarizer. (a) What is the

intensity of the light which passes through the polarizer? (b) If a second polarizer is

placed after the first one, with its transmission axis rotated 35◦ from the transmission

axis of the first polarizer, what will be the intensity of the light after passing through the

second polarizer? (c) If I add a third polarizer after the second one, with its transmission

axis rotated 90◦ from the transmission axis of the first polarizer (i.e., an extra 55◦ from

the second polarizer), what will be the intensity of the light after passing through the

third polarizer? (d) If I now remove the second polarizer, what will be the intensity of

the light exiting the third polarizer?



27-3. You are looking across the surface of a very large, very calm lake. You are wearing

polarized sunglasses, and you notice that your sunglasses nearly completely cut out the

glare from the sun reflecting off of the lake. (a) Do your polarizing sunglasses block

vertically or horizontally polarized light? (b) How far above the horizon is the sun in the

sky? The index of refraction for water in the lake is [03] .

28-1. An object is placed [01] cm in front of a concave mirror with a focal length

equal to 3.00 cm. (a) Find the location of the image. (b) Find the magnification. (c) If

the height of the object is 2.00 cm, find the height of the image. (d) Draw a ray diagram,

using different colors for the real and virtual rays. (If you don’t want to use different

colors, at least make the difference apparent somehow: dashed vs. non-dashed, pen vs.

pencil, etc. The same goes for all of the problems that similarly say “different colors” in

this assignment and the next assignment.)

28-2. An object is placed [02] cm in front of a concave mirror with a focal length

equal to 3.00 cm. (a) Find the location of the image. (b) Find the magnification. (c) If

the height of the object is 1.00 cm, find the height of the image. (d) Draw a ray diagram,

using different colors for the real and virtual rays.

28-3. An object is placed [03] cm in front of a convex mirror with a focal length

equal to −2.0 cm. (a) Find the location of the image. (b) Find the magnification. (c) If

the height of the object is 5.0 cm, find the height of the image. (d) Draw a ray diagram,

using different colors for the real and virtual rays.

28-4. A concave mirror has a focal length of f = 40.0 cm.

(a) Find the position of the object that gives an image that is upright and

[04] times larger.

(b) Draw a ray diagram using different colors for the real and virtual rays.

(c) Repeat part (a) for a convex mirror with focal length f = −40.0 cm. (You should find

that p is negative. That represents a situation where the “object” is behind the mirror,

which can occur when the object is really an image produced by a previous optical

element.)



28-5. (Paper only.) At the north end of the foyer in the Eyring Science Center, there is a

demonstration called “The Illusive Dollar”. A large concave mirror produces an image of

a dollar bill. The bill is 1.73 m from the mirror. (a) Is the image real or virtual?

(b) What is the magnification of the dollar bill? Compare the image to an actual dollar

bill. (c) Calculate the mirror’s focal length (d) How far should you put a nickel from the

mirror if you want to make a real image which is twice as big as the nickel, and will that

image be upright or inverted? (e) Test out your predictions to part (c).

Extra problems I recommend you work (not to be turned in):

• (Paper only.) If I place an object in front of a concave mirror, under what conditions will

a real image be created? Under what conditions will a virtual image be created? Under

what conditions will the image be inverted? What about a convex mirror?

• (Paper only) Let’s derive the focal length of a mirror. The curved line in the figure below

is a spherical mirror. The dotted line runs from the center of curvature and has a length

R. The red horizontal line at the top represents a beam of light traveling parallel to the

principle axis. It makes an angle θ with respect to the normal of the mirror. (a) In terms

of θ and R, what is α? (b) What is β? (c) Find f in the limit that θ is very small (i.e.,

such that the light represents a paraxial ray).

29-1. You are trapped in the wilderness and must spear fish in order to survive. While looking

into the water from directly above, a fish appears to be [01] cm below the

surface.

(a) How far below the surface is it in actuality?

(b) Draw a ray diagram, using different colors for the real and virtual rays.



29-2. A fortune teller gazes into her crystal ball and sees a scene of sorrow and tragedy. The

scene appears to be inside the ball 4.31 cm from the front surface of the ball. But, of

course she is really seeing the image of the scene of sorrow and tragedy. The actual scene

of sorrow and tragedy is embedded in the ball at a different location. (a) How far from

the front surface of the ball is the actual scene of sorrow and tragedy? The ball,

[02] cm in diameter, is made of quartz with an index of refraction of 1.54.

(b) Is the image of the scene real or virtual?

29-3. An object is placed [03] cm in front of a converging lens with a focal length

equal to 2.00 cm. (a) Find the location of the image. (b) Find the magnification. (c) If

the height of the object is 1.0 cm, find the height of the image. (d) Draw a ray diagram,

using different colors for the real and virtual rays.

29-4. An object is placed [04] cm in front of a converging lens with a focal length

equal to 6.0 cm. (a) Find the location of the image. (b) Find the magnification. (c) If

the height of the object is 1.0 cm, find the height of the image. (d) Draw a ray diagram,

using different colors for the real and virtual rays.

29-5. An object is placed [05] cm in front of a diverging lens with a focal length

equal to −5.0 cm. (a) Find the location of the image. (b) Find the magnification. (c) If

the height of the object is 5.0 cm, find the height of the image. (d) Draw a ray diagram,

using different colors for the real and virtual rays.

29-6. An object is placed [06] cm to the left of lens 1 (converging, f = +20 cm).

Lens 1 is placed [07] cm to the left of lens 2 (converging, f = +10 cm).

(a) How far (in magnitude) from lens 2 will the final image be formed? (b) Will the

image be to the left or the right of lens 2? (c) Will the image be real or virtual? You do

not have to provide any ray diagrams for this problem.



29-7. A lens of focal length f1 = 10.0 cm is placed a distance x =[08] cm before a

lens of focal length f2 = −10.0 cm. An object is positioned 15.0 cm before the positive

lens.

(a) At what position relative to the location of the negative lens does the final image

occur? (Enter a negative number if on the left.)

(b) Calculate the overall magnification Moverall = hfinal image/hobject.

29-8. (Extra credit.) The lens and mirror in the figure have focal lengths of [09] cm

and −50.0 cm, respectively. An object is placed 1.00 m to the left of the lens, as shown.

(a) Find the distance between the lens and the final image which is formed by light that

has gone through the lens twice. (b) Is the image upright or inverted? (c) Determine the

magnitude of the overall magnification.

Extra problems I recommend you work (not to be turned in):

• (Paper only.) If an object is a distance p in front of a converging lens (p could be

negative if the “object” is an image formed from another lens), under what conditions

will a real image be created? Under what conditions will a virtual image be created?

Under what conditions will the image be inverted? What about a diverging lens?



• A cube which is 1 cm in length is placed 15 cm from a lens with a focal length of 2 cm.

Draw the 3D image of what the cube will look like. Hint: Figure out where the images of

the front and back surfaces will form, then connect them.

30-1. A near-sighted woman cannot focus on any object farther away than a distance

x = [01] cm. Find the focal length of the lens which will correct her vision. (If

an object is very far away, the lens should produce an image a distance x in front of her

eyes so that she can focus on it.) Neglect the distance between the lens and the eye.

30-2. A farsighted man cannot focus on anything closer than [02] m away from him.

If he wants to be able to hold his book at 25 cm, find the focal length of the lens which

will correct his vision. Neglect the distance between the lens and the eye.

30-3. Consider a camera with film in it. The focal length of the lens is [03] mm.

(a) If we want to take a picture of some distant object, where should we put the film?

(Consider the distance to the object to be infinite.) (b) If we next want to take a picture

of an object a distance x = [04] m away, by how much should we change the

distance between the film and the lens? (c) Suppose we didn’t change the position of the

film, but left it in the position for taking a picture of a distant object, as in part (a). A

“point” of light a distance x away would not be “focused” properly on the film but

instead would produce a “dot” on the film. Find the diameter of the dot. The diameter

of the lens is 1.0 cm. (d) If we cover up part of the lens so that light can only enter

through a hole 3 mm in diameter, find the diameter of the dot in part (c).

30-4. You shine red light on a penny. You place a lens exactly 1 meter from the penny, and a

red image of the penny forms at a distance of [05] cm from the lens, on the

opposite side of the lens. You then shine blue light on the penny. How far from the lens

will the blue image form? The index of refraction for this particular glass is 1.500 for the

red light and 1.530 for the blue light.



30-5. (Extra credit.) Let’s take a look at spherical aberration. Imagine a plano-convex lens

(meaning that one side is flat and one side is convex) made of a glass with an index of

refraction of [06] . The magnitude of the radius of curvature of the curved side

is 30 cm. Two rays of light strike the flat side of the lens, both traveling parallel to the

principle axis, as shown in the figure below. Suppose one beam hits the lens a distance of

0.5 cm from the principle axis, and the other a distance of 10 cm from the principle axis.

(Note: the lower ray on the figure is NOT drawn at the right height.) After being bent

by the lens, the two rays both cross the principle axis. If the lens were free of

aberrations, they would cross the principle axis at the same point. But, in fact, they

don’t. What is the distance ∆x between the points where the two rays cross the principle

axis? All you need is Snell’s Law, and some geometry/trigonometry.

Hint: Here’s a sketch for one of the rays, with the lens’s radius of curvature expanded to

a full circle, which should help you think about how to calculate the right distances.

Final note: If you were to reverse the lens, so that the rays strike the curved side first,

you would find ∆x to be smaller. That gives rise to the first half of this optics rule about

positioning these common plano-convex lenses: “Parallel rays to curved, diverging rays to

flat.”



Extra problems I recommend you work (not to be turned in):

• You want to take a picture of an ant. You place your camera such that the film is

250 mm from the ant. The lens has a focal length of 50 mm. (a) Show that there are two

possible positions for the lens which will produce a focused image of the ant on the film.

Find p and q for both cases. (b) What is the magnification of the image for the case

where p > q? (c) What is M for the case where q > p? (Answers: 69.1 mm, 180.9 mm;

−0.38, −2.62.)

31-1. (a) I hold a flat mirror [01] cm in front of my face. There is a freckle on my

face 1 mm in diameter. Find the angular size of the freckle on the image of my face as

viewed by my eye. (b) Repeat for a concave mirror which has a focal length of 39 cm.

(c) What is the angular magnification of the concave mirror, as compared to the flat

mirror?

31-2. Imagine that you are using a lens with a focal length of [02] cm as a

magnifying glass to look at (not cook!) an ant which is sitting on your finger. You put

your eye up to the lens and adjust the position of the ant until the image of the ant is

25 cm from you. (a) What is the lateral magnification M of the image? (b) What is the

angular magnification m?

31-3. A hobby telescope has an objective lens with a focal length of [03] cm and an

eyepiece with a focal length of 8.2 mm. We view the planet Jupiter with this telescope.

We do this at the time of year when we are closest to Jupiter. Data about the solar

system can be found in the front inside cover of the textbook. (a) Find the diameter of

the image of Jupiter produced by the objective lens. (b) Find the angular size of Jupiter

as viewed through the eyepiece. (c) How far should I place a marble (1-cm diameter)

from my eye to obtain the same angular size as in part (b)?



31-4. This is a common trick for expanding (or reducing) laser beams: two converging lenses

are set up such that the first lens’s right-hand focus is at the same point as the second

lens’s left-hand focus. (The beam is traveling left to right.) That forces the laser to

emerge collimated from the second lens, but with a different beam diameter. (a) Draw a

ray diagram for this situation, to show that if the laser beam is collimated going into the

first lens, it really does emerge collimated from the second. (b) If the laser beam diameter

before the first lens is [04] mm f1 = 50 mm, and f2 = [05] mm,

what is the laser beam diameter after the laser emerges from the second lens?

32-1. Two loud speakers are 2.63 m apart. I am standing [01] m from one of them

and 3.58 m from the other. The two speakers are driven by a single oscillator. If the

frequency of the oscillator is swept from 100 Hz to 1000 Hz, find the lowest frequency at

which I will hear an enhancement of the sound intensity due to constructive interference

of the waves from the two speakers. Use 343 m/s for the speed of sound. (DO NOT use

the double-slit equation, d sin θ = mλ. This equation is only valid for observations far

from the two slits, compared to the distance between the two slits.)

32-2. The figure shows an interference pattern from two slits. If

the slits are 0.17 mm apart and the observed picture is

seen on a screen [02] m from the slits, find the

wavelength of the light used. Assume that the photograph

in the figure is life-size. To obtain an accurate value for

the distance between fringes, measure the distance

between the topmost and bottommost fringes and divide

by 4. Note: Sometimes printers do not faithfully reproduce

the actual size of a photograph. The box displayed below

should be 5.0 cm wide. If not, then scale the size of the

photograph accordingly. 5.0 cm

32-3. Two narrow slits separated by 0.85 mm are illuminated with [03] -nm light.

The peak intensity on a screen 2.80 m away is 0.1 W/cm2. What is the intensity at a

distance 2.50 mm from the center of the central peak?



32-4. (Paper only.) (a) Coherent monochromatic light with a wavelength λ passes through

three parallel slits spaced evenly from each other with a distance d. Use phasor

addition/complex numbers to show that the intensity in the interference pattern at an

angle θ is given by:

I(θ) = I0

(
1 + 2 cos

(
2πd sin θ

λ

))2

where I0 is a constant. Hints: At a given point in the pattern on the screen, the

amplitude of the oscillating electric field will be a sum of the electric fields from each slit.

Those will only vary by their phase, which phase difference arises from a difference in

path length: φ = (∆PL/λ)× 2π. Using complex numbers, you can easily include phase

shifts by terms such as E0e
iφ. Define your phase shifts relative to the middle slit, and

remember that cosφ = eiφ+e−iφ

2 . The overall intensity is proportional to the magnitude

of the electric field, squared.

(b) Using a program such as Mathematica, plot the intensity pattern vs. theta for angles

between −30◦ and 30◦, with I0 = 1 and d/λ = 5. Tip: if you use Mathematica, you

cannot use a capital I as the function name; that’s a reserved symbol for the imaginary

constant.

(c) You should observe that this pattern has two different types of “bright” fringes. The

higher intensity maxima are known as primary maxima, and the lower intensity ones are

known as secondary maxima. What is the ratio of the intensity of a primary maximum

to the intensity of a secondary maximum? Use the above equation to determine this;

don’t just look at your plot. You can assume that λ < d. Hint: The answer is the same

for the two types of maxima in the graph of f(x) = (1 + 2 cosx)2.

Extra problems I recommend you work (not to be turned in):

• We pass a laser beam through a double slit. On a screen 15 m away, we observe a series

of bright lines which are 3.4 mm apart. The wavelength of the laser light is 633 nm.

What is the distance between the two slits? (Answer: 2.79 mm.)



• Two coherent sources of light are both shining down onto a piece of paper. If I block

source “A” the electric field at a given point on the paper is given by the equation

EB = 1.5E0 sin(ωt+ 64◦), where E0 is a constant. If I block source “B”, the electric field

at the same point on the paper is given by the equation EA = 2.5E0 sin(ωt− 14◦). When

both sources are unblocked, the electric field is given by Eboth = A×E0 sin(ωt+ φ). Find

(a) A and (b) φ (in degrees). (Answers: 3.17, 13.56◦.)

33-1. A pool of water is covered with a film of oil which is [01] nm thick. For what

wavelength of visible light (in air) will the reflected light constructively interfere? The

index of refraction of the oil is 1.65. Visible light (in air) has wavelengths between

430 nm (blue) and 770 nm (red) in air. Assume that the incident light is normal to the

surface of the oil.

33-2. Solar cells are often coated with a transparent thin film of silicon monoxide (SiO,

n = 1.85) to minimize reflective losses from the surface. Suppose that a silicon solar cell

(n = 3.5) is coated with a thin film of SiO for this purpose. If the thickness of the

coating is [02] nm, find the maximum wavelength of ultraviolet light (in air)

for which the reflection will be maximized instead of minimized. (The wavelength of

ultraviolet light is shorter than that of visible light.)

33-3. A wedged air space is created between two plates of glass, and a sample of hair is

inserted at one edge. The plates are illuminated from above with [03] -nm

light and reflections from the air wedge are observed.

(a) Will the fringe near where the plates touch be bright or dark?

(b) The left end is dark. If a total of 24 other dark fringes are observed (including the

one in part (a) if it is dark), what is the diameter of the hair?

33-4. In a Michelson interferometer, 731 fringes cross the field of view when one of the mirrors

is very precisely moved through [04] mm. What was the wavelength of the

light?



34-1. The second-order bright fringe in a single-slit diffraction pattern is [01] mm

from the center of the central maximum. The screen is 81 cm from a slit of width

0.78 mm. Assuming that the incident light is monochromatic, calculate the light’s

wavelength. Hint: Although this isn’t quite true for the “sinc” function, you should

assume that the second order maximum is located exactly halfway in between the second

and third order minima.

34-2. Babinet’s principle says that the diffraction pattern from an opaque object blocking the

light will produce the same diffraction pattern as a slit of the same size/shape allowing

the light to pass. Only the overall intensity of the pattern will be different. This can be

seen by noting that the resulting light field from an opaque object is just the field made

by the laser beam by itself, minus the field that would be produced by a slit in the shape

of the opaque object: E = Elaser beam − Eslit. In places where the undisturbed beam

would not have reached, Elaser beam = 0. Therefore E = −Eslit over most of the

diffraction pattern. Of course your eye can’t see the sign of the electric field (you only see

the intensity), so you see essentially the same pattern that would be present if you used a

slit rather than an opaque object.

Suppose you are working in a forensics lab, and you have a human hair whose diameter

you need to measure. You decide to use Babinet’s principle: you shine a HeNe laser

(λ = 633 nm) at the hair and see a single-slit diffraction pattern. You look at this pattern

on a screen which is 1.6 m away from the hair. The width of the central peak on the

screen turns out to be [02] mm, measured from the dark spot just to the left of

the peak to the dark spot just to the right of the peak. What is the diameter of the hair?

34-3. (Paper only.) In the three-slit problem from a previous assignment, you found the total

electric field in the diffraction pattern at the screen by adding up the phase shifts from

three separate slits. This gave rise to the formula for the three slit pattern. The same

technique can be used to find the formula from a single slit having finite width.

According to Huygen’s principle, a single slit behaves like an infinite number of point

sources, spaced infinitely closely together. Thus, instead of adding three separate phase

factors, like you did with three infinitely narrow slits, to solve the single finite width slit

problem you must add an infinite number of phase factors: you must integrate.



(a) In the figure below, the slit goes from y = −a/2 to y = +a/2. Determine the phase

shift of the light coming from an arbitrary y, relative to the light coming from y = 0 (i.e.,

the difference in phase of the two dashed lines). Show that this phase shift is equal to
2π
λ y sin θ. (θ is the angle from the slit to the screen, which is essentially the same for the

two dashed lines because the slit is actually much smaller than indicated in the figure.)

(b) Add up an infinite number of phase shifts (i.e., integrate), for points ranging from

y = −a/2 to y = a/2. Hint: Here’s a hand getting the integral set up. (1) Start off like

you did for the three slit problem: Etot is a sum of E0e
iφ terms, with the various phase

shifts depending on the ∆PL in the same fashion as that problem. (2) Convert the sum

into an integral like this:

Etot = constant×
∫ a/2

−a/2
eiφdy

where φ is the function of y that you determined for part (a).

I broke a calculus rule by arbitrarily inserting a dy before I integrated, but I did this

because I knew I would somehow have to integrate y from −a/2 to a/2. In a more

complete analysis like maybe some of you will do in Phys 471, that turns out to be

exactly the right thing to do. That does mean, however, that the constant in front of the

integral no longer has units of electric field.

(c) Show that your answer can be written as proportional to asinc(x), where x = πa sin θ
λ .

The “sinc” function is probably not one you are familiar with yet. It is defined as:

sinc x = sin x
x . Hint: Recall that sinφ = eiφ−e−iφ

2i .

(d) The intensity pattern, being the square of the electric field pattern, is thus

I(θ) = I0

(
sinc

(
πa sin θ

λ

))2

.



Using a program such as Mathematica, plot the intensity pattern for angles between

−30◦ and 30◦, with I0 = 1 and a/λ = 10. Set your vertical scale to be from 0 to 1. Note:

Sinc[x] is a built-in function in Mathematica, just like Sin[x] or Cos[x].

(e) Use the intensity pattern formula you just derived to prove the formula given in the

book for the angle of the mth minimum in a single slit pattern:

sin θdark =
mλ

a

34-4. (Paper only.) Below is a photograph of the interference pattern (intensity) on a screen

for a particular two-slit experiment, and a plot of what the detector measured as it

scrolled across the pattern. The x axis is in centimeters, the y axis has arbitrary units. A

633 nm laser was used. The intensity pattern is simply the two-slit (infinitely narrow)

pattern, times a single finite-width slit pattern.

If the screen/detector was positioned 0.75 m away from the slits, (a) what was the

separation between slits, and (b) what was the width of each slit? Hint: You will have to

read some quantities off of the graph. The grader will allow some margin of error when

judging whether your answers are correct or not, but be as accurate as you can.

35-1. On the night of April 18, 1775, a signal was sent from the Old North Church steeple to

Paul Revere who was 1.8 miles away: “One if by land, two if by sea.” If in the dark,

Paul’s pupils had [01] -mm diameters, what is the minimum possible

separation between the two lanterns that would allow him to correctly interpret the

signal? Assume that the predominant wavelength of the lanterns was 580 nm.

NOTE: Although the wavelength is modified by the refractive index within the eye, the

angles between incident rays are also modified by a similar amount. The two effects

cancel each other, so you need not worry about it.



35-2. (a) Two stars have an angular separation of [02] µrad as viewed from Earth.

Assuming that most of the light from the star is yellow with a wavelength around

580 nm, how big must the diameter of a telescope be in order to see that there are two

stars, not one? (b) If my eye has a pupil which is 4 mm in diameter, what must the

angular magnification (magnitude) of the telescope be, for me to be able to see that there

are two stars rather than one?

35-3. (a) Grote Reber, a pioneer in radio astronomy, constructed a radio telescope with a 10 m

diameter receiving dish. What was the telescope’s angular resolution when observing

[03] m radio waves? (b) The Hubble telescope has a primary objective with

approximately 1 m diameter. What is the angular resolution when observing visible light

with wavelength [04] nm?

35-4. A diffraction grating contains 15,000 lines/inch. We pass a laser beam through the

grating. The wavelength of the laser is 633 nm. On a screen [05] m away, we

observe spots of light. (a) How far from the central maximum (m = 0) is the first-order

maximum (m = 1) observed? (b) How far from the central maximum (m = 0) is the

second-order maximum (m = 2) observed? DO NOT use the “small-angle

approximation,” ybright = (λL/d)m. The angles are too large for sin θ ≈ tan θ to be a

very good approximation.



35-5. In this problem, we will find the ultimate resolving power of a microscope. First of

all, in order to obtain a large magnification, we want an objective lens with a very

short focal length. Second, in order to obtain maximum resolution, we also want

that lens to have as large a diameter as possible. These two requirements are

conflicting, since a lens with a short focal length must have a small diameter. It is

not practical for a lens to have a diameter much larger than the radius of curvature

of its surfaces. Otherwise, the lens starts looking like a sphere. So, let us assume

that the objective lens has a diameter D equal to the radius of curvature of the two

surfaces, like the lens in the figure to the right. (a) If the lens is made of glass with

index of refraction [06] , find the focal length f in terms of the diameter

D of the lens. (b) The distance between the sample to be observed and the

objective lens is approximately equal to the focal length f . Find the distance

between two points on the sample which can be barely resolved by the lens. Use the

result from part (a) to eliminate f from the expression. You should find that D is

also eliminated from the expression and that the answer is given entirely in terms of

the wavelength λ of the light. You may use the small angle approximation,

sin θ ≈ tan θ ≈ θ.

35-6. The diagram depicts a standard spectrometer setup. A lens (or concave mirror) following

a slit creates collimated light that strikes the grating (usually a reflective grating rather

than a transmission grating as shown). Suppose that you observe light from a sodium

lamp which has two strong emission lines at λ1 = 589.0 nm and λ2 = 589.6 nm. Your

grating has [07] lines/mm.

(a) In the first diffraction order, what is the difference between the diffraction angles of

the two wavelengths (ignore the second lens)? Don’t use the small angle approximation.

(b) To spatially separate the two wavelengths, it is necessary to let the light travel to a

faraway screen. Because this can require very large distances, it is convenient to image

what would have appeared on the faraway screen to a closer screen using a lens (or

concave mirror). As proved in one of the additional problems below, the image appears

at the focus of the lens and the angular separation is preserved, referenced from the

position of the lens. If the final lens has a 30 cm focal length, how far apart on the

detector screen are the two sodium wavelengths?



(c) As mentioned in the 6th edition of Serway and Jewett (but not in subsequent

editions), gratings are characterized by their resolving power R, defined as their ability to

distinguish between two nearly equal wavelengths: R = λave/∆λ (∆λ is how close the

wavelengths can be to each other without “blurring” together). As more and more

grating lines contribute towards the overall interference pattern, the diffraction spots

sharpen and the resolving power increases. By calculating the interference pattern for a

very large number of contributing slits, like we did in a previous homework problem for

three slits, a simple relationship can be derived: R = Nm, where N is the number of slits

being illuminated, and m is the order of the diffraction spot being used. In order for the

two sodium peaks to be cleanly separated from each other in the first diffraction order,

what is the minimum number of slits that must be illuminated?

35-7. Monochromatic x-rays (λ = [08] nm) are incident on a potassium chloride

(KCl) crystal surface. The spacing between planes of atoms in KCl for this orientation is

0.314 nm. At what angle (relative to the surface) should the beam be directed for a

second-order maximum to be observed?

Extra problems I recommend you work (not to be turned in):

• A hobby telescope uses a concave mirror with a diameter of 12.4 cm. Find the distance

between two points on the moon that can be resolved by this telescope. Use 550 nm for

the wavelength of visible light. (Answer: 2078 m.)

• A television screen generates images which are composed of little red, green, and blue

dots. Far from the screen, the dots blend together. (a) If there are 28 dots per cm, how

close would you have to put your eye to the screen in order to see the individual dots?

(b) If you can’t focus on anything closer than 25 cm from your eye, how close must the

dots be such that you cannot possibly distinguish them from each other? Use a

wavelength of 520 nm, and assume that your pupil has a diameter of 4 mm. (Answers:

2.252 m; 39.65 µm, which is 252 dots/cm.)



• Coherent light with wavelength 500 nm passes through a round hole and propagates to a

faraway screen. (a) Draw a picture of the setup and resulting pattern. (b) If a converging

lens is placed close to the hole (after the hole), where will the diffraction pattern appear?

Hint: Use the image from the hole (at infinity, or close to it) as the object for the lens,

then find the image of the lens. (c) Show that the new diffraction pattern is just the

same as the old pattern, but with distances scaled down by f/L, where L was the

original distance to the screen where the pattern was viewed. Hint: find the

magnification. (d) Show that the angular separation between features on the new

diffraction pattern (angles measured relative to the center of the lens) is the same as the

angular separation was on the previous diffraction pattern (angles measured relative to

the center of the hole). Hint: think similar triangles.

• A HeNe laser as a wavelength of 633 nm. If the collimated beam has a diameter of

0.50 cm, estimate the radius of the beam after it travels 10 km. (Answer: 1.545 m.)

• In a sodium chloride crystal, NaCl (the kind of salt we put

on food), the sodium ions form a cubic lattice. The lattice

constant a (the distance by which each sodium ion is

separated from its nearest neighbors) is 0.565 nm at room

temperature. You send a beam of x-rays at a crystal of NaCl and find that the m = 1

diffraction order off of the Bragg planes which are spaced by a is traveling in a direction

which is 20◦ from the direction of the incident beam of x-rays. You then shoot the same

beam of x-rays at a crystal of potassium chloride, KCl, which has a similar structure to

NaCl. You find that this particular diffraction order now makes an angle of 17.9◦ with

respect to the incident beam (as shown below). (a) What is the wavelength of the x-rays?

(b) What is the lattice constant for the KCl crystal? (Answers: 0.386 nm, 0.629 nm.)



36-1. (Paper only.) A particular transverse traveling wave has the form:

~E(x, y, z, t) = Ax̂ cos
(
k

(
y + 2z√

5

)
− ωt

)
In terms of the given quantities A, k, and ω:

(a) What is the amplitude of the wave?

(b) What is the wavelength?

(c) What is the period?

(d) What is the direction and magnitude of the velocity?

(e) Between what two directions does the wave oscillate?

36-2. (Paper only.) Write down the proper mathematical expression for a plane wave traveling

in the x̂+5ŷ√
26

direction, oscillating at a frequency of 10000 Hz, having a wavelength of

5 meters, and an amplitude of 3. It is a transverse wave, with its amplitude oscillating

back and forth from the −5x̂+ŷ√
26

direction to the 5x̂−ŷ√
26

direction. Don’t worry about phase

shifts.

Extra problems I recommend you work (not to be turned in):

• A drop of water falls into a perfectly calm pond generating ripples that travel out in

circular rings. Prove that as each ring expands, the amplitude of the ring drops off as

1/
√
r, where r is the radius of the ring. Assume that no energy is lost, and that the

waves propagate non-dispersively (i.e., the radial thickness of a ring doesn’t change as

the ring expands).

37-1. A ball is thrown at [01] m/s inside a boxcar moving along the tracks at

45.8 m/s. What is the speed of the ball relative to the ground if the ball is thrown

(a) forward? (b) backward? (c) out the side door?



37-2. (Paper only.) A car of mass m1 = 1000 kg is sliding without friction on ice at a velocity

u1 = 20 m/s when it strikes another car of mass m2 = 1200 kg which was standing still.

The two cars lock together and slide together without friction after the collision. (a) Use

the principle of momentum conservation to find the velocity of the two cars after the

collision. (b) An observer riding on a bicycle in the same direction as the cars watches

the collision while traveling at a velocity v = 10 m/s. Find the initial and final velocities

of the two cars as measured in the reference frame of the bicyclist. (c) Show that the

velocities that you found in part (b) satisfy momentum conservation in the bicycle rider’s

reference frame.

37-3. (Paper only.) A 1 kg object (m1) collides with a 2 kg object (m2) on a frictionless

surface. Before the collision, m1 is traveling at 9 m/s to the right and m2 is at rest with

respect to the ground. The collision is elastic and m1 bounces straight back to the left.

(a) Figure out the final velocities of both masses after the collision. Hint: You have two

unknowns and thus need two equations. One of the two equations comes from

conservation of momentum. The other could come from conservation of energy, but in

practice it’s easier to use what I call the “velocity reversal equation” in its place; that’s

Serway equation 9.20 (8th edition) and was derived from conservation of energy.

(b) A bicycle rider moving at 5 m/s to the right (relative to the ground) observes the

collision. Show that both kinetic energy and momentum are also conserved in her frame

of reference.

37-4. (Paper only.) An observer at rest with respect to the Earth finds that objects falling

under gravity accelerate at a constant rate of 9.8 m/s2. According to Galilean relativity:

(a) Will an observer on a train moving at 10 m/s see that objects falling under gravity

accelerate at a constant rate in his frame? If so, what is that rate? (b) Will an observer

on a rocket moving vertically away from the surface of the earth at 10 m/s see that

objects falling under gravity accelerate at a constant rate in his frame? If so, what is that

rate? (c) Will an observer on a rocket accelerating vertically away from the surface of the

earth at 10 m/s2 see that objects falling under gravity accelerate at a constant rate in his

frame? If so, what is that rate?



38-1. A jet plane is [01] m long. How much shorter is the plane when it travels at

the speed of sound, 343 m/s? You will find the following approximation useful:
√

1− x ≈ 1− 1
2x when x� 1.

38-2. How fast must a meter stick move for it to appear to be only [02] cm long?

38-3. Muons are unstable subatomic particles, somewhat similar to electrons (but heavier).

When produced in laboratories, they have a measured average lifetime of 2.2 µs before

they decay. Muons also get produced by cosmic rays in the atmosphere above the Earth.

Based on the 2.2 µs lifetime, they would be expected to decay long before they reach the

surface of the Earth. However, they don’t! This is one of the classic proofs of Einstein’s

theory of relativity: there is simply no other explanation for why muons created in the

upper atmosphere reach the Earth’s surface.

Suppose that a muon is created [03] km above the Earth. What fraction of

the speed of light must the muon be traveling if it is to reach the ground in its expected

lifetime of 2.2 µs? Express your answer as a number times c. Give your answer to 6

significant figures. Hint: you can think about this either in the muon’s frame of reference

or in the Earth’s frame. Both views yield the exact same answer.

38-4. Astronauts travel at 0.950c from Earth to a star which is [04] ly (light years)

away.

(a) How long does it take them to reach the star as observed by people on Earth?

(Earthlings know how much time it takes for a signal to reach them from the star, and

they do not include it as part of the travel time for the astronauts.)

(b) How long does the trip take from the perspective of the astronauts?

(c) How far apart are Earth and the star from the perspective of the astronauts as they

travel?

38-5. (Paper only.) Just because I can’t travel faster than the speed of light, it doesn’t mean

that I can’t travel any further than about 100 light years from Earth before I die (where

100 years is about the longest someone might live). (a) Why not? (b) If I travel at speed

β (= v/c), how far will I get in 100 years? You can leave your answer in terms of β

and/or γ (= 1/
√

1− β2).



Extra problems I recommend you work (not to be turned in):

• A moving rod is observed to have a length of 2.00 m, and to

be oriented at an angle of 30◦ with respect to the direction of

motion (see figure). The rod has a speed of 0.995c. (a) What

is the proper length of the rod? (b) What is the orientation

angle in the proper frame? (Answers: 17.4 m, 3.3◦.)

• At Stanford Linear Accelerator, Dr. Peatross’s former Ph.D. advisor was involved in

experiments where a high-intensity laser is aimed at electrons which approach almost

straight-on with a velocity of v = (1− 3× 10−10)c. Use the Doppler equation for light to

determine the wavelength of the laser in the rest frame of the electrons, given that the

laser’s wavelength in the lab frame is 800 nm. (Answer: 0.00980 nm.)

39-1. You run a red light. You are pulled over. You explain to the traffic officer that you didn’t

know that the light was red—because you were moving, the red light

([01] nm) was Doppler-shifted to appear green ([02] nm). If you

were telling the truth, how fast were you going?



39-2. Ever since the Big Bang, different parts of the universe have been flying away from each

other. Astronomers can figure out how fast a star is moving away from us by looking at

atomic emission lines and measuring how much the lines have been Doppler-shifted from

the wavelength of the lines which we measure in experiments on Earth. They often

characterize the amount of Doppler shift using a parameter z, frequently just called the

“redshift”. It is defined as

z =
λm − λ0

λ0

where λm is the wavelength they measure for the light coming from the star, and λ0 is the

wavelength measured in an experiment in which the atoms emitting the light are at rest.

(a) Use the equation for the Doppler shift for light to show that the parameter z and the

speed of the astronomical object v are related by:

z =

√
1 + v/c

1− v/c
− 1

Hint: recall that the astronomical object is moving away from the Earth.

(b) The largest red shifts measured are those of quasars. Quasars are the most luminous

objects in the universe, so they are the farthest-away objects that can be seen. Hence

they are the fastest-moving objects that can be seen. Imagine that you look at a

particular quasar and measure its redshift to be [03] . How fast is that quasar

moving relative to the Earth? (According to Wikipedia, the record for the largest

spectroscopically-confirmed redshift as of Dec 2011 is a galaxy with z = 8.55. Its speed

relative to the earth is 0.9783c.)

(c) Edwin Hubble discovered that (as one would expect in an explosion), the velocity at

which various galaxies are receding from the Earth—as measured by their redshift—is

very consistently proportional to their distance from us. Specifically, Hubble’s Law says

v = H0d. H0 is the “Hubble constant”, which according to the best current

measurements is about 70.8 km/s per Mpc. (1 Mpc, a “megaparsec”, is 3.2616× 106

light years.) According to Hubble’s Law, how far away from us is the quasar? (Side note:

as I understand it, the distance d in Hubble’s law corresponds to the distance the light

actually traveled. That is larger than the distance the quasar was from us when the light

was emitted, because the space between the Earth and the quasar has been expanding

the whole time the light has been traveling. However, it is smaller than the distance the



quasar is from us now, because—due to this same expansion—distances covered by the

light ray at the start of its path are now larger than they were then.)

(d) How long did it take the light from your quasar to reach us? For the record-holding

quasar mentioned above, the answer is about 13.3 billion years. That sets a lower limit

on how long it has been since the Big Bang. (The best current estimates for the Big

Bang are that it occurred about 13.7 billion years ago.)

39-3. A red light flashes at position xR = 3.31 m and time tR = [04] s, and a blue

light flashes at xB = 5.15 m and tB = 9.03× 10−9 s (all values are measured in the S

reference frame). Reference frame S′ has its origin at the same point at S at t = t′ = 0;

frame S′ moves constantly to the right. Both flashes are observed to occur at the same

place in S′. (a) Find the relative velocity between S and S′. (b) Find the location of the

two flashes in frame S′. (c) At what time does the red flash occur in the S′ frame?

39-4. (Paper only.) Barn paradox: Suppose that Lee is carrying a 20 m long ladder (rest

length) and running extremely fast towards a 10 m long barn (rest length). Cathy is

watching the process and is stationary with respect to the barn. Because of length

contraction, Cathy sees the ladder fit completely inside the barn. She flips a switch and

“instantaneously” closes the front and back barn doors. Is the ladder completely inside

the barn now? If the answer is yes, it seems paradoxical, because from Lee’s point of

view it is the barn that has shrunk because of length contraction. This is discussed in the

textbook before the Lorentz transformation equations are given, where it is called the

“pole in the barn paradox”.

Like all good physics “paradoxes”, there is no paradox when you look at things the right

way. In this case, the solution to the paradox is that from Lee’s point of view, the front

and back doors of the barn do not close simultaneously and so the 20 m (to Lee) ladder is

not trapped inside the really narrow (to Lee) barn. You will prove that in this problem.

(a) How fast must Lee be going so that his ladder is 10 m long to Cathy?

(b) Suppose Lee is going that speed. In Cathy’s frame of reference, Lee’s ladder can “fit”

inside the barn at a particular instant in time, because both the ladder and the barn are

10 m long. Let’s call that instant “t=0”; let’s call the middle of the barn “x=0”. Thus

we can talk about two events in Cathy’s frame of reference: event 1 = “front end of the

ladder gets to the end of the barn,” which is at (ct, x) = (0, 5); event 2 = “back end of

the ladder gets to the start of the barn,” which is at (0,−5). Determine the times and



places these two events occur, in Lee’s frame of reference. You should find that event (2)

occurs after event (1), so that while Cathy knows that Lee’s ladder is completely inside

the barn at a particular moment, to Lee himself, the ladder is not! Thus the paradox is

resolved. How much later does event 2 occur than event 1 to Lee?

(c) Sketch Cathy’s world line, Lee’s world line, and the two events on a space-time

diagram for (1) Cathy’s frame of reference, and (2) for Lee’s frame of reference. Also

sketch the world lines of the right and left edges of the ladder.

Extra problems I recommend you work (not to be turned in):

• Read the short book Mr. Tompkins in Wonderland, by George Gamow (also sold under

the name Mr. Tompkins in Paperback). You will enjoy it, and you will better understand

relativity and quantum mechanics. Plus it’s on the list of extra credit books in the

syllabus! The HBLL library has several copies under the following call numbers: QC

71.S775 1999, QC 71.G25 1965, QC 173.5.G36x, and QC 6.G23 1940.

• Suppose we are on a space ship generating a beam of electrons. In our reference frame,

the electrons are traveling in the +x direction with a speed of 0.87c. Our space ship

passes by the earth. In the earth’s reference frame, the space ship is traveling in the +x

direction with a speed of 0.70c. Find the speed of the electrons in the earth’s reference

frame. (Answer: 0.9758c.)



• Jimmy Neutron is returning from a trip to the center of the galaxy, traveling at a speed

of 0.871c relative to the Earth. Carl, one of Jimmy’s friends standing still on Earth, is

monitoring Jimmy’s trip. Right as Jimmy flies past the Earth Carl verifies that his watch

is synchronized with Jimmy’s. In both Carl’s and Jimmy’s frames the Earth is at a

location x = 0, y = 0, and z = 0 at time t′ = t = 0. Carl sets up his coordinate system

such that Jimmy is moving in the +x direction, and Jimmy sets his up such that his y

and z directions are the same as Carl’s and such that Carl is moving in the −x direction.

After Jimmy has passed Earth, Carl observes a supernova looking through a telescope.

Taking into account the time that it took for light to reach him, he determines that the

supernova occurred at a time t = −1.45× 109 seconds at a location of x = 3.29× 1017 m,

y = 1.53× 1017 m, and z = 1.69× 1017 m. (a) As measured in Carl’s reference frame,

how far is Jimmy from the supernova when it occurs? (b) As measured in Jimmy’s

reference frame, how far is Jimmy from the supernova when it occurs? (Answers:

7.434× 1017 m, 1.458× 1018 m.)

40-1. If two objects are both traveling at [01] c but in opposite directions, find the

speed of one object in the reference frame of the other object.

40-2. (Paper only.) (Modified from Griffiths, Introduction to Electrodynamics.) A policeman

(v = 1
2c, relative to the ground) is chasing an outlaw (v = 3

4c, relative to the ground).

The policeman fires a bullet whose speed is 1
3c (relative to the policeman). Find the

speed of each object: ground, policeman, outlaw, and bullet, in each of the four reference

frames. Be careful with positives and negatives. Show that in each frame of reference the

bullet does not catch up to the outlaw because its speed is less than the outlaw’s.

(That’s good! If there were a reference frame where the bullet hit and killed the outlaw,

relativity would be much more confusing than is already the case.) Present your results

in this sort of summary table:



40-3. (Paper only.) John, Lee, and Henry are in a train which is speeding past Cathy at 0.4c.

Lee and Henry are standing still, 10 m apart, but John is running forward in the train at

0.3c (relative to the train). Right as John passes Lee on the train, the two also pass

Cathy outside the train. Call this instant x = 0 and t = 0. John passes Henry a short

instant later. Make three accurate space-time diagrams: one from Cathy’s point of view,

one from Lee’s, and one from John’s. On each diagram draw the world lines of John, Lee,

Henry, and Cathy. On each diagram accurately label event 1 (John passes Lee) and

event 2 (John passes Henry).

40-4. A physics professor on the Earth gives an exam to her students, who are on a rocket ship

traveling at speed [02] c relative to the Earth. The moment the ship passes

the professor, she signals the start of the exam. She wishes her students to have 50.0 min

(rocket time) to complete the exam. At the appropriate time, she sends a light signal

telling the students to stop. (a) Draw a space-time diagram from the perspective of the

Earth, containing the world-lines of the professor, the students, and the light signal.

Mark the exam start and stop events, along with the “professor sends signal” event. (b)

Draw a similar space-time diagram from the perspective of the rocket. (c) How long did

the professor wait (Earth time) before sending the light signal?

40-5. Suppose we are on our way to Proxima Centauri, which is 4.2 ly away (in the reference

frame of the earth). We are in a space ship which is traveling with a speed of

[03] c. When we are half-way there, we send a signal to both the earth and

Proxima Centauri. The signals travel at the speed of light c. In the reference frame of

the earth and Proxima Centauri, both signals travel 2.1 ly and thus arrive at their

destinations at the same time.

(a) Draw two space-time diagrams of the situation, one from the Earth’s point of view

and one from our point of view. On each diagram include worldines for the Earth,

Proxima Centauri’s worldline, and the space ship. Also mark the “signals sent”, “signal

received by Earth”, and “signal received by Proxima Centauri” events.

(b) Although the two events (the signal reaching earth and the signal reaching Proxima

Centauri) are simultaneous in the Earth’s reference frame, as should be obvious from

your space-time diagrams they are not simultaneous in our reference frame. How much

time elapses between these two events in our reference frame?



Extra problems I recommend you work (not to be turned in):

• Suppose our Sun is about to explode and we escape in a spaceship toward the star Tau

Ceti, which is 12 light years away (not including Lorentz contraction). We travel at

v = 0.82c. When we reach the midpoint of our journey, we see our Sun explode and,

unfortunately, we see Tau Ceti explode as well (we observe the light arriving from each

explosion). (a) Draw two space-time diagrams: one from the Sun’s frame of refernece,

and one from our frame of reference. In each diagram, include world lines for the Sun,

Tau Ceti, our spaceship, and the light rays arriving from each explosion. Mark these

three events on each diagram: Sun explodes, Tau Ceti explodes, and the instant we

observe both explosions. (b) In the rest frame of the Sun (and Tau Ceti), did the

explosions occur simultaneously? (c) In the spaceship frame of reference, did the

explosions occur simultaneously? (d) In the spaceship frame of reference, how long before

we saw the Sun explode did it actually explode? (e) In the spaceship frame of reference,

how long before we saw Tau Ceta explode did it actually explode? (Answers to parts (d)

and (e): 1.89 years, 19.08 years.)

• A deep space probe is launched from the Earth and passes a deep space station on its

way into the unknown. The probe travels at a constant velocity of 0.811c relative to the

station. It has an on-board atomic clock connected to a computer which is programmed

to send a microwave signal back to the station exactly one year later (as measured in the

probe’s frame of reference). (a) Draw two space-time diagrams: one from the station’s

frame of refernece, and one from the probe’s frame of reference. In each diagram, include

world lines for the station and the probe, and the microwave signal sent by the probe.

Mark these two events on each diagram: probe sends signal, and station receives signal.

(b) From the reference frame of someone on the space station, how much time elapses

from the time the probe passes by, to when the microwave signal arrives back at the

station? (Answer to part (b): 3.10 years.)



• The Lorentz transformation equations transform a line in Cathy’s space-time diagram to

a line in Lee’s space-time diagram. Prove this: given a line in Cathy’s frame,

ct = mx+ b, determine its equation in Lee’s frame. Lee is moving to Cathy’s right, with

speed v. Specifically, in terms of β (= v/c), γ (= 1/
√

1− β2), m, and b, prove that the

slope and the y-intercept of the line in Lee’s frame of reference are:

mLee =
m− β
1−mβ

bLee =
b

γ(1−mβ)

41-1. An electron has a kinetic energy [01] times greater than its rest energy. Find

(a) its total energy and (b) its speed.

41-2. Find the work required to increase the velocity of an electron by 0.010c (a) if its initial

velocity is [02] c and (b) if its initial velocity is [03] c. Remember

that the work done is equal to the change of kinetic energy.

41-3. Suppose that a particle accelerator accelerates two electrons in opposite directions, such

that they each have a speed of [04] c (in the laboratory frame of reference).

(a) In the laboratory frame, what is the total kinetic energy before the collision? (It’s

just the sum of the two particle’s kinetic energies.) (b) In the frame of reference of either

particle, what is the total kinetic energy before the collision? (In Galilean relativity, the

answer to part (b) would be only twice as large as the answer to part (a).)

41-4. (Paper only.) A particle with a rest mass of m, traveling at a speed of 0.9600c to the

right has a collision with a particle of mass 3m which is initially at rest. The larger mass

moves away after the collision with a velocity of 0.8202c to the right. (a) Will the smaller

mass be traveling to the left or to the right after the collision? (b) What is the final

speed of the smaller mass (in terms of c)?



41-5. (Paper only.) An object, mass m, collides elastically with a second object, mass 0.8m.

Before the collision, the first object is traveling at 0.5 c to the right and the second

object is traveling at 0.1 c to the left. Use conservation of relativistic energy and

relativistic momentum to determine the final velocities of both objects after the collision.

Hint: After the m’s cancel out, you will have two unknowns and should also have two

equations. I recommend using Mathematica to solve them simultaneously.

41-6. (Paper only.) A photon collides with an electron that is at rest. The photon imparts

momentum to the electron, and a new photon recoils in the opposite direction (exactly

backward relative to the incoming photon). Show that the momentum of the recoiling

photon p′photon is related to the momentum of the incident photon pphoton through

1
p′photon

− 1
pphoton

=
2
mec

.

This shift in photon momentum (and hence wavelength, as you will learn) is called the

Compton shift.

Hint: Write down two equations: conservation of energy and conservation of momentum.

One should contain a γ, the other a vγ, which equals βγc. You have to figure out how to

combine the two equations and eliminate β and γ at the same time. One way is to put β

in terms of γ, then solve one equation for γ and substitute it into the other. It takes a

bunch of algebra, but eventually gets you the right answer.

When I myself did the problem, I did it a slightly different way. My way also took a lot

of algebra, so I’m not sure it was any easier. What I did was to use the conservation of

energy equation to give me an expression for p− p′ and the conservation of momentum

equation to give me an expression for p+ p′. Then by adding the two equations I was

able to solve for p (in terms of γ and β), and by subtracting the two equations I was able

to solve for p′. I then took the inverse of p, the inverse of p′, and added them together to

get the desired equation (that was the step that took all the algebra).

Extra problems I recommend you work (not to be turned in):

• (a) According to Newtonian physics (kinetic energy = 1
2mv

2), how much work is required

to accelerate an electron from rest to 0.99c? (b) If we do that much work on an electron,

what will its final speed actually be? (Answers: 4.012× 10−14 J, 0.7414c.)



• In an accelerator, an electron experiences a constant electric field of E = 1.00 MV/m.

What is its speed (a number times c) after 11.1 ns, assuming it starts from rest?

Hint: The force on the electron is F = qE, where q = 1.602× 10−19 C is the electron

charge. Note that a megavolt per meter is the same as 106 N/C. Eq. (39.20) is trivially

integrated since F is constant. (Answer: 0.9884c.)

• Consider an electron which has been accelerated to a total energy of 30 GeV. (a) What

fraction of the electron’s energy is due to its rest mass (i.e., the ratio of rest energy to

total energy)? (b) What is the momentum in kg·m/s and (c) in GeV/c? (d) The speed of

the electron can be written in the form v = (1− δ)c. Find the value of δ.

Hint:
√

1 + x ≈ 1 + 1
2x when x is small. (Answers: 1.703× 10−5, 1.60× 10−17 kg·m/s,

30 GeV/c, 1.451× 10−10.)

• A 1 kg block of copper is heated from a temperature of 25◦C to a temperature of 150◦C.

How much does the mass of the copper change? (Answer: 5.38× 10−13 kg.)



Answers to Homework Problems, Physics 123, Fall Semester, 2012
Section 2, John Colton

1-1a. 1.00× 105, 3.00× 105 Pa
1-1b. 2.00× 105, 4.00× 105 Pa
1-2. 90, 140 cm2

1-3. 150, 400 tons
1-4. 1.0, 20.0 lb
1-5. 10.0, 30.0 cm
1-7. 25.0, 50.0 kN
2-1. 40, 100 kg
2-2. 1.40, 2.30 cm
2-3b. 0.170, 0.320 m
2-4a. 500.0, 1100.0 N
2-4b. 500.0, 1100.0 N
2-4c. 5.0, 12.0 N
2-4d. 80.0, 100.0 N
2-5. 3.50, 6.00 g/cm3

2-6. −1.00, −2.00 g
3-1. 10.0, 25.0 min
3-2a. 1000, 1900± 10 Pa
3-2b. 100, 300 lb
3-3. 1.00× 105, 2.20× 105 Pa
3-4a. 1.20, 2.50 cm
3-4b. 10.0, 20.0 m/s
4-1. −200.0, −400.0 ◦B
4-2b. 1.60010, 1.6050 cm
4-3. 500, 1100 gal
4-4a. −0.20, −1.50 mm
4-4c. 5.0, 50.0 s
4-5. 9.9920, 9.9970 cm
4-6. 100, 900 balloons
5-10. 1.5× 1012, 3.5× 1012

5-2a. 0.60, 0.90 N
5-2b. 1.00, 1.40 Pa
5-3a. 60.00, 65.00 mi/h
5-3b. 60.00, 65.00 mi/h
5-4a. 2.50× 1023, 4.00× 1023

5-4b. 5.50× 10−21, 7.50× 10−21 J
5-4c. 1200, 1500± 10 m/s
5-5. 100, 600 atm
6-1a. 4.00× 106, 7.00× 106 m
6-1b. 2.00, 4.00 h
6-3. 40, 70◦C
6-4. 4.00, 9.00 km

6-5. 2.00, 5.00 h
6-7. 10.0, 20.0◦C
6-8. 10.0, 20.0 g
7-1. 0.0600, 0.1100 J/s·m·◦C
7-2. 10.0, 25.0 J/s
7-3. 30, 100◦C
8-1a. 1.00× 105, 1.30× 105 Pa
8-1b. −17.0, −21.0 J
8-2a. −600, −850 J
8-2b. −400, −650 J
8-2c. −200, −450 J
8-4a. −100, −140 J
8-4b. 0 J
8-4c. 100, 140 J
9-1a. 5.0, 12.0 kJ
9-1b. 3.0× 106, 9.5× 106 Pa
9-1c. 700, 1200± 10 K
9-1d. 5.0, 12.0 kJ
9-2a. 3000, 7000± 20 J
9-2b. 3000, 7000± 20 J
9-3a. 3.00× 104, 6.00× 104 Pa
9-3b. 1000, 2000± 10 J
9-3c. 1000, 2000± 10 J
9-4a. 100, 500◦C
9-4b. 10, 90 J
9-4c. 10, 90 J
10-1a. 600, 950 J
10-1b. 400, 650 J
10-2. 0.20, 0.50◦C
10-3a. 10.0, 30.0 kJ
10-3b. −10.0, −20.0 kJ
10-3c. 4.0, 8.0 kJ
10-3d. 20.0, 30.0%
10-4a. 1.200× 105, 1.500× 105 J/s
10-4b. 25.0, 30.0 mi/gal
11-1a. 15.0, 30.0 J
11-1b. 100, 200 J
11-2. 1900, 2900± 10 J
11-3. 2000, 3000± 10 W
11-4a. 7.00, 9.99
11-4b. 30.0, 50.0 W
11-4c. 20.0, 40.0 dollars



12-1a. 3.00, 7.00 J/K
12-1b. 3.00, 7.00 J/K
12-2a. 6.0, 11.0 J/K
12-2b. 6.0, 11.0 J/K
12-2c. 6.0, 11.0 J/K
12-3. 1.5, 3.5 J/K
12-4. 5.00, 8.00 J/K
13-1a. 1.5× 1027, 3.0× 1027

13-1b. 4.5× 104, 9.5× 104 J/K
13-2. 3.0× 1019, 20.0× 1019

14-1a. 210, 340 m
14-1b. 2.80, 3.60 m
14-2a. 10, 30 cm
14-2b. 1.0, 3.0 s−1

14-2c. 0.010, 0.025 cm−1

14-2d. 3.0, 4.0 rad
14-3a. 0.80, 1.30 Hz
14-3b. 5.00, 8.00 rad/s
14-3c. 1.00, 2.00 m
14-3d. 3.00, 7.00 rad/m
14-3e. 0.50, 1.50 cm
14-3f. 0.50, 3.00 m/s
15-1. 100, 300 N
15-2. 25.0, 55.0 J
16-1a. 0.00, 9.99
16-1b. 0.00, 1.60 rad
16-1c. 0.00, 9.99
16-1d. 0.00, 9.99
17-1. 1.00, 9.99 %
17-2a. 0.60, 0.90
17-2b. 1.00, 1.50
17-2c. 0.950, 0.999
17-3. 0.300, 0.600
18-1a. 1.50× 10−4, 1.90× 10−4 W/m2

18-1b. 81.0, 84.0 dB
18-2a. 5.0, 70.0 mW/m2

18-2b. 95.0, 110.0 dB
18-2c. 0.50, 3.00 m
18-3. 0.0100, 0.0600 J
18-4. 42.20, 42.70 kHz
18-5a. 320, 380 Hz
18-5b. 460, 520 Hz
18-6. 20.0, 35.0 m/s
18-7b. 1.00× 108, 2.00× 108 m/s
19-1. 1.3, 3.0

19-2. 1.20, 2.00 s
19-3a. 0.10, 0.60 m
19-3b. 0.50, 1.50 m
19-4. 2.0, 7.0 g/m
19-5a. 100, 200 lb
19-5b. 10.0, 20.0 tons
20-1a. 0.400, 0.600 m
20-1b. 300, 450 Hz
20-2a. 23.00, 25.00 cm
20-2b. 0.30, 0.70 cm
20-2c. 365.0, 371.0 Hz
20-3. 9.0, 17.0 Hz
20-4a. 525.0, 529.0 Hz
20-4b. −1.0, −2.0%
20-5. 2.0, 6.0 Hz
20-6. 1.0, 4.0 cm
20-7a. 10, 25
20-7b. 300, 375 Hz
20-7c. 1, 10
20-7d. 1420, 1500 Hz
20-7e. 15, 25
25-1a. 34.0, 38.0◦

25-1b. 60.0, 70.0◦

25-2a. 49.00, 50.00◦

25-2b. 49.00, 51.00◦

25-2c. 48.00, 50.00◦

26-1b. 1.00, 2.00 m
26-2. 25.0, 85.0 degrees
27-1. 30, 50◦

27-2a. 0.00, 6.00 W/m2

27-2b. 0.00, 6.00 W/m2

27-2c. 0.00, 6.00 W/m2

27-2d. 0.00, 6.00 W/m2

27-3b. 36.00, 38.00 degrees
28-1a. 3.70, 4.30 cm
28-1b. −0.20, −0.50
28-1c. −0.50, −0.90 cm
28-2a. −2.0, −9.9 cm
28-2b. 1.0, 5.0
28-2c. 1.0, 5.0 cm
28-3a. −1.50, −1.80 cm
28-3b. 0.140, 0.200
28-3c. 0.50, 0.99 cm
28-4a. 25.0, 35.0 cm
28-4c. −25.0, −35.0 cm



29-1. 50, 80 cm
29-2a. 5.00, 6.00 cm
29-3a. 4.00, 9.50 cm
29-3b. −1.00, −4.00
29-3c. −1.00, −4.00 cm
29-4a. −3.0, −9.0 cm
29-4b. 1.5, 2.5
29-4c. 1.5, 2.5 cm
29-5a. −2.50, −3.50 cm
29-5b. 0.30, 0.50
29-5c. 1.50, 2.50 cm
29-6a. 10.0, 20.0 cm
29-7a. −20.0, −30.0 cm
29-7b. 2.0, 4.0
29-8a. 110, 220 cm
29-8c. 0.800, 0.900
30-1. −40, −60 cm
30-2. 25.0, 35.0 cm
30-3a. 40.0, 70.0 mm
30-3b. 0.10, 0.70 mm
30-3c. 0.040, 0.099 mm
30-3d. 0.010, 0.040 mm
30-4. 10.0, 50.0 cm
30-5. 7.00, 9.00 cm
31-1a. 0.100, 0.150◦

31-1b. 0.150, 0.200◦

31-1c. 1.30, 1.60
31-2a. 2.00, 4.00
31-2b. 2.00, 4.00
31-3a. 0.150, 0.250 mm
31-3b. 1.00, 1.60◦

31-3c. 30.0, 60.0 cm
31-4b. 1.0, 9.9 mm
32-1. 160, 300 Hz
32-2. 400, 800± 10 nm
32-3. 0.000, 0.100 W/cm2

33-1. 480, 660 nm
33-2. 200, 400 nm
33-3b. 6.0, 9.0 µm
33-4. 400, 999 nm
34-1. 400, 800± 10 nm
34-2. 50.0, 99.9 µm
35-1. 0.1, 1.0 m
35-2a. 5.0, 25.0 cm
35-2b. 10.0, 60.0

35-3a. 5, 30◦

35-3b. 3.0× 10−5, 5.0× 10−5 degrees
35-4a. 1.00, 1.50 m
35-4b. 2.00, 4.00 m
35-5a. 0.80, 1.30 D
35-5b. 1.00, 1.60 λ
35-6a. 0.040, 0.120◦

35-6b. 200, 600± 10 µm
35-6c. 900, 1100 slits
35-70. 15.0, 45.0◦

37-1a. 50.0, 80.0 m/s
37-1b. 10.0, 40.0 m/s
37-1c. 40.0, 60.0 m/s
38-1. 6.0× 10−12, 9.9× 10−12 m
38-2. 0.999880, 0.999950c
38-3. 0.999850c, 0.999950c
38-4a. 6.00, 9.50 y
38-4b. 1.50, 3.50 y
38-4c. 1.50, 3.50 ly
39-1. 0.150, 0.300 c
39-2b. 2.50× 108, 3.00× 108 m/s
39-2c. 1.20× 1010, 1.35× 1010 light years
39-2d. 1.20× 1010, 1.35× 1010 y
39-3a. 2.20× 108, 2.70× 108 m/s
39-3b. 4.70, 5.70 m
39-3c. −1.10× 10−8, −1.60× 10−8 s
40-1. 0.65, 0.95c
40-4c. 14.0, 19.0 min
40-5b. 40.0, 70.0 years
41-1a. 2.00, 3.50 MeV
41-1b. 0.960, 0.990c
41-2a. 0.50, 0.99 keV
41-2b. 50, 99 keV
41-3a. 1.00× 10−12, 4.00× 10−12 J
41-3b. 1.00× 10−11, 9.00× 10−11 J



Physics 123 Identification Number _________________ 
Lab #1 
Pressure in a Fluid 
 
In this lab you will measure the density of an unknown liquid. You do this by forcing the 
liquid up a tube using a known amount of pressure (see figure). 
 
Pressurize the bottle of liquid by squeezing the hand pump repeatedly. The liquid should be 
forced up the tube. Be sure that the silver air release value is closed (twist it clockwise). Increase 
the pressure until the level of the liquid in the tube is almost 2 m above the floor. If you 
overshoot 2 m, you may lower the level of the liquid by opening the air release valve (twist it 
counter-clockwise). 
 
Using the 2-meter stick, measure h1 and h2 (relative to the bottom of the bottle) and calculate 
Δh = h2 – h1. Record the results below. Record the pressure measured by the gauge. (Note that 
this is the pressure P – P0 relative to the atmospheric pressure P0. Also note that the units of 
pressure measured by the gauge is oz/in2. 16 oz = 1 lb.) Using P = P0 + ρgh, calculate the density 
ρ of the liquid and record the result below. Your result should be accurate to the nearest 
0.01 g/cm3. Please release the air pressure when you are finished. 
 
 
h1 = ______________ 
 
h2 = ______________ 
 
h = ______________ 
 
P – P0 = ______________ 
 
ρ = ______________ 
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Lab #2 
Heat Capacity of a Solid 
 
In this lab, you will measure the specific heat of  aluminum. A 
strap is wound around an aluminum cylinder of mass m = 216 g 
and radius r = 1.00 inch. One end of the strap is attached to a 
weight of mass M = 1.00 kg, and the other end is secured to a 
fixed support. As you turn the cylinder, the weight is lifted up 
slightly. The strap slips around the cylinder, and the weight is 
lifted due to a frictional force Mg between the strap and cylinder. 
When you turn the cylinder one revolution, the work done by the 
friction is equal to W = (Mg)(2πr). This work becomes heat 
which causes the temperature of the cylinder to rise. 
 
The temperature of the cylinder is measured using a thermocouple wire which is connected to a 
digital meter. Insert the wire into the shallow hole at the center of the red circle drawn on the end 
of the aluminum cylinder. Hold it there for 30 seconds. If you hold it with your fingers, then be 
sure to keep your fingers at least two inches away from the end of the wire so that the heat from 
your fingers does not influence the reading of the temperature. 
 
In order to minimize the effect of the heat flow between the cylinder and the surrounding air, we 
first cool down the cylinder to a few degrees below room temperature. This is done by pressing a 
piece of cold aluminum supplied with the apparatus against the rotating cylinder for about two 
seconds. If the temperature is still not below room temperature (perhaps because someone else 
had just finished the lab and left the cylinder hot), press the piece of cold aluminum against the 
cylinder for another two seconds or so. Do not lower the temperature below about 18°C.  
 
Record the initial temperature Ti below. Turn the crank on the cylinder 100 times. Note that 
every revolution of the crank produces 12 revolutions of the cylinder, so the cylinder has actually 
gone through 1200 revolutions. Record the final temperature Tf. Calculate the change in 
temperature ΔT. Calculate the work W per revolution done. Calculate the total work W done. 
Calculate the specific heat c of the cylinder. 
 
Ti = ________________ 
 
Tf  = ________________ 
 
ΔT = ________________ 
 
W/revolution = ________________ 
 
total W = ________________ 
 
c = ________________ 
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Lab #3 
Standing Waves in a Wire 
 
In this lab, you will produce standing waves in a wire. This is done by placing the wire through 
the poles of a magnet and passing an alternating current (60.00 Hz) through the wire. The 
resulting force of the magnetic field on the current drives the wire into a vertical oscillation at 
60.00 Hz. The tension in the wire is equal to the weight hanging at the end. At certain tensions, 
the wire will resonate and produce visible standing waves. 
 
 

 
 
Produce a standing wave by adjusting the amount of water in the container and thus changing the 
tension in the wire. (Don't add any additional weight beside water. You may break the wire.) 
Adjust the tension until the amplitude of the antinodes is as large as possible (even though the 
nodes may not be as well defined). Using a meter stick, measure the wavelength  of the 
standing wave. Calculate the velocity v of the waves in the wire. Weigh the container of water to 
obtain its mass m. Calculate the tension F in the wire. From F and v, calculate the linear mass 
density  of the wire. Repeat this for a different standing wave. 
 
 1st Standing Wave  2nd Standing Wave 
 
 = ______________________ ______________________ 
 
v = ______________________ ______________________ 
 
m = ______________________ ______________________ 
 
F = ______________________ ______________________ 
 
 = ______________________ ______________________ 
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Lab #4 
Standing Waves in a Pipe 
 
In this lab, you will produce standing waves in a pipe. This is done by placing a speaker at an 
open end of the pipe and driving the speaker with an oscillator as shown below: 
 

 
 
 
A piston is inserted into the other end of the pipe. At certain positions of the piston, the speaker 
will cause the pipe to resonate, thus producing standing waves. 
 
Set the frequency f of the oscillator at approximately 700 Hz. Read the frequency shown on the 
counter and record it below. Starting with the piston at the end of the pipe, push it in slowly. You 
will notice that at certain positions, the sound of the speaker is enhanced. This is caused by 
standing waves in the pipe. Use the sound meter to accurately determine the position of the 
piston where the enhanced sound is loudest. Measure the distance l between the piston and the 
open end of the pipe at all positions of the piston for which this occurs and record it below. You 
ought to find 5 of them. 
 
For each standing wave, the piston is at a position of a displacement node. From the data, you 
can thus obtain the distance between nodes and consequently the wavelength . Using the 
wavelength and frequency, calculate the velocity of sound to the nearest m/s (three significant 
figures). Record these results below. 
 
f = _________________ 
 
l = ______________  ______________  ______________  ______________  ______________ 
 
 = _________________ 
 
v = f  = _________________ 
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Physics 123 Identification Number _________________ 
Lab #5 
Dispersion 
 
In this lab you will use a computer simulation to study how wave packets propagate in linear 
media. You will study both non-dispersive media in which sine-waves of all wavelengths travel 
at the same speed (like, for example, light traveling in a vacuum) as well as dispersive media 
(like light traveling through a piece of glass, electron quantum waves traveling through space, 
and just about every other real system). 
 
The first step is to go to the class website and click the “Lab 3 - Dispersion” link. You can run 
the applet and get additional help there. Once the applet is running, you should see a screen with 
two graphs and some text. The next step is to click on the red “get help” button in the upper left-
hand corner and read the instructions for the software. Before proceeding, you may want to play 
with the program for a bit to make sure that you understand how it works. 
 
 
Uncertainty First let’s explore the uncertainty which is inherent in waves. To do this, first click 
on “Reset All.” In the upper graph you should see a depiction of a Gaussian wave packet (a little 
“burst” of a sine-wave with a Gaussian-shaped “envelope”). In the lower graph you can see the 
spectrum of the pulse (the amplitude of each of the sine waves which the computer added 
together to make the wave packet in the upper graph). On the far right-hand side of the program 
the computer displays x; (the standard deviation of the pulse in space), k (the standard 
deviation of the pulse’s spectrum), and the product of the two. 
 
We learned in class that in order to make pulses which were very narrow in space, we have to 
add a wide band of frequencies or wavenumbers together, making it difficult to state with 
certainty what the frequency of the pulse is. To make a wave packet with a very well defined 
frequency or wavenumber we have to let the packet extend over a large range in space such that 
it is difficult to assign a location to the packet with precision. Furthermore, we learned that if we 
defined uncertainty to be the RMS standard deviation, the uncertainties in x and k follow the 
uncertainty relation xk  ½. 
 
Notice that our wave satisfies the above uncertainty relation. Now type in a different value for 
the pulse width (w). Notice that as the pulse shrinks, its spectrum widens. The uncertainty 
relation should still hold. Now change the central wavenumber (k) and see what happens. 
 
Now click “Reset All,” enter 150 for k, and enter squarepulse(x/w) for the “Envelope.” Now 
try different values for the pulse width and fill in the table below. Then answer the question 
below the table. 
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w x k xk 

0.02    

0.05    

0.08    

0.1    

 
 Do the values in this table satisfy the uncertainty relation above? 

 
 
 
Note that the physical size of the pulse on the screen is about 4 times larger than x. This is just 
due to the fact that we have chosen to define uncertainty as the RMS standard deviation. This is 
the most commonly used but not always the most useful definition. So, you see, there is 
uncertainty in our definition of uncertainty! As a result, the uncertainty relation is often written 
in the less precise form: xk  1. 
 
 
Non-dispersive media. In this part of the lab we will examine what happens when wave pulses 
travel in non-dispersive media. In non-dispersive media the angular frequency of a sine wave is 
simply proportional to the wavenumber of the wave: (k) = vk, where v is the velocity that 
waves travel through the medium. Wait a minute... is that the phase or group velocity? Think 
about this for one minute, and then answer the following two questions in the space provided. 
 

 The dispersion relation of light traveling through a vacuum is just (k) = ck, where c is 
equal to 2.9979  108 m/s. What is the phase velocity for a pulse of light whose central 
wavelength is 657 nm? 

 
 
 
 

 What is the group velocity for such a light pulse? 
 
 
 
 
Now let’s use the computer simulation to see what happens to a Gaussian-shaped pulse as it 
propagates through a non-dispersive medium. First click on the “Reset All” button. There should 
now be a pretty pulse displayed in the upper graph, with a nice spectrum centered around a 
wavenumber of 75 m–1 in the lower graph. Now click on the “Go!” button to let time run and see 
what happens. The dispersion relation, shown just below the “Reset All” button, is 
(k) = 0.1 m/s  k. Use this dispersion relation to answer the following question. 
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 What is the group velocity for a pulse in this medium centered at 75 m–1? 

 
 
 
 
 
Now click on the “Stop” button to stop the simulation if it hasn’t already stopped, and click on 
the “Reset t=0” button to set time back to zero. Now plug the group velocity you calculated 
above into the “x-Axis Velocity” box to make our “view window” move with the pulse. Click on 
“Go!”. If you did your calculation correctly, the pulse should stand still in the window. 
 
Based on what you have seen, answer the following question. 
 

 What happens to the spatial size of a pulse and the spread of frequencies or wavenumbers 
in a pulse as it travels in a non-dispersive medium? 

 
 
 
 
 
Dispersive Media. Now let’s pick a dispersion relation which is a little more interesting. Click 
on “Reset All,” and then enter the dispersion relation 0.001*k^2. Before you do anything else, 
use this dispersion relation to calculate the group and phase velocities for a pulse centered 
around k = 75m–1. 
 

 Group Velocity 
 
 
 

 Phase Velocity 
 
 
 
Now click on “Go!” and see what happens. Now stop the simulation, set time to t = -10, and 
set the “x-Axis Velocity” equal to the group velocity you calculated above. Press “Go!” again 
and watch what happens. Now stop the simulation, set time to t = -2.5, and set the “x-Axis 
Velocity” equal to the phase velocity calculated above. Press “Go!” and see what happens (hint: 
this is the part of the lab where the vertical blue line in the center of the graph is useful). Finally, 
based on what you saw and in you own words explain what phase and group velocity represent: 
 

 Group velocity is… 
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 Phase velocity is… 

 
 
 
 
 
Now, based on what you have seen, answer the following question. 

 What happens to the spatial “size” of a pulse when it travels through a dispersive 
medium? 

 
 
 
 
 

 What happens to the spectrum of a pulse when it travels through a dispersive medium?  
 
 
 
 
 
 
That’s the end of the lab, but I recommend that you take some additional time to play around 
with this simulation. If you can develop a solid understanding of dispersion, uncertainty, and 
group and phase velocities, you will be able to better understand many more concepts that you 
will learn in future courses in physics, chemistry, engineering, etc. After all, quantum mechanics 
tells us that everything is a wave, and that even a vacuum is dispersive for waves that represent 
matter! 
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Physics 123 Identification Number _________________ 
Lab #6 
Fourier Transforms 
 
In this lab you will study the relationship between time dependent signals and their frequency 
spectrum (i.e., their Fourier transform). You will do this using a computer program which can 
generate or record waveforms or read-in pre-recorded waveforms. This program will display the 
waveform along with its Fourier transform.  
 
The first step is to go to the class website and click the “Lab 6 - Fourier transforms” link. You 
can run the applet and get additional help there. The next thing to do is to play with the program 
and make sure that you understand how to use it. In particular, make sure you understand how to 
zoom in and out on the graphs, and how to find the exact value of a point by right-clicking on it. 
 
 
Musical Octaves. Click on “RESET ALL”. This will set up the program to work with a “user 
defined” waveform and set the waveform equal to sin(2*pi*440*t). This will generate a sine 
wave at 440 Hz (the A above middle C). Now, adjust the frequency (the 440) until you hear a 
tone which is one octave higher. Note the frequency below. Adjust the frequency again until the 
tone is another octave higher. Note the frequency below. Now think to yourself— does this agree 
with what we studied in class? 
 
fOne Octave Up = 
 
 
fTwo Octaves Up = 
 
 
 
Generating a Square Wave. Now enter squarewave(2*pi*440*t) as the user defined 
waveform to generate a 440 Hz square wave. Zoom in on the wave until you can see that it is, 
indeed, a square wave. Play the wave and hear what it sounds like. Now, using the “Its 
spectrum” graph, find the frequency and amplitude of the four lowest-frequency Fourier 
components and record them in the table below. Also record the frequency divided by the 
fundamental frequency (440 Hz). (Hint, f/440Hz should be an integer for all of the components, 
and should equal 1 for the lowest frequency component.) 
 
 f A f/440 Hz 
1. 
 

   

2.  
 

   

3.  
 

   

4.  
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Now let’s see what happens when we add together four sine waves with the above frequencies 
and amplitudes. Type  
 

A*sin(2*pi*fa*t) + B*sin(2*pi*fb*t) + C*sin(2*pi*fc*t) + 
D*sin(2*pi*fd*t) 

 
in as the user defined waveform, where A, B, C and D are the amplitudes you measured above, 
and fa, fb, fc, and fd are the frequencies which go with each amplitude. Click on “Recalc/Record” 
and then zoom in on the graph of the wave to see if it looks like a square wave. Sketch what you 
see below: 
 
 
 
 
 
 
 
For kicks, you might want to see what the wave looks like as you add more and more sine terms 
together. You can get a pretty decent looking square wave! 
 
 
Uncertainty Relations. Now let’s make a short pulse of sound and explore the topic of “wave 
uncertainty”. Enter  sin(2*pi*440*t)*exp(-10000*(t-0.5)^2)  as the user defined 
waveform and click on “Recalc/Record.” Click on “Zoom to fit,” and take a look at the wave and 
its spectrum. Then play the wave. Now zoom in on the wave and on its spectrum and estimate Δt 
and Δf. Now calculate Δω from Δf, and calculate the uncertainty product Δω Δt and record 
everything below. 
 
Δt:  
 
Δf:  
 
Δω: 
 
Δω Δt:  
 
Now make the pulse shorter and longer in time by changing the 10000 in the waveform to other 
numbers. Change it by at least a factor of 20 in both directions (smaller and larger). Describe 
below what happens to the width of the spectrum when you change the duration of the pulse in 
time. Why does this happen? 
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Describe below what happens to the tone of the note as you change the duration of the pulse in 
time. Why does this happen? 
 
 
 
 
 
 
 
Playing Around. You have now finished the lab. But for your own learning experience I 
recommend that you play around with the program. In particular, you should do the following 
things.  
 
(1) Record the sound of your hands clapping (or use the pre-recorded sound of my hands 
clapping, available under the “Waveform” drop-down box) and see if the uncertainty product 
ΔωΔt makes sense.  
 
(2) Listen to the various pre-recorded waveforms and note their spectral properties. Notice that 
most of the instruments have a spectrum which looks like a harmonic series and ask yourself 
why that is the case. Also notice that the percussive instruments do not have a spectrum which 
looks like a harmonic series. Not even the timpani which seems to generate a specific tone! Ask 
yourself why a timpani’s waveform does not consist of a harmonic series of frequencies.  
 
(3) Try to generate different waveforms by adding sine waves together. You might want to 
actually calculate the Fourier transform of some waveform, and then plug the results in and see 
what you get. 
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Lab #7 
Brewster’s Angle 
 
In this lab, you will measure the Brewster angle for two different materials. From these 
measurements, you will then calculate the index of refraction for each material. 
 
As shown in the figure below, a laser beam is directed towards the surface of a sample. The 
sample is mounted on a platform which can be rotated. The pointer attached to the platform 
points in a direction perpendicular to the surface of the sample. The incident angle θ of the beam 
can be read from a scale on the apparatus. 
 
The reflected beam passes through a sheet of Polaroid and hits a white screen. The transmission 
axis of the Polaroid is horizontal. When the angle of the incident beam is equal to the Brewster 
angle, the reflected beam is polarized vertically and thus will not pass through the Polaroid. At 
this angle, the illuminated spot on the screen will disappear. (Actually, since the sample and the 
Polaroid are not ideal, the spot will not disappear completely, but will have a minimum 
intensity.) 

 
 
There are two samples. One is ordinary glass, and the other is zirconium oxide (ZrO2). First 
insert the glass into the sample holder. Rotate the sample platform and find the orientation where 
the reflected beam has a minimum intensity. Be sure that the Polaroid sheet is in place so that the 
reflected beam passes through it. Read the incident angle from the scale and record it below. This 
is the Brewster's angle θp. Determine the index of refraction from n = tanθp and record it below.  
Repeat this for the ZrO2 sample. 
 
Warning: Do not touch the sample surfaces. Fingerprints on the samples will affect your 
measurements. Wipe off any fingerprints with the tissues provided. 
 
Glass sample: θp = ______________ n = ______________ 
 
ZrO2 sample:  θp = ______________ n = ______________ 
 
When you are finished, remove the Polaroid sheet and notice how intense the reflected beam is. 
Then place a small circular Polaroid sheet in the path of the reflected beam and observe how its 
intensity changes as you rotate the sheet. 
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Lab #8 
Telescope 
 
In this lab, you will construct a simple telescope using two lenses. Mount the source (illuminated 
arrow) and the screen on the optical bench, and mount one of the lenses between them. Adjust 
their positions until a real image of the arrow is focused on the screen. For best results, adjust the 
positions so that the lens is about half-way between the object and the image. Measure p and q. 
Calculate f from the thin lens equation, 
 

1 1 1

f p q
= + . 

 
Repeat for the other lens. Record your results below. 
 
Construct a telescope by mounting the two lenses a distance f1 + f2 apart. Use the lens with the 
smaller focal length for the eyepiece. View the large scale mounted on the wall across the room. 
The distance between the two lenses may be adjusted to bring the image into better focus. 
 
Measure the angular magnification m of the telescope by viewing the scale through the telescope 
with one eye and looking directly at the scale with the other eye. In this way, you ought to be 
able to see both the magnified and unmagnified scale superimposed on each other.  
 
Finally, calculate m from the measured focal lengths. 
 
 lens 1 lens 2 
 
p = ____________________ ____________________ 
 
q = ____________________ ____________________ 
 
f = ____________________ ____________________ 
 
m = ____________________ measured 
 
m =  ____________________ calculated 
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Physics 123 Identification Number _________________ 
Lab #9 
Michelson Interferometer 
 
In this lab, you will use a Michelson interferometer to measure the index of refraction of a gas. A 
chamber which can be evacuated is placed in one arm of the interferometer. All of the air is first 
evacuated from the chamber. As the gas to be studied is slowly allowed to enter the chamber, the 
number of fringes passing by the center of the screen is counted. 
 

 
 

The index of refraction n of the gas is given by 
 

1
2

N
n

L

λ
= + , 

 
where N is the number of fringes counted, λ is the wavelength of the laser in vacuum, and L is 
the length of the chamber. See the Supplement on the next page for the derivation. 
 
Turn on the vacuum pump and evacuate the chamber. Pump for at least a couple of minutes to 
obtain a good vacuum. Valve off the vacuum pump and slowly open the chamber to air and count 
the fringes. (You will probably open the valve too fast the first time you try, and the fringes will 
go by too quickly to count. If this happens, evacuate the chamber again and start over.) Repeat 
using helium gas instead of air. Measure L and calculate n for each gas. 
 
 
 Air Helium 
 
L = __________________ __________________ 
 
N = __________________ __________________ 
 
n =  __________________ __________________ 
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Supplement to Michelson Interferometer 
 
 
When the chamber is evacuated, the number of wavelengths along its length L is given by 
 

vac
vac

L
N

λ
= , 

 
where λvac is the wavelength of the laser light in vacuum. When the chamber is filled with some 
gas, the number of wavelengths along its length is now given by 
 

gas
gas

L
N

λ
= , 

 
where λgas is the wavelength of the laser light in the gas. 
 
Each time one arm of the interferometer gets behind (or ahead) by one wavelength, one fringe 
passes by the screens. As we fill the chamber with gas, that arm of the interferometer will get 
behind by N = 2(Ngas – Nvac) wavelengths. (The factor 2 is included since the light passes through 
the chamber twice, once going and once coming back.) From the two above equations, we thus 
obtain 
 

2
gas vac

L L
N

λ λ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
. 

 
We also know that 

vac
gas n

λ
λ = , 

 
where n is the index of refraction of the gas. Using this to solve for n, we obtain 
 

1
2

vacN
n

L

λ
= + . 
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Lab #10 
Diffraction Grating 
 
In this lab, you will observe the interference pattern produced by shining a laser beam through a 
diffraction grating. From the distance between peaks in the pattern, you will determine the 
distance between the slits in the grating. 
 
The He-Ne laser used in this lab produces red light of wavelength 633 nm. Turn on the laser. Its 
beam should pass through the diffraction grating. You should observe the interference pattern on 
the wall. 
 
Use a meter stick to measure the distance Δx between peaks in the interference pattern. Average 
this distance over several adjacent peaks so that your measurement will be as accurate as 
possible. Record your result below. 
 
Use the tape measure to determine the distance L between the diffraction grating and the 
interference pattern on the wall and record your result below. 
 
Calculate the angle θ between adjacent bright spots in the interference pattern and record your 
result below. 
 
Using d sinθ = λ = 633 nm, calculate the distance d between the slits in the grating and record 
your result below. 
 
 
 
 
 
 
 
 
 
 
 
 
Δx = _______________ 
 
L = _______________ 
 
θ = _______________ 
 
d = _______________ 
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