Parallel Equations for the Electric and Magnetic Fields

Dr. Colton, Physics 441, Fall 2016

ELECTRIC

MAGNETIC

Statics
1.
$$q = \int \lambda dl$$

 $q = \int \sigma da$
 $q = \int \rho d\tau$
2. $\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{qQ}{|\mathbf{r} - \mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$
3. $\mathbf{F} = Q\mathbf{E}$

4.
$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{|\mathbf{r}-\mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$$
$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda(\mathbf{r}')dl'}{|\mathbf{r}-\mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$$
$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_S \frac{\sigma(\mathbf{r}')da'}{|\mathbf{r}-\mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$$
$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\mathbf{r}')d\tau'}{|\mathbf{r}-\mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$$

5.
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

6. $\Phi_E = \int_S \mathbf{E} \cdot d\mathbf{a}$
7. $\oint_S \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{enc}}{\varepsilon_0}$
8. $\nabla \times \mathbf{E} = 0$ (this gets modified below)
9. $\mathbf{E} = -\nabla V$ (this gets modified in Phys 442)
10. $V(\mathbf{r}) = -\int_{\mathbf{ref}}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l}$
11. $V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} dt'$
 $V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\sigma(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} da'$
 $V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\tau'$
12. $U = \frac{\varepsilon_0}{2} \int E^2 d\tau$
13. $C = \frac{Q}{V}$
14. $U = \frac{1}{2} \frac{Q^2}{c}$
15. $E_1^{\perp} - E_2^{\perp} = \frac{\sigma}{\varepsilon_0}$
16. $\mathbf{E}_1^{\parallel} = \mathbf{E}_2^{\parallel}$
17. $V_1 = V_2$
18. $\nabla^2 V = -\frac{\rho}{\varepsilon_0}$

$$\frac{\text{Statics}}{1. \quad I = \int K_{\perp} dl}$$
$$I = \int \mathbf{J} \cdot d\mathbf{a}$$

- 2. No easy parallel for magnetic field
- 3. $\mathbf{F} = Q(\mathbf{v} \times \mathbf{B})$ 4. $\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I} \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} dl'$ $\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_S \frac{\mathbf{K}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} da'$ $\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\mathbf{J}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} d\tau'$

5. $\nabla \cdot \mathbf{B} = 0$

- 6. $\Phi_B = \int_S \mathbf{B} \cdot d\mathbf{a}$ 7. $\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{enc}$
- 8. $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$ (this gets modified below)
- 9. $\mathbf{B} = \nabla \times \mathbf{A}, \ \nabla \cdot \mathbf{A} = 0$ (Coulomb gauge)
- 10. No direct parallel for the magnetic field

11.
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}}{|\mathbf{r} - \mathbf{r}'|} dl'$$
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}}{|\mathbf{r} - \mathbf{r}'|} da'$$
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau'$$

12. $U = \frac{1}{2\mu_0} \int B^2 d\tau$ 13. $L = \frac{\Phi}{l}$ 14. $U = \frac{1}{2}LI^2$ 15. $B_1^{\perp} = B_2^{\perp}$ 16. $\mathbf{B}_{1}^{\parallel} - \mathbf{B}_{2}^{\parallel} = \mu_{0}\mathbf{K}$ 17. $\mathbf{A}_{1} = \mathbf{A}_{2}$ 18. $\nabla^{2}\mathbf{A} = -\mu_{0}\mathbf{J}$

19.
$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \int (r')^n P_n(\cos\theta') \rho(\mathbf{r}') d\tau'$$

<u>Materials</u> 20. $\mathbf{p} = \int \mathbf{r}' \rho(\mathbf{r}') d\tau'$ 21. $V_{\text{dip}} = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{p}\cdot\hat{\mathbf{r}}}{\mathbf{r}^2}$ 22. $\mathbf{E}_{\text{dip}}(r,\theta) = \frac{1}{4\pi\varepsilon_0} \frac{p}{r^3} (2\cos\theta\hat{\mathbf{r}} + \sin\theta\hat{\mathbf{\theta}})$ 23. $\mathbf{N} = \mathbf{p} \times \mathbf{E}$ 24. $\mathbf{F} = (\mathbf{p} \cdot \nabla)\mathbf{E}$ 25. $U = -\mathbf{p} \cdot \mathbf{E}$ 26. \mathbf{P} = dipole moment per unit volume

27.
$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$

28. $\nabla \cdot \mathbf{D} = \rho_f$
29. $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$
30. $\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_0 \varepsilon_r \mathbf{E}$
31. $\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}}$
32. $\rho_b = -\nabla \cdot \mathbf{P}$
33. $\oint \mathbf{D} \cdot d\mathbf{a} = Q_{f,enc}$
34. $\varepsilon_r = 1 + \chi_e = \frac{\varepsilon}{\varepsilon_0}$
35. $U = \frac{1}{2} \int \mathbf{D} \cdot \mathbf{E} \, d\tau$

Dynamics

37. $\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$ 38. $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ 39. $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ (unchanged for materials)

19.
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \oint (r')^n P_n(\cos\theta') d\mathbf{l}'$$

Materials
20.
$$\mathbf{m} = I \int d\mathbf{a} = I\mathbf{a}$$

21. $\mathbf{A}_{dip} = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}$
22. $\mathbf{B}_{dip}(r, \theta) = \frac{\mu_0}{4\pi} \frac{m}{r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\mathbf{\theta}})$
23. $\mathbf{N} = \mathbf{m} \times \mathbf{B}$
24. $\mathbf{F} = \nabla(\mathbf{m} \cdot \mathbf{B})$
25. $U = -\mathbf{m} \cdot \mathbf{B}$
26. $\mathbf{M} = \text{magnetic dipole moment per unit}$
volume
27. $\mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{M}$
28. $\nabla \cdot \mathbf{B} = \mathbf{0}$ (still)
29. $\mathbf{M} = \chi_m \mathbf{H}$
30. $\mathbf{H} = \mathbf{B}/\mu = \mathbf{B}/(\mu_0\mu_r)$
31. $\mathbf{J}_{\mathbf{b}} = \nabla \times \mathbf{M}$
32. $\mathbf{K}_{\mathbf{b}} = \mathbf{M} \times \hat{\mathbf{n}}$
33. $\oint \mathbf{H} \cdot d\mathbf{l} = I_{f,enc}$
34. $\mu_r = 1 + \chi_m = \frac{\mu}{\mu_0}$
35. $U = \frac{1}{2} \int \mathbf{H} \cdot \mathbf{B} d\tau$

Dynamics

37. $\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$ (same equation as in left hand column; connects charge to current)

38.
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

39. $\nabla \times \mathbf{H} = \mu_0 \mathbf{J}_{\mathbf{f}} + \frac{\partial \mathbf{D}}{\partial t}$