Legendre Polynomials, by Dr Colton Physics 441

The Legendre polynomials, $P_{\ell}(x)$ are a series of polynomials of order ℓ , $A + Bx + Cx^2 + ... + Zx^{\ell}$, that:

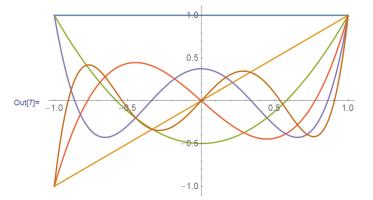
- (a) come up often, especially in partial differential equations
- (b) have interesting properties
- (c) are well understood and have been studied for centuries

Here they are:

LegendreP[ℓ, x] is built into *Mathematica*, just like Sin[x], gives P_{ℓ}(x) $\ln[1] = P0[x] = LegendreP[0, x]^{\bigstar}$ $\mathbf{P}_0(x)$ Out[1]= 1 $\ln[2] = P1[x_] = LegendreP[1, x]$ $\mathbf{P}_1(\mathbf{x})$ Out[2]= X $\ln[3] = P2[x] = LegendreP[2, x]$ Sometimes the polynomials are written in terms of $x = \cos \theta$, e.g. $\mathbf{P}_2(x)$ Out[3]= $\frac{1}{2}(-1+3x^2)$ $P_2(\cos\theta) = -\frac{1}{2} + \frac{3\cos^2\theta}{2}$ $\ln[4] = P3[\mathbf{x}] = LegendreP[3, \mathbf{x}]$ $P_3(x)$ Out[4]= $\frac{1}{2} (-3 x + 5 x^3)$ $\ln[5] = P4[x_] = LegendreP[4, x]$ $\mathbf{P}_4(x)$ Out[5]= $\frac{1}{8}$ (3 - 30 x² + 35 x⁴) $\ln[6] = P5[x_] = LegendreP[5, x]$ $\mathbf{P}_5(\mathbf{x})$ Out[6]= $\frac{1}{8}$ (15 x - 70 x³ + 63 x⁵) Etc.

Plots:

 $\label{eq:ln[7]:= Plot[{P0[x], P1[x], P2[x], P3[x], P4[x], P5[x]}, {x, -1, 1}]$



The subscript ℓ is the order of the polynomial = highest power of *x*.

The functions alternate even/odd.

A given polynomial has either only odd or only even powers of *x*.

They all go to either 1 or -1 on the boundary when plotted in the range from $-1 \le x \le 1$.

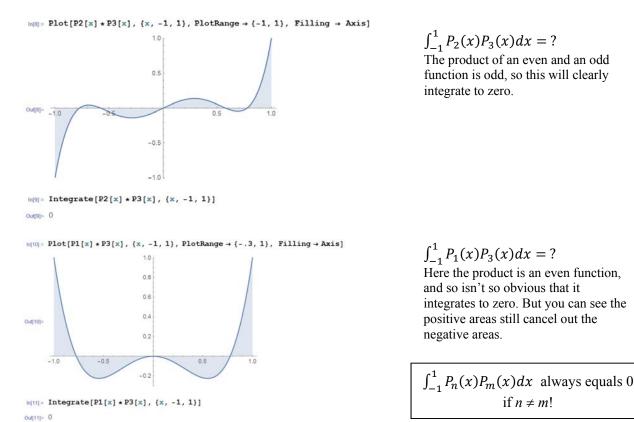
Very important facts

• Can be computed via the "Rodriguez formula": $P_{\ell}(x) = \frac{1}{2^{\ell}\ell!} \left(\frac{d}{dx}\right)^{\ell} (x^2 - 1)^{\ell}$ or via summation $P_{\ell}(x) = 2^{\ell} \cdot \sum_{k=0}^{\ell} x^k {\ell \choose k} \left(\frac{(\ell + k - 1)/2}{\ell}\right)$ where ${\ell \choose k}$ is the binomial coefficient " ℓ choose k".

• Orthogonality:
$$\int_{-1}^{1} P_{\ell}(x) P_{m}(x) dx = \begin{cases} 0 & \text{if } \ell \neq m \\ \\ \frac{2}{2\ell+1} & \text{if } \ell = m \end{cases}$$

- If $x = \cos\theta$, then $dx = -\sin\theta d\theta$; use negative sign to switch limits then we have: $\int_0^{\pi} P_{\ell}(\cos\theta) P_m(\cos\theta) \sin\theta d\theta = \begin{cases} 0 & \text{if } \ell \neq m \\ \frac{2}{2\ell+1} & \text{if } \ell = m \end{cases}$
- Differential equation: $\frac{d}{dx}\left((1-x^2)\frac{df}{dx}\right) + \ell(\ell+1)f = 0$ has solution $f = P_\ell(x)$, or linear combinations, $f = \sum_{\ell=0}^{\infty} A_\ell P_\ell(x)$
 - If $x = \cos\theta$, then equation is $\frac{d}{d\theta} \left(\sin\theta \frac{df}{d\theta} \right) = -\ell(\ell+1) \sin\theta f$, solution is $f = P_{\ell}(\cos\theta)$.
- There are a second set of solutions to that differential equation, called $Q_n(x)$, the "Legendre functions of the second kind"; these diverge at $x = \pm 1$ and are therefore often not used.

Orthogonality, depicted



Comparison with sines & cosines:

Sines/Cosines

- Two oscillatory functions: sin(x) and cos(x). Sometimes one of them is not used, due to the symmetry of the problem.
- You typically determine the value of sin(x) or cos(x) for arbitrary x by using a calculator or computer program.

3.
$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

 $\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$

- 4. $\sin(m\pi x) = \text{odd for all } m.$ $\cos(m\pi x) = \text{even for all } m.$
- 5. At x = 1, $sin(m\pi x) = 0$ for all m. At x = 1, $cos(m\pi x) = \pm 1$ for all m.
- 6. The differential equation satisfied by $f = \sin(m\pi x)$ is $f'' + (m\pi)^2 f = 0$
- 7. $\sin(n\pi x)$ is orthogonal to $\sin(m\pi x)$ on the interval (0,1):

$$\int_{0}^{1} \sin(n\pi x) \sin(m\pi x) dx = \begin{cases} 0, & \text{if } n \neq m \\ \frac{1}{2}, & \text{if } n = m \end{cases}$$

Legendre polynomials

Two functions for each ℓ : $P_{\ell}(x)$ and $Q_{\ell}(x)$. Typically Q_{ℓ} is not used because it's infinite at the boundaries.

You typically determine the value of $P_{\ell}(x)$ for arbitrary *x* by using a calculator or computer program.

$$P_{\ell}(x) = \frac{1}{2^{\ell}\ell!} \left(\frac{d}{dx}\right)^{\ell} (x^2 - 1)^{\ell}, \text{ or}$$
$$P_{\ell}(x) = 2^{\ell} \cdot \sum_{k=0}^{\ell} x^k {\ell \choose k} {\ell \ell + k - 1/2 \choose \ell}$$

 $P_{\ell}(x) = \text{odd for odd } \ell.$ $P_{\ell}(x) = \text{even for even } \ell.$

At x = 1, $P_{\ell}(x) = 1$ for all ℓ . At x = -1, $P_{\ell}(x) = \pm 1$ for all ℓ .

The differential equation satisfied by $f = P_{\ell}(x)$ is $\frac{d}{dx}\left((1 - x^2)\frac{df}{dx}\right) + \ell(\ell + 1)f = 0$

$$P_{\ell}(x) \text{ is orthogonal to } P_m(x) \text{ on the interval } (-1,1):$$
$$\int_{-1}^{1} P_{\ell}(x) P_m(x) dx = \begin{cases} 0 & \text{if } \ell \neq m \\ \frac{2}{2\ell+1} & \text{if } \ell = m \end{cases}$$

 $P_{\ell}(\cos \theta)$ is orthogonal to $P_m(\cos \theta)$ on the interval $(0,\pi)$, with respect to a "weighting" of $\sin \theta$:

$$\int_0^{\pi} P_{\ell}(\cos\theta) P_m(\cos\theta) \sin\theta \, d\theta = \begin{cases} 0 & \text{if } \ell \neq m \\ \frac{2}{2\ell+1} & \text{if } \ell = m \end{cases}$$