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Circuits – Advanced Topics 
by Dr. Colton (Fall 2016) 

 
1. Time dependence of general RC and RL problems 
 
General RC and RL problems can always be cast into first order ODEs. You can solve these via the 
“particular solution” and “complementary solution” method. The first step is to use KVL to write a 
differential equation for V or I (whichever is easier). Put the equation into this standard form: 
 

 

 

 

 
Note that “stuff” has units of time. Let’s call it τ.  The equation for V, for example, then becomes:  
 

 

 
The particular solution is something that something that solves the equation with the “forcing function” 
g(t) in place, but doesn’t necessarily match the boundary conditions. The complementary solution which 
is something that solves the equation with g(t) set equal to 0, but with one or more unknown parameters. 
The total solution is the sum of the particular and complementary solutions. The total solution still solves 
the equation with g(t) in place, and the unknown parameter(s) can be used to satisfy the initial 
condition(s).1 Once you have the best of both worlds, namely a function which solves the equation with 
g(t) in place and which also matches the initial conditions, by the uniqueness theorem, that is then the 
solution to the problem. 
 
Finding the particular solution: Guess an overall form for the answer, using intuition/experience and the 
forcing function as a guide. For example, if g(t) is a constant, guess a constant for the particular solution. 
If g(t) is an exponential then guess an exponential (or maybe a sum of decaying and growing 
exponentials). If g(t) is a sine or cosine, then guess a sine or cosine (or sum of the two). 
 
Finding the complementary solution:  For first order equations, the complementary solution will always 
be / 	, where τ is from the standard form equation and K is an unknown constant; notice that this 
function will always solve the equation with g(t) set to 0, regardless of the value of K. 
 
Finding the total solution: Add the two together, then use the initial condition to determine K. 
 
Worked problem 1   
 
An AC voltage is connected to an RC circuit. The current is zero at t = 0.  
What is I(t)? 
 
Starting out. To solve this problem we first use KVL to obtain the ODE,  
then put it in standard form. For simplicity I’m not going to worry about units. 

                                                 
1 First order equations will have one unknown parameter and one initial condition; second order equations will have 
two of each. 
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10	cos 500 100 1 0 

 

0.01 0.1	cos 500  

 
So τ = 0.01 seconds.  
 
Finding the particular solution. Make a guess: 
 

cos 500 	sin 500  
 
Plug into the ODE. 
 

0.01 500 sin 500 500 cos 500 cos 500 	sin 500 0.1	cos 500  
 
Solve for A and B (by equating cosine and sine coefficients, separately). 
 

sin 500 5 		 cos 500 5 0.1	cos 500  
 
So 5 0  and  5 0.1.  Those are easy to solve simultaneously, yielding  
 

0.003846  and  0.01923 
 
Our particular solution is therefore 
 

0.003846 cos 500 0.01923	sin 500  
 
Finding the complementary solution. The complementary solution is / 	 ( / . 	). That was 
easy. 
 
Combining, and matching initial condition: 
 
Our total solution is  
 

0.003846 cos 500 0.01923	sin 500 / . 	 
 
Enforcing the initial condition of 0 0, we have  
 

0 0.003846 0  
 

0.003846 
 
Our final, total solution is therefore: 
 
 
 
Additional details (e.g. the inductor voltage) are readily obtained if desired now that we have I(t). I have 
plotted I(t) on the next page. 
 

0.003846 cos 500 0.01923 sin 500 0.003846 / . 	 
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2. Simple RLC series circuit (no power supply) 
 
For a simple RLC series circuit KVL gives this as the differential equation: 
 

0 

 

where V is the capacitor voltage.  Put I in terms of the capacitor voltage, namely   (from 

, take the derivative and add a negative sign because the capacitor is discharging, i.e.  is negative 

when I is positive). Then we have: 
 

0 

 
1

0 

 

2 0 

 

where the last step involved defining the damping constant  and the resonant frequency 
√

 . 

 
We may rightly expect oscillatory behavior if α is small, since when α = 0 the solutions are purely 
sinusoidal. But if α is large, we don’t know what to expect… maybe a decaying exponential since there’s 
a lot of damping. Therefore let’s guess a solution of the form ;  we expect s to be complex if α is 
small, and possibly not if α is larger. 
 
Plugging that guess into the circuit equation we have:  
 

The transient region in which 
the complementary solution 
affects things. 
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2 0 
2 0 

 
(which is called the “characteristic equation). 
 
We can use the quadratic formula to solve it, namely:  
 

2 4 4
2

 

 

 
There are two values of s that work, namely two independent solutions of the 2nd order ODE. Linear 
combinations are also solutions 
 

,     
 

 
 
The coefficients K1 and K2 must be chosen to match the given initial conditions (there must be two). 
 
There are three distinct regimes: 
 
Case 1: overdamped,  .  
 
The general solution for this case is: 
 
 
 
 
These are decaying exponentials, with two different decay rates.  
 
Case 2: underdamped,  .  
 
The general solution for this case is: 
 

	 	
 

	 	
 

	 	
 

 
 
 
 
(The K’s in the last step are different than the K’s in the preceding step, but they are linear combinations 
of them. Since the K’s represent arbitrary constants anyway, it doesn’t matter.) 
 
These are damped oscillations. 

 

cos sin  
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Case 3: critically damped,  .  
 
For this case the two solutions become identical: 
 

 
  
However, a second order ODE must have two independent solutions! What’s happened? Well, if we were 
to have made a different guess from the outset, namely a solution of the form , we would have 
seen that it works for this case (and this case only), with  as above. I’ll skip the math on that. 
Therefore the general solution for this case is:  
 
 
 
Worked problem 2   
 
In the circuit, C = 1 μF, L = 10 mH, and R is variable. The capacitor has an initial voltage 
of 1 V, and no initial current. What is Vcap(t) for (a) R = 100 Ω, (b) R = 200 Ω, and 
(c) R = 400 Ω? 
 

Starting out. Doing a quick calculation, 
√

10000 rad/s.  Also note that the second initial 

condition means that dV/dt = 0 at t = 0, since V = Q/C → dV/dt = I/C.  
 

Part (a).  5000, is the damping constant. This is less than ω0, so it’s underdamped. 

√10000 5000 8660 rad/s, is the frequency of oscillation. 
 
The general formula is  
 

cos 8660	 sin 8660	  
 
but we need to determine K1 and K2 from the initial conditions. 
 

0 1	 
1 	 0 

1 
 
 

0 0 

0 	 5000 8660  

	
5000
8660

0.5774 

 
So the solution is: 
 
 
(Without that second term, the initial slope would not be equal to zero.) 
 
 

1 cos 8660 0.5774 sin 8660	  
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Part (b).  10000, is the damping constant. This is equal to ω0, so it’s critically damped. 

 
The general formula is  
 

 
 
but we need to determine K1 and K2 from the initial conditions. 
 

0 1	 
1 	 0 

1 
 
 

0 0 

0 	 10000  
	10000 10000 

 
So the solution is: 
 
 
 

Part (c).  20000, is the damping constant. This is more than ω0, so it’s overdamped. 

The two decay rates are 2679  and  37321 .  
 
The general formula is  

 
 
but we need to determine K1 and K2 from the initial conditions. 
 

0 1	 
1 	  

 

0 0 

0 	 2679 37321  
 
Those two equations can be solved simultaneously to find that  
 

1.0774 
0.0774 

 
So the solution is: 
 
 
The solutions to parts (a), (b), and (c) are plotted on the next page. 
 
 

1 10000

1.0774 0.0774
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3. More complicated RLC series circuit (e.g. with power supplies) 
 
More complicated RLC time-dependent circuit problems can be solved via the particular + 
complementary solution technique. The “simple RLC series circuit” solution just presented is the 
complementary solution. The particular solution should be guessed according to the form of the forcing 
function, as in the 1st order problems.  
 
Worked problem 3 
 
A 10 V battery is connected to a series RLC circuit as shown. In the 
circuit, C = 1 μF, L = 10 mH, and R = 10 Ω. The current and capacitor 
voltage are initially both zero. What is I(t)? 
 
Starting out.  The circuit differential equation is: 

 

 
Similar to before, we put I in terms of the capacitor voltage, and use the constants α and ω0, to obtain: 
 

2  

 

Doing some quick calculations, 
√

10000 and 500, so it’s underdamped with a  

natural	frequency	of	oscillation	of	 √10000 500 9987 rad/s. 
 
Particular solution.  Since the forcing function is a constant, let’s guess a constant for the particular 
solution, V = C. 
 

0 0  
 

 
 

10 
 
Complementary solution.  The general formula for the underdamped case is  
 

cos 9987	 sin 9987	  
 
Total solution. Putting the two together gives: 
 

cos 9987	 sin 9987	 10 
 
but we need to determine K1 and K2 from the initial conditions. 
 

0 0	 
0 	 10 

10 
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0 0 

0 	 500 9987  

	
500
9987

0.5007 

 
So the solution is: 
 
 
Here’s a plot: 

 
 
 
 
 
 
 
Part of the moral of the story here is that if you don’t want ringing, you should shoot for critical damping, 
in any second order system (possibly robot arms, shock absorbers, etc.). 
 
 
 
4. AC voltage sources: steady state solutions 
 
If you are only concerned about the steady state solution to a circuit situation, then the concept of 
complex impedances simplifies matters considerably.  
 
Complex impedances arise when you assume a sinusoidal signal. This is OK to do because with Fourier 
series you can decompose any periodic signal into a sum of sine/cosine waves—thus, once you’ve figured 
out the problem for an arbitrary sine wave, the problem is solved for all periodic signals.  
 
If you are supplying a sinusoidal voltage, it’s reasonable to assume that the output current will also be 
sinusoidal. However, it will (a) have its own amplitude, and (b) likely be changed in phase. The new 
amplitude and phase will depend on the details of the R/L/C network you connect to the power supply. 

10 cos 9987 0.5007 sin 9987	 10 

The transient region in which there is 
substantial “ringing” due to the 
complementary solution. 

Eventually the capacitor 
charges up to 10 V 
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To simplify solving such systems and to avoid the types of differential equations discussed above (and 
harder ones!), we’re going to define an “Ohm’s Law”-like quantity for capacitors and inductors; then we 
can use the series and parallel resistance formulas (which were derived with Ohm’s Law) to describe 
complicated circuits. That quantity is called the impedance, and will be a complex number Z: V = I Z  is 
like V = I R for a resistor. 
 
The complex nature of the impedance is how we will handle phase shifts between circuit elements. We’ll 
also assume a complex current I while we’re working through the math, but will always take the real part 
of I before giving our final answer. 
 
We will always assume that the “zero” of time is chosen such that the battery voltage is a cosine function 
with amplitude V0:   
 

cos Re  
 
We will suppose that the current is also sinusoidal with amplitude I0, lagging the voltage by a phase ϕ (if 
the current is actually leading the voltage, then ϕ will be negative.):  
 

cos Re  
 
I’ll now leave off the Re{ }  symbols; just keep in mind that the voltages and currents are real quantities, 
not complex; the point of the complex exponentials is to simplify the mathematics of sinusoidal signals 
with phase shifts. At the end of a problem, if you want to know the actual current and voltage just convert 
back from the complex exponential to a cosine by taking the real part. 
 
Impedance of Resistor. Resistors are easy: ZR = R. Ohm’s Law applies directly with no weird 
modifications. 

Impedance of Capacitor.  I
C

VC
1

, and if , when you integrate I you get a factor of 1/i 

from the exponential, times the current I itself. Thus the capacitor equation becomes:  , and the 

resistance-like quantity is  (also often written as  ). 

 
Impedance of Inductor. VL = LdI/dt. When you take the derivative of I, you get a factor of i from the 
exponential, times the current I itself. Thus the inductor equation becomes: , and the resistance-
like quantity is . 
 
In summary: 
 
 
   
 
 
If you use these impedances, then 

 Series/parallel rules work exactly as they do with resistors 
 V = IZ (or I = V/Z) gives you the current through power supply 

 
Using these impedances to determine the amplitude and phase of the current from the power supply is 
straightforward: 

1
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Step 1. Find Zeq using series/parallel resistor rules. It’s a complex number. 
 
Step 2. Write Zeq in polar form:   

Step 3. Then  .    

 

Step 4. Take the real part to get your final answer: cos .   

In other words, its amplitude  and its phase is –ϕ (as assumed from the start). 

 
 
Worked Problem 4 
 
What current is supplied here? 
 
 
 

Step 1: i
i

ZZZ CReq 43
25.0

1
3   

 
Step 2: Now write 34i in polar form, 3  4i = 5 e0.927i  

 
i

eq eZ 927.05   

 
 

Step 3:    927.00 2.0   tiwti

eq

ee
Z

V
I   

 
Step 4: Take real part to get the actual current:   
 
 
Worked problem 5 
 
For the following circuit, what is VR? 
 
 
 

Step 1: 
Ci

LiRZeq 
 1

   

 





 

C
LiRZeq 

 1
 

 

Step 2: polar form is i
eqeq eZZ  , so we have: 

 
2

2 1






 

C
LRZeq 

  

I = 0.2 cos(t + 0.927)

Z

R 

L 1/C 

3 

4 

length=5,  
angle = tan1(4/3) 
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C
L

R 
 11

tan 1        

(I assumed that ωL > 1/ωC so the vector shown above is indeed in the first quadrant. If not in the 
first quadrant the tan–1 function can be wrong answers.  Mathematica’s Arg command is helpful.) 
 

Step 3 & 4: I = Re{V/Z} 
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1

1

2
2

0  

 
 Then VR = I R by Ohm’s Law, so the answer is: 
 























 







 

 

C
L

R
t

C
LR

RV
VR 
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tancos

1

1

2
2

0  

 
Worked problem 6 
 
What’s the current coming from the power supply, in terms of 
R1, R2, L, and C? 
 
Step 1:   LCRReq ZZZZZ  //21   

Li

Ci
R

R 

















1

2
1 1

11
 

 
I’ll use Mathematica to help with the algebra: 
  
 
 

 
 
Steps 2, 3, and 4:  

 
From there, the polar coordinates can be found in Mathematica with  
 

 | | Abs    
and     Arg   

 
 

and the current via  
| |
cos  for that |Z| and ϕ .  

 
It’s probably not worth the space to write out the full-blown answer. 
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5. Power in AC problems 
 
The instantaneous power supplied by the power supply is 	—you must multiply the 
actual voltage and actual currents together to get the actual power.  
 
However, power as a function of time is often not a quantity of interest. Typically a more useful quantity 
is the average rather than instantaneous power. The power averaged over time is often written like this 
<P>, and is given by any of the following formulas. As above, ϕ is the complex phase angle of the 
circuit’s complex impedance Z: 

 cos
2

1
cos

2

1 2
0

00 











Z

V
IVP  (use the real amplitudes V0 and I0) 

 

cosrmsrms IVP   (use the real rms values, where e.g. 
√

 ) 

 







 *

2

1
Re VIP   (use the complex V and I; I* means the complex conjugate of I)   

 
The first equation is proved like this: 
 

  
cos cos  
cos cos cos sin sin  
cos cos sin cos	 sin  

〈 〉
1
2
cos 0 sin  

〈 〉
1
2

cos  

 
The factor of ½ arises from the time averaging of cos . 
 
Note that: 

 cosϕ is often called the power factor of the circuit 
 itself is sometimes called the “power angle” of the circuit 

 
Worked problem 7 
 
In the previous problem (Worked problem 6), suppose V0 = 1 V, 
R1 = 10 , R2 = 20 , C = 0.1 F, and L = 0.1 mH. What is the 
average power supplied by the power supply as a function of ? 
Make a plot of <P> vs ω. 
 
Solution: I’ll use Mathematica to make my life easy.  
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