Parallel Equations for the Electric and Magnetic Fields

Dr. Colton, Physics 441, Fall 2017

Electric

MAGNETIC

Statics
1.
$$q = \int \lambda dl$$

 $q = \int \sigma da$
 $q = \int \rho d\tau$
2. $\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{qQ}{|\mathbf{r} - \mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$
3. $\mathbf{F} = Q\mathbf{E}$

4.
$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{|\mathbf{r}-\mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$$
$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda(\mathbf{r}')dl'}{|\mathbf{r}-\mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$$
$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_S \frac{\sigma(\mathbf{r}')da'}{|\mathbf{r}-\mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$$
$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho(\mathbf{r}')d\tau'}{|\mathbf{r}-\mathbf{r}'|^3} (\mathbf{r} - \mathbf{r}')$$

5.
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

6.
$$\Phi_E = \int_S \mathbf{E} \cdot d\mathbf{a}$$

7.
$$\oint_S \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{enc}}{\varepsilon_0}$$

8.
$$\nabla \times \mathbf{E} = 0 \quad \text{(this gets modified below)}$$

9.
$$\mathbf{E} = -\nabla V \quad \text{(this gets modified in Phys 442)}$$

10.
$$V(\mathbf{r}) = -\int_{\mathbf{ref}}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l}$$

11.
$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} dt'$$

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\sigma(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\tau'$$

12.
$$U = \frac{\varepsilon_0}{2} \int E^2 d\tau$$

13.
$$C = \frac{Q}{V}$$

14.
$$U = \frac{1}{2} \frac{Q^2}{2}$$

15.
$$E_1^{\perp} - E_2^{\perp} = \frac{\sigma}{\varepsilon_0}$$

16.
$$\mathbf{E}_1^{\parallel} = \mathbf{E}_2^{\parallel}$$

17.
$$V_1 = V_2$$

18.
$$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$$

$$1. \quad I = \int K_{\perp} dl I = \int \mathbf{J} \cdot d\mathbf{a}$$

- 2. No easy parallel for magnetic field
- 3. $\mathbf{F} = Q(\mathbf{v} \times \mathbf{B})$

4.
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I} \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} dl'$$
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_S \frac{\mathbf{K}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} da'$$
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\mathbf{J}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} d\tau'$$

5. $\nabla \cdot \mathbf{B} = 0$

6.
$$\Phi_B = \int_S \mathbf{B} \cdot d\mathbf{a}$$

7. $\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{enc}$

8.
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 (this gets modified below)

- 9. $\mathbf{B} = \nabla \times \mathbf{A}, \ \nabla \cdot \mathbf{A} = 0$ (Coulomb gauge)
- 10. No direct parallel for the magnetic field

11.
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}}{|\mathbf{r} - \mathbf{r}'|} dl'$$
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}}{|\mathbf{r} - \mathbf{r}'|} da'$$
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau'$$

12.
$$U = \frac{1}{2\mu_0} \int B^2 d\tau$$

13.
$$L = \frac{\Phi}{I}$$

14.
$$U = \frac{1}{2}LI^2$$

15.
$$B_1^{\perp} = B_2^{\perp}$$

16.
$$B_1^{\parallel} - B_2^{\parallel} = \mu_0 \mathbf{K}$$

17.
$$\mathbf{A}_1 = \mathbf{A}_2$$

18.
$$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}$$

19.
$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \int (r')^n P_n(\cos\theta') \rho(\mathbf{r}') d\tau'$$

 $\frac{\text{Materials}}{20. \mathbf{p} = \int \mathbf{r}' \rho(\mathbf{r}') d\tau' \\
21. V_{\text{dip}} = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{p}\cdot\hat{\mathbf{r}}}{\mathbf{r}^2} \\
22. \mathbf{E}_{\text{dip}}(r,\theta) = \frac{1}{4\pi\varepsilon_0} \frac{p}{r^3} (2\cos\theta\hat{\mathbf{r}} + \sin\theta\hat{\mathbf{\theta}}) \\
23. \mathbf{N} = \mathbf{p} \times \mathbf{E} \\
24. \mathbf{F} = (\mathbf{p} \cdot \nabla)\mathbf{E} \\
25. U = -\mathbf{p} \cdot \mathbf{E} \\
26. \mathbf{P} = \text{dipole moment per unit volume}$

27.
$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$

28.
$$\nabla \cdot \mathbf{D} = \rho_f$$

29.
$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$$

30.
$$\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_0 \varepsilon_r \mathbf{E}$$

31.
$$\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}}$$

32.
$$\rho_b = -\nabla \cdot \mathbf{P}$$

33.
$$\oint \mathbf{D} \cdot d\mathbf{a} = Q_{f,enc}$$

34.
$$\varepsilon_r = 1 + \chi_e = \frac{\varepsilon}{\varepsilon_0}$$

35.
$$U = \frac{1}{2} \int \mathbf{D} \cdot \mathbf{E} \, d\tau$$

Dynamics

37.
$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

38. $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
39. $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ (unchanged for materials)

19.
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 l}{4\pi} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \oint (r')^n P_n(\cos\theta') d\mathbf{l}'$$

$$\underbrace{Materials}{20. \mathbf{m} = I \int d\mathbf{a} = I\mathbf{a}} \\
21. \mathbf{A}_{dip} = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2} \\
22. \mathbf{B}_{dip}(r, \theta) = \frac{\mu_0}{4\pi} \frac{m}{r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\theta}) \\
23. \mathbf{N} = \mathbf{m} \times \mathbf{B} \\
24. \mathbf{F} = \nabla(\mathbf{m} \cdot \mathbf{B}) \\
25. U = -\mathbf{m} \cdot \mathbf{B} \\
26. \mathbf{M} = \text{magnetic dipole moment per unit volume} \\
27. \mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{M} \\
28. \overline{\nabla \cdot \mathbf{B}} = 0 \quad \text{(still)} \\
29. \mathbf{M} = \chi_m \mathbf{H} \\
30. \mathbf{H} = \mathbf{B}/\mu = \mathbf{B}/(\mu_0\mu_r) \\
31. \mathbf{J}_{\mathbf{b}} = \nabla \times \mathbf{M} \\
32. \mathbf{K}_{\mathbf{b}} = \mathbf{M} \times \hat{\mathbf{n}} \\
33. \oint \mathbf{H} \cdot d\mathbf{l} = I_{f,enc} \\
34. \mu_r = 1 + \chi_m = \frac{\mu}{\mu_0} \\
35. U = \frac{1}{2} \int \mathbf{H} \cdot \mathbf{B} \, d\tau$$

Dynamics

37. $\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$ (same equation as in left hand column; connects charge to current)

38.
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

39. $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$