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Advanced Circuits Topics - Part 1 
by Dr. Colton (Fall 2017) 

 
Part 1: Some things you should already know from Physics 220 and 145 
 
These are all things that you should have learned in Physics 220 and/or 145. This section is organized like 
this so you can see the parallels between resistor problems and complex impedance problems: 
 
Outline:  

1. Voltage and Current 
2. Resistors and Ohm’s Law 
3. Series and Parallel Resistors 
4. Solving Circuit Problems With Equivalent 

Resistances 
5. Interlude: A Quick Summary of Complex 

Numbers 

6. Complex Voltage and Current 
7. Complex Impedances and Ohm’s Law 
8. Series and Parallel Impedances 
9. Solving Circuit Problems With Equivalent 

Impedances 

 
1. Voltage and Current 
 
The basic water analogy works well for me: if electricity is like water flowing in pipes, then the current is 
the rate at which the water is flowing in the pipe (kg/s) and the voltage is the height of the pipe (potential 
energy of the water). Batteries which raise the potential of the charges are like pumps pumping the water 
up to a higher elevation. The “potential difference” of a circuit element is the difference in height from 
one side of the element to the other. 
 
 
2. Resistors and Ohm’s Law 
 
Resistors and conductors are the pipes themselves. A conductor is like a very large diameter pipe that 
allows for a lot of current flow. A resistor is a like a small diameter pipe which limits the flow: the larger 
the resistor, the smaller the diameter and the smaller the flow. The “resistor pipe” is angled downwards, 
so that the end at which the water comes out is lower than the end at which the water goes in. 
 
The potential difference of a resistor is given by Ohm’s law: Δ ோܸ ൌ  ܴܫ
 
 
3. Series and Parallel Resistors 
 
A combination of 2 resistors can be labeled either as “series” or “parallel”, depending on how they are 
connected: pipes can either be one after the other (series) or side-by-side (parallel). Series resistors share 
the same current; parallel resistors share the same potential difference.  
 
  SERIES      PARALLEL 
 
 
 

 

 ܴ௧௧ ൌ ܴଵ  ܴଶ ܴ௧௧ ൌ ሺ1/ܴଵ  1/ܴଶሻିଵ 
 

  Shortcut notation: ܴଵ	//	ܴଶ ൌ ሺ1/ܴଵ  1/ܴଶሻିଵ
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4. Solving Circuit Problems With Equivalent Resistances 
 
Networks of resistors can often be decomposed into combinations of resistors that are in series and 
parallel with each other, called equivalent resistances of the resistor combinations.  
 
Example Problem 1: What’s the total resistance of the 4 resistors? 
 
 
 
 
 
 
Solution:  ܴ௧௧ ൌ ܴଵ	//	ܴଶ 		 		ܴଷ	//	ܴସ 			ൌ 			 ሺܴଵ  ܴଶሻିଵ  ሺܴଷ  ܴସሻିଵ 
 
Suppose the four resistors were hooked up to a battery with voltage VB. The total current flowing from the 
battery would be given by Ohm’s law for the circuit as a whole:  ܫ ൌ ܸ/ܴ௧௧ ൌ ܸ/ሺሺܴଵ  ܴଶሻିଵ 
ሺܴଷ  ܴସሻିଵሻ.  
 
The current and voltage of any of the resistors in this problem can be obtained by application of 
series/parallel resistor formulas along with Ohm’s law. The same is true for nearly any circuit problem 
involving a single voltage source.  For more complicated situations, Kirchhoff’s two circuit laws can be 
used to obtain simultaneous equations, but that’s beyond the scope of this document. 
 
 
5. Interlude: A Quick Summary of Complex Numbers 

We will be using complex numbers in Physics 441 and 442 as a tool for describing oscillating 
electromagnetic phenomena: AC circuits in Physics 441, and electromagnetic waves in Physics 442.  
 

 A complex number ݔ  ,ݔcan be written either in rectangular form ሺ  ݕ݅ ,ܣሻ or polar form ሺݕ ߶ሻ.  
 The polar form can equivalently be expressed as a complex exponential ݁ܣథ. The complex 

exponential form follows directly from Euler’s formula: ݁థ ൌ cos߶  ݅ sin߶, and by looking at 
the x- and y-components of the polar coordinates, ሺܣ cos߶ , ܣ sin߶ሻ. 

o ܣ is called the amplitude, magnitude, or modulus of the complex number. In 
Mathematica it’s obtained via the command “Abs”. 

o ߶is called the phase angle, phase factor, phase, angle, argument, or amplitude1 of the 
complex number. In Mathematica it’s obtained via the command “Arg”. 

 For example, consider the complex number 3 + 4i: 
= (3, 4) in rectangular form,  
= (5, 53.13º) in polar form, and  

= 53.13 0.92735 or 5i ie e


 in complex exponential form, since 53.13º = 0.9273 rad.  

 I often write the polar form using this shortcut notation: A.  The “” symbol can be read as, 
“at an angle of”. 

 By the rules of exponents, when you multiply two complex numbers in polar form, the 
amplitudes multiply and the angles add. Similarly, when you divide in polar form, the amplitudes 
divide and the angles subtract. Thus you can write: 

(3 + 4i)  (5 + 12i)  =  553.13     1367.38  =  65120.51  
(3 + 4i) / (5 + 12i)   =  553.13  /   1367.38  =  0.38462–14.25  

                                                 
1 Yes, unfortunately the word “amplitude” can at times refer to either A or ϕ. I myself will reserve “amplitude” for A, though. 

R1 

R2 

R3 

R4 
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6. Complex Voltage and Current 
 
Suppose you have an oscillation such as an AC voltage or current that you want to represent via complex 
numbers. The equation for a generic oscillation would be this, with arbitrary amplitude V0 and phase ϕ: 
 

ܸ ൌ ܸcos	ሺ߱ݐ  	߶ሻ 
 
One represents the oscillatory function via complex numbers like this: 

 
ܸ ൌ ܸcos	ሺݐݓ  	߶ሻ     ܸ ൌ Re൛ ܸeሺఠ௧ା	థሻൟ 

  ܸ ൌ ܸeሺఠ௧ା	థሻ Starting with this step, there’s an implied “take 
the real part” of everything on the right hand 
side  

  ܸ ൌ ܸeఠ௧݁థ 
  ܸ ൌ ܸ݁థ		eఠ௧ There’s often an implied eఠ௧ as well, so this can 

become: 
 
ܸ ൌ ܸ݁థ ൌ ܸϕ  

 
Thus a voltage oscillating in time can be represented as a single complex number. This trick will make the 
math much easier for many calculations. 
 
Therefore, if for example you see  3.2V30, what it means is that a voltage is oscillating in time as 
3.2V	cos	ሺ߱ݐ 

గ


ሻ. Presumably the oscillation frequency ω would be given elsewhere in the problem, or 

maybe you’d be looking for things as a function of ω. Similarly, if you see 1.5A120 it means that a 

current is oscillating as 1.5A	cos	ሺ߱ݐ 
ଶగ

ଷ
ሻ.   

 
In summary:  ܸcos	ሺ߱ݐ 	߶ଵሻ  ↔  ܸ߶ଵ 
ݐሺ߱	cosܫ  	߶ଶሻ  ↔  ܫ߶ଶ 
 
 
7. Complex Impedances and Ohm’s Law 
 
If you have a circuit with a sinusoidal driving function (e.g. voltage) and if you are only concerned about 
the steady-state (long term) response, then the concept of complex impedances simplifies matters 
considerably. Actually, any periodic driving functions can be handled this way since with Fourier analysis 
you can decompose any periodic signal into a sum of sinusoidal ones.  
 
If you are supplying a sinusoidal voltage at frequency ω, after a long time all currents and potential 
differences of individual circuit elements will also be sinusoidal and oscillating at the same frequency ω. 
As discussed in the last section, we will use complex numbers to represent these voltages and currents, 
and we will restrict ourselves to circuits made of resistors, capacitors, and inductors. As you will see, 
complex numbers will allow us to easily handle phase shifts between circuit elements. 
 
To solve such systems we want to define an “Ohm’s Law”-like quantity for capacitors and inductors; then 
we can use the series and parallel resistance formulas—which were derived via Ohm’s Law—to describe 
complicated circuits. That quantity is called the impedance, and will be a complex number Z: Δܸ ൌ  is ܼܫ
like Δܸ ൌ   .for a resistorܴܫ
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We will set the zero of time such that the driving battery voltage is a cosine function with no phase shift, 
i.e. it reaches its maximum at t = 0. Let’s call the amplitude V0:  
 

ܸ ൌ ܸ cosሺ߱ݐሻ ൌ ܸ0 
 
The total current supplied by the battery will also be sinusoidal but it may have a different phase than the 
voltage. Let’s call the current’s amplitude ܫ, and say that it lags the voltage by a phase ߶ (if the current is 
actually leading the voltage, then ߶ will be negative):  
 

ܫ ൌ ܫ cosሺ߱ݐ െ ߶ሻ ൌ 	ܫ െ ߶ 
 
Keep in mind that the voltages and currents are real quantities, not complex; the point of the complex 
exponentials is just to simplify the mathematics of sinusoidal signals with phase shifts. At the end of a 
problem, if you want to know the actual voltages or currents just convert back from the complex numbers 
using the  ܸϕ	 ↔ ܸcos	ሺ߱ݐ  ߶ሻ types of correspondences. 
 
Impedance of Resistor. Resistors are easy: ZR = R. Ohm’s Law applies directly with no weird 
modifications. 

Impedance of Capacitor.Δ ܸ ൌ
ொ


ൌ

ଵ


 ܫ and if ,ݐ݀	ܫ ൌ ݁ܫ

ሺఠ௧ିథሻ, then when you integrate I you get a 

factor of 1/i from the exponential, times the current I itself. Thus the capacitor equation becomes:  

Δ ܸ ൌ
ଵ

ఠ
and the resistance-like quantity is ܼ ,ܫ ൌ

ଵ

ఠ
 (also often written as ܼ ൌ

ି

ఠ
 ). 

 

Impedance of Inductor. As is later in Chapter 7 of Griffiths, and you learned in Phys 220, Δ ܸ ൌ ܮ
ௗூ

ௗ௧
. 

When you take the derivative of I, you get a factor of i from the exponential, times the current I itself. 
Thus the inductor equation becomes: Δ ܸ ൌ and the resistance-like quantity is ܼ ,ܫܮ߱݅ ൌ  .ܮ߱݅
 
In summary: 
 
 
   
 
 
If you use these complex impedances (and have sinusoidal responses), then Ohm’s law works for 
capacitors and inductors—and for the circuit as a whole—just like it does for resistors: 
 
 
 
 
8. Series and Parallel Impedances 
 
Because the series and parallel resistor formulas were derived via Ohm’s law, they carry over completely 
with complex impedances.  
 
 
 

 

 
These equations are very powerful because they can be used with combinations of any types of 
impedances. 

ܼோ ൌ ܴ

ܼ ൌ
1
ܥ߱݅

ൌ െ
݅
ܥ߱

ܼ ൌ ܮ߱݅

Δܸ ൌ ܼܫ

Series:   ܼ௧௧ ൌ ܼଵ  ܼଶ 
Parallel: ܼ௧௧ ൌ ሺ1/ܼଵ  1/ܼଶሻିଵ ൌ ܼଵ // ܼଶ 
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9. Solving Circuit Problems With Equivalent Impedances 
 
Using these impedances to determine the amplitude and phase of the current from the power supply is 
straightforward: 
 
Step 1. Find the total impedance of the circuit, ܼ௧௧, using series/parallel rules. It’s a complex number. 
 
Step 2. Write ܼ௧௧ in polar form:  |ܼ௧௧|ϕ 
 

Step 3. Use Ohm’s law to get the total current, also a complex number: ܫ ൌ



ൌ

బ
หหథ

ൌ
బ
หห

 െ ߶    

 

Step 4. Convert back to a cosine oscillation to get your “real” answer if desired: ܫ ൌ
బ
หห

cosሺ߱ݐ െ ߶ሻ, 

using the same phase convention as written in section 7 above (I lags V when ߶ is positive). Note that if 
the phase angle of the complex impedance is negative, then the phase angle of the complex current will be 
positive, and vice versa.  
 
Once the total current is known in complex form, other quantities of interest can generally also be found 
using Phys 220 techniques involving Ohm’s law and series/parallel impedances. 
 
 
Example Problem 2 
 
What current is supplied here? 
 
 
 
Solution: 

Step 1: i
i

ZZZ CReq 43
25.0

1
3   

 
Step 2: Now write 3  4i in polar form: ܼ ൌ 5 െ 0.927  

 
 

Step 3: ܫ ൌ
బ
หห

െ ߶ ൌ 0.20.927  

 
Step 4: If desired, take the real part to get the actual formula for the current:  ܫ ൌ 0.2A cosሺݐ  0.927ሻ   
 
 
Example Problem 3 
 
For this circuit, what is (a) VR and (b) VL? 
 
 
  

3 

4 
length=5,  
angle = tan1(4/3) = –0.927 rad 
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Step 1: 
Ci

LiRZeq 
 1

   

 





 

C
LiRZeq 

 1
 

 
Step 2: Put in polar form, หܼหϕ: 

 
2

2 1






 

C
LRZeq 

  

 













  

C
L

R 
 11

tan 1        

(I assumed that ωL > 1/ωC so the vector shown above is indeed in the first quadrant. Caution: if 
not in the first or fourth quadrants the tan–1 function will give wrong answers.  As mentioned 
above Mathematica’s Arg command is helpful, and much better than the regular tan–1 function.) 
 

Steps 3 & 4:  I = V/Z, and convert to a real oscillation: 
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R
t

C
LR

V
I







11
tancos

1

1

2
2

0  

 
(a) Everything is in series, so this same current goes through the resistor. Use VR = I R by Ohm’s Law, 
and the answer is: 
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tancos

1

1

2
2

0  

 
(b) Use the complex Ohm’s law on the inductor:  
 

Δ ܸ ൌ   ܼ	ܫ
 

Δ ܸ ൌ ቌ బ

ටோమାቀఠି
భ
ഘ

ቁ
మ
ቍ ቀtanିଵ

ଵ

ோ
ቀ߱ܮ െ

ଵ

ఠ
ቁቁ 	ൈ	ሺ݅߱ܮሻ  

 

Δ ܸ ൌ ቌ బ

ටோమାቀఠି
భ
ഘ

ቁ
మ
ቍ ቀtanିଵ

ଵ

ோ
ቀ߱ܮ െ

ଵ

ఠ
ቁቁ 	ൈ	ቀ߱ܮ	 

ଶ
	ቁ  

 
That last step was done by writing i itself in polar form.  From there it’s just complex number 
multiplication and converting to real numbers if you want: 
 

Z

R 

L 1/C 
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Δ ܸ ൌ ቌ బ	ఠ

ටோమାቀఠି
భ
ഘ

ቁ
మ
ቍ ቀtanିଵ

ଵ

ோ
ቀ߱ܮ െ

ଵ

ఠ
ቁ 

గ

ଶ
ቁ  

Δ ܸ ൌ ቌ బ	ఠ

ටோమାቀఠି
భ
ഘ

ቁ
మ
ቍ cos	ሺ߱ݐ െ	ቀtanିଵ ቀ

ఠ

ோ
െ

ଵ

ఠோ
ቁ 

గ

ଶ
ቁ   

 
 

Example Problem 4 
 
What’s the current coming from the power supply, in terms of 
V0, ω, t, R1, R2, L, and C? 
 
First find the total impedance of the circuit:
   LCRReq ZZZZZ  //21   

Li

Ci
R

R 

















1

2
1 1
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I’ll use Mathematica to help with the algebra: 
  
 
 

 
 
It needs to be put into polar form in order to find its magnitude and phase. The polar coordinates can 
easily be found in Mathematica with these commands: 

 
 |ܼ| ൌ Absሾܼሿ   

and     ߶ ൌ Argሾܼሿ  
 

 

Then the current is given by  ܫ ൌ
బ
||
cosሺ߱ݐ െ ߶ሻ for that |Z| and ϕ.  It’s probably not worth the space to 

write out the full-blown answer. 
 
 
 


