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Advanced Circuits Topics – Part 2 
by Dr. Colton (Fall 2017) 

 
Part 2: Some Possibly New Things 
 
These are some topics that you may or may not have learned in Physics 220 and/or 145. This handout 
continues where Part 1 leaves off. We will continue to use complex numbers to represent oscillating 
voltages and currents, as well as impedances for circuit elements that create phase shifts. 
 
Outline:  

1. Power in AC problems 
2. Transfer Functions 
3. Voltage Dividers, Real and Complex  
4. Specific Applications 

a. High Pass Filter 
b. Low Pass Filter 
c. Band Pass Filter 

 
 
1. Power in AC problems 
 
Instantaneous Power: The instantaneous power supplied by a power supply (or consumed by a circuit 
element) at time t is 	—you must multiply the actual voltage and actual 
currents together to get the actual power. That is, you must take the real parts of the complex voltage and 
complex current before multiplying them together. 
 
For example, if the voltage supplied by a power supply is given by  1V	0   and the current is given by 
0.2A	 0.927, then the power as a function of time is: 
 

 actual V  actual I 
 1V cos 		0.2A	cos 0.927  
 0.2W cos cos 0.927  
 
Caution: That is not the same thing you would get if you multiplied the two complex quantities together 
before converting to the real values: 
 
  complex V  complex I 
 1V 0 	 0.2A	 0.927  
 0.2W	 0.927 
 0.2W	cos	 0.927  
 
As you can see, 0.2W cos cos 0.927  (correct answer) is not the same as 0.2W cos
0.927  (incorrect answer)! So taking the real parts before multiplying is critical here. 
 
Average Power: Power as a function of time is often not a quantity of interest. Typically a more useful 
quantity is the average rather than instantaneous power. The power averaged over time is often written as 
<P>, and is given by any of the following formulas, where ϕ is the complex phase angle of the circuit’s 
complex impedance Z: 
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 (use the real amplitudes V0 and I0) 

 
 

(use the real rms values, where e.g. 
√

 ) 

 
 

 (use the complex V and I; I* means the complex conjugate of I)   
 
 
 
The first equation can be proved like this:  
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In the second-to-last step, the factor of    arises from the time averaging of cos  and the factor of 0 

arises from the time averaging of sin cos	 . 
 
The derivation of the others is left as an exercise for the reader. 
 
Note that: 

 cos  is often called the power factor of the circuit 
 itself is sometimes called the “power angle” of the circuit 

 
 
Worked problem 1 
 
In this circuit, suppose V0 = 1 V, R1 = 10 , R2 = 20 , C = 0.1 
F, and L = 0.1 mH. What is the average power supplied by the 
power supply as a function of ? Make a plot of <P> vs ω. 
 
Solution: I’ll use Mathematica to make my life easy.  
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2. Transfer Functions 
 
All circuits with resistors, inductors, and capacitors will have frequency dependence. Often such circuits 
are used to enhance or reduce voltages at various frequencies. Phase shifts can also be induced, whether 
deliberately or not. The frequency dependence of a circuit is characterized by what is called its “transfer 
function”, sometimes given the symbol H or . Here I’m using Griffith’s convention that you’ll see later 
in the book, of putting a tilde over functions that represent complex numbers if/when a reminder of their 
complex nature is helpful. Conceptually, the situation is like this:  
 
 
 
 
 
 
 
 
The effect of the circuit is indicated by describing how much the amplitude of output gets increased or 
decreased relative to the amplitude of the input, and by describing how the phase of the output gets 

changed relative to the phase of the input. The former is ; the latter is . 

 
The two effects can be combined in one complex function indicating the ratio of output to input: 
 
 
  

circuit Input,  
e.g. ∠   

Output,  
e.g. ∠  

∠

∠
∠  
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The transfer function  is a function of ω since the amplitude and phase of the output will depend on ω. 
For a given ω it’s just a regular complex number; the magnitude and phase of  give you  and 

, respectively. 
 
 
3. Voltage Divider 

Most important filter circuits can be represented as voltage dividers. The voltage divider circuit is this: 

 

 

 

It is easily shown that as long as no current flows to the output wires, which is the case if e.g. the circuit 
the output wires are connecting to has a high input impedance, then 

 

Or, written more generally for complex inputs, outputs, and impedances, we have: 

 

This is the voltage divider equation, and the transfer function is easily read off as  which is complex 

in general and a function of ω. 

 

4. Specific Applications (aka Worked Problems) 

4a. High Pass Filter 
 
Using yet another notational shortcut, I will eliminate the lower “input” and “output” lines (which are 
connected), as that voltage is defined as ground. Here is the prototypical high pass filter circuit. 
 
 
 
 
 
 
 
The calculation of the transfer function is like this: 
 

 

 

			  

 

Input,  
e.g. ∠   

Output,  
e.g. ∠  
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Making note that 1/(RC) has units of ω and giving it the special symbol 	 for reasons that I’ll 

explain momentarily, we can rewrite the transfer function in this form:  
 
 
 
 
Why is 1/(RC) called ?  Well, at that particular frequency we have: 
 

1
1

1

√2
∠–90° 

 

In other words, at that particular frequency the amplitude is equal to 
√

 of the initial amplitude, and since 

power goes as amplitude squared that means the power has decreased to 50% of the initial power. “3dB” 
stands for “3 decibels”, which by definition equals log 3 0.5, so the frequency where the power 
decreases to 50% is universally called the 3dB point and given the symbol .  
 
I will use Mathematica to plot the magnitude and phase of the transfer function for 1. Or, you can 
think of the x-axis as representing /  if you’d like. The plots on the right have log scales for one or 
both axes. It’s a high pass filter because the transfer function magnitude goes to 0 at low frequencies and 
1 at high frequencies. The circuit prevents low frequencies from passing through, but passes high 
frequencies. 
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4b. Low Pass Filter 
 
 
 
 
 

There is the prototypical low pass filter circuit, and a calculation of the transfer function using  

again. 
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Here are plots of the transfer function for the low pass filter, again setting 1 for plotting purposes. 
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It’s a low pass filter because the transfer function magnitude goes to 0 at high frequencies and 1 at low 
frequencies. The circuit prevents high frequencies from passing through, but passes low frequencies. 
 
4c. Band Pass Filter 
 
Here is the simplest band pass filter circuit, along with calculation of the transfer function. 
 
 
 
 
 
 
 
 
 

In this case I’ve written the equations in terms of the special frequency 
√

. You’ll see the term 

//  show up. It’s left as an exercise for the reader (easily done with Mathematica) to show that that 

term is equal to 
/

. 
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Before I plot this, let’s look at what happens when :  
 

/ / 		
1 1 / /

1 

 
At that frequency, called the resonant frequency, the output voltage is equal to the input voltage. As you 
can see in the plots below, as you go away from that frequency the output voltage gets suppressed. This 
circuit allows a particular band of frequencies to pass through but blocks all other frequencies. 

Here are some plots for R = 100 kΩ, C = 10 nF, and L = 10 mH (which gives 100,000 rad/s).  
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