Legendre Polynomials, by Dr Colton

Physics 441

The Legendre polynomials, $\mathrm{P}_{\ell}(x)$ are a series of polynomials of order $\ell, \mathrm{A}+\mathrm{Bx}+\mathrm{Cx}^{2}+\ldots+\mathrm{Zx}^{\ell}$, that:
(a) come up often, especially in partial differential equations
(b) have interesting properties
(c) are well understood and have been studied for centuries

Here they are:

```
\(\ln [1]:=\operatorname{PO}\left[x_{-}\right]=\)LegendreP \([0, x]\) LegendreP \([\ell, \mathrm{x}]\) is built into Mathematica, just like \(\operatorname{Sin}[\mathrm{x}]\), gives \(\mathrm{P}_{\ell}(x)\)
out \([1]=1\)
\(\ln [2]:=\mathrm{P} 1\left[\mathrm{x}_{-}\right]=\)LegendreP \([1, \mathbf{x}]\)
Out [2] \(=x\)
\(\ln [3]:=\mathrm{P} 2\left[\mathrm{x}_{\mathrm{z}}\right]=\) LegendreP \([2, \mathrm{x}]\)
Out[3] \(=\frac{1}{2}\left(-1+3 x^{2}\right)\)
\(\ln [4]:=\mathrm{P} 3\left[\mathrm{x}_{\mathrm{z}}\right]=\operatorname{LegendreP}[3, \mathrm{x}]\)
Out \([4]=\frac{1}{2}\left(-3 x+5 x^{3}\right)\)
    \(\ln [5]:=P 4\left[x_{-}\right]=\)LegendreP \([4, x]\)
Out[5] \(=\frac{1}{8}\left(3-30 x^{2}+35 x^{4}\right) \quad \mathbf{P}_{4}(\boldsymbol{x})\)
\(\ln [6]:=P 5\left[x_{1}\right]=\) LegendreP \([5, x]\)
Out[6] \(=\frac{1}{8}\left(15 x-70 x^{3}+63 x^{5}\right)\)
\(\mathbf{P}_{5}(\boldsymbol{x})\)
```


Etc.

Plots:

```
ln[7]:= Plot[{P0[x], P1[x], P2[x], P3[x], P4[x], P5[x]}, {x, -1, 1}]
```


The subscript ℓ is the order of the polynomial $=$ highest power of x.

The functions alternate even/odd.
A given polynomial has either only odd or only even powers of x.

They all go to either 1 or -1 on the boundary when plotted in the range from $-1 \leq x<1$.

Very important facts

- Can be computed via the "Rodriguez formula": $P_{\ell}(x)=\frac{1}{2^{\ell \ell!}}\left(\frac{d}{d x}\right)^{\ell}\left(x^{2}-1\right)^{\ell}$ or via summation $P_{\ell}(x)=2^{\ell} \cdot \sum_{k=0}^{\ell} x^{k}\binom{\ell}{k}\binom{(\ell+k-1) / 2}{\ell}$ where $\binom{\ell}{k}$ is the binomial coefficient " ℓ choose k ".
- Orthogonality: $\int_{-1}^{1} P_{\ell}(x) P_{m}(x) d x= \begin{cases}0 & \text { if } \ell \neq m \\ \frac{2}{2 \ell+1} & \text { if } \ell=m\end{cases}$
o If $x=\cos \theta$, then $d x=-\sin \theta d \theta$; use negative sign to switch limits then we have:

$$
\int_{0}^{\pi} P_{\ell}(\cos \theta) P_{m}(\cos \theta) \sin \theta d \theta=\left\{\begin{array}{cc}
0 & \text { if } \ell \neq m \\
\frac{2}{2 \ell+1} & \text { if } \ell=m
\end{array}\right.
$$

- Differential equation: $\frac{d}{d x}\left(\left(1-\mathrm{x}^{2}\right) \frac{d f}{d x}\right)+\ell(\ell+1) f=0$ has solution $f=P_{\ell}(x)$, or linear combinations, $f=\sum_{\ell=0}^{\infty} A_{\ell} P_{\ell}(\mathrm{x})$
o If $x=\cos \theta$, then equation is $\frac{d}{d \theta}\left(\sin \theta \frac{d f}{d \theta}\right)=-\ell(\ell+1) \sin \theta f$, solution is $f=$ $P_{\ell}(\cos \theta)$.
- There are a second set of solutions to that differential equation, called $Q_{n}(x)$, the "Legendre functions of the second kind"; these diverge at $x= \pm 1$ and are therefore often not used.

Orthogonality, depicted

$\ln (9)=$ Integrate $[P 2[x] * P 3[x],\{x,-1,1\}]$
Out $9=0$
$\ln [10\}=P 1 o t[P 1[x] * P 3[x],\{x,-1,1\}$, PlotRange $\rightarrow\{-.3,1\}$, Filling \rightarrow Axis $]$

$\ln (11)=$ Integrate $[P 1[x] * P 3[x],\{x,-1,1\}]$
Outlil)= 0
$\int_{-1}^{1} P_{2}(x) P_{3}(x) d x=$?
The product of an even and an odd function is odd, so this will clearly integrate to zero.

Comparison with sines \& cosines:

Sines/Cosines

1. Two oscillatory functions: $\sin (x)$ and $\cos (x)$. Sometimes one of them is not used, due to the symmetry of the problem.
2. You typically determine the value of $\sin (x)$ or $\cos (x)$ for arbitrary x by using a calculator or computer program.
3. $\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}$
$\cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}$
4. $\quad \sin (m \pi x)=$ odd for all m. $\cos (m \pi x)=$ even for all m.
5. At $x=1, \sin (m \pi x)=0$ for all m.

At $x=1, \cos (m \pi x)= \pm 1$ for all m.
6. The differential equation satisfied by $f=\sin (m \pi x)$ is $f^{\prime \prime}+(m \pi)^{2} f=0$
7. $\sin (n \pi x)$ is orthogonal to $\sin (m \pi x)$ on the interval (0,1):

$$
\int_{0}^{1} \sin (n \pi x) \sin (m \pi x) d x=\left\{\begin{array}{l}
0, \text { if } n \neq m \\
\frac{1}{2}, \text { if } n=m
\end{array}\right.
$$

Legendre polynomials

Two functions for each $\ell: P_{\ell}(x)$ and $Q_{\ell}(x)$. Typically Q_{ℓ} is not used because it's infinite at the boundaries.

You typically determine the value of $P_{\ell}(x)$ for arbitrary x by using a calculator or computer program.
$P_{\ell}(x)=\frac{1}{2^{\ell \ell!}}\left(\frac{d}{d x}\right)^{\ell}\left(x^{2}-1\right)^{\ell}$, or
$P_{\ell}(x)=2^{\ell} \cdot \sum_{k=0}^{\ell} x^{k}\binom{\ell}{k}\binom{(\ell+k-1) / 2}{\ell}$
$P_{\ell}(x)=$ odd for odd ℓ.
$P_{\ell}(x)=$ even for even ℓ.
At $x=1, P_{\ell}(x)=1$ for all ℓ.
At $x=-1, P_{\ell}(x)= \pm 1$ for all ℓ.
The differential equation satisfied by
$f=P_{\ell}(x)$ is

$$
\frac{d}{d x}\left(\left(1-\mathrm{x}^{2}\right) \frac{d f}{d x}\right)+\ell(\ell+1) f=0
$$

$P_{\ell}(x)$ is orthogonal to $P_{m}(x)$ on the interval $(-1,1)$:

$$
\int_{-1}^{1} P_{\ell}(x) P_{m}(x) d x=\left\{\begin{array}{c}
0 \quad \text { if } \ell \neq m \\
\frac{2}{2 \ell+1} \text { if } \ell=m
\end{array}\right.
$$

$P_{\ell}(\cos \theta)$ is orthogonal to $P_{m}(\cos \theta)$ on the interval $(0, \pi)$, with respect to a "weighting" of $\sin \theta$:

$$
\int_{0}^{\pi} P_{\ell}(\cos \theta) P_{m}(\cos \theta) \sin \theta d \theta=\left\{\begin{array}{c}
0 \\
\text { if } \ell \neq m \\
\frac{2}{2 \ell+1} \text { if } \ell=m
\end{array}\right.
$$

