## Physics 441 Final Exam - due Thurs 12/15/16, 5 pm

## Rules/Guidance:

- The exam is completely open notes/books. You may use the textbook, other textbooks, your own class notes, websites, etc.
- You may not communicate with other people about the exam (classmates, classmates' notes, other current or past Physics Department students, relatives, internet forums or chat rooms, Facebook, etc.).
- If the wording of any of the exam problems seems unclear, please talk to me and I will clarify what is meant.
- Feel free to ask me or Spencer any questions about homework, exam, or in-class worked problems.
   But limit it to actual problems we've already done, rather than hypothetical problems that might be similar to the exam problems.
- Please work neatly and start each problem on a new page.
- The exam is out of 140 total points.
- Please turn in this printed out exam along with your work.

|      | C 1 1     |  |
|------|-----------|--|
| Name | Solutions |  |

Additional Instructions: Please label & circle/box your answers. Show your work, where appropriate! And remember: in any problems involving Gauss's or Ampere's Law, you should explicitly show your Gaussian surface/Amperian loop.

(18 pts) Problem 1: Multiple choice, 2 pts each. Circle the correct answer.

1.1. The figure shows an equilateral triangle ABC. A positive point charge +q is located at each of the three vertices A, B, and C. Each side of the triangle is of length a. A positive point charge Q is placed at the mid-point between B and C.



What is the initial direction the point charge Q will move once initially placed?



B)



Force from A 13 down

D) -----

E) 🔻

F)

Force from C is left ) concel

1.2. A conducting sphere of radius a with total charge q is surrounded by a spherical shell of inner radius b and total charge -q. What is the electrostatic potential energy of the system?



(a) 
$$\frac{1}{4\pi\epsilon_0} \int_0^\infty \frac{q}{r^2} dr$$

(b) 
$$\frac{1}{4\pi\epsilon_0} \int_a^b \frac{q}{r^2} dr$$

$$\underbrace{\text{(c)}}_{8\pi\epsilon_0}^{\frac{1}{8\pi\epsilon_0}} \int_a^b \frac{q^2}{r^2} dr$$

(d) 
$$\frac{1}{32\pi^2 \epsilon_0} \int_0^\infty \frac{q^2}{r^4} dr$$

(e) 
$$\frac{1}{32\pi^2\epsilon_0} \int_a^b \frac{q^2}{r^4} dr$$

$$=\frac{6}{2}\int_{\alpha}^{b}\left(\frac{1}{4\pi60}\frac{\alpha^{2}}{\Gamma^{2}}\right)^{2}4\pi\Gamma^{2}d\Gamma$$

- 1.3. Which of the following is true of Laplace's equation?
  - (a) It can have more than one solution for a given set of boundary conditions. Not true ( migreness)
  - (b) The solutions in one dimension must be sines and cosines (or a linear combination). Not the (in 1) you (c) It is only valid in regions of space that contain no charges.  $\sqrt{2}\sqrt{2}-\rho/\rho_0$
  - (d) It requires that nowhere within the region of interest can the potential be zero Not true;
  - (e) More than one of the above. North
- 1.4. A positive charge Q is located at a distance L above an infinite grounded conducting plane:





What is the total charge that will be induced on the plane?

- (a) 2*Q*
- (b) Q
- we worked this out in class
- 1.5. A localized charge distribution has no net charge, zero dipole moment, but a nonzero quadrupole moment. At a large distance r from the distribution, the electric potential will fall off like:
  - (a) 1/r
  - (b)  $1/r^2$
  - (c)/ $1/r^3$ (d) 1/r⁴
  - (e)  $1/r^8$

- Monopole V-12

  gradianole V-13
- 1.6. A sheet of current with surface current density  $K = K_0 \hat{x}$  is in the x-y plane. Just above the sheet, i.e., when z = a very small positive number, the magnetic field  $\mathbf{B} = B_0 \hat{\mathbf{x}}$ .  $K_0$  and  $B_0$  are both positive

K = KON / / / R = ?

constants. In what direction will **B** be just below the sheet, i.e., when z = a very small negative number?

(a) +x

- BC1) B+1 = B12

and y!

no Thee cylinder). Which of the following are true about the fields inside the cylinder?

enclosed(a) The B field is zero; the H field is non-zero

Amy Law (6) The B field is non-zero; the H field is zero

- → H = 0 (c) Both B and H fields are zero
  - (d) Both B and H fields are non-zero, and pointing in the same direction
  - (e) Both B and H fields are non-zero, but pointing in opposite directions

B= M(H+M), B +U

- 1.8. A table of resistivities is given. What would be the approximate resistance of a 10 m long section of 32 gauge (0.2 mm diameter) copper wire?
  - (a)  $0.01 \Omega$
  - (b)  $0.05 \Omega$ (c)  $0.2 \Omega$
- R=PA
- (d) 1 Ω
- = (1.68 10°) (10) (e) 5  $\Omega$ (f)  $20 \Omega$

= 5.352

| Material    | Resistivity           | Material        | Resistivity         |
|-------------|-----------------------|-----------------|---------------------|
| Conductors: |                       | Semiconductors: |                     |
| Silver      | $1.59 \times 10^{-8}$ | Sea water       | 0.2                 |
| Copper      | $1.68 \times 10^{-8}$ | Germanium       | 0.46                |
| Gold        | $2.21 \times 10^{-8}$ | Diamond         | 2.7                 |
| Aluminum    | $2.65 \times 10^{-8}$ | Silicon         | 2500                |
| Iron ·      | $9.61 \times 10^{-8}$ | Insulators:     | 2000                |
| Mercury     | $9.61 \times 10^{-7}$ | Water (pure)    | $8.3 \times 10^{3}$ |
| Nichrome    | $1.08 \times 10^{-6}$ | Glass           | $10^9 - 10^{14}$    |
| Manganese   | $1.44 \times 10^{-6}$ | Rubber          | $10^{13} - 10^{13}$ |
| Graphite    | $1.6 \times 10^{-5}$  | Teflon          | $10^{22} - 10^{24}$ |

TABLE 7.1 Resistivities, in ohm-meters (all values are for 1 atm, 20° C). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton, Fla.: CRC Press, 2010) and other references.

[1]

100 €

10 mH

- 1.9. Switch 2 is closed and the system comes to equilibrium. Then, switch 2 is opened while switch 1 is closed simultaneously, and the system comes to another equilibrium. What is the final current through the inductor?
  - (a) 0.01 A
  - $(b)^{2}0.02 A$
  - (c) 0.03 A
  - (d) 0.04 A
  - (e) 0.05 A
  - (f) 0.06 A
- First equilibrium docs t really

matter. Secondairent is



## Worked problems - please write on your own paper, no more than one problem per page.

(10 pts) **Problem 2.** Two point charges of equal but opposite charge (i.e. q and -q) are separated by a distance d, the positive charge being on the left and the negative one on the right. Find the electric potential along the line connecting the two charges as a function of distance from the positive charge, x.



it's undear
it x can
be negative.
I'll assure
neg x = left of

(13 pts) Problem 3. A sphere (radius R) has a volume charge density which increases with the distance from the center of the sphere:  $\rho = k r$ . (a) What are the units of k? (b) Determine the electric field in terms of k and r for points inside and outside the sphere. (c) Determine the electric potential for points inside the sphere, using the normal convention that  $V(r = \infty) = 0$ .

(c) 
$$V = -\int_{-\infty}^{\infty} \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{4} \int_$$

Physics 441 Final Exam – pg 5

(13 pts) **Problem 4.** The figure below extends infinitely in the + and - z-directions (not shown), and in the + x-direction. The potential is held fixed along the sides as indicated: the upper and lower sides are held at 0, whereas the left-hand side is help at a potential of  $V_0 \sin(\frac{\pi y}{L})$ , where  $V_0$  is a constant and L is the length of the object in the y-direction. Find the potential V(x,y) everywhere inside the boundary. Then use Mathematica or similar program to make a 3D plot of the potential (set  $V_0$  and L equal to 1).

$$V=V_0\sin(\pi y/L)$$

$$V=0$$

$$V=V_0\sin(\pi y/L)$$

$$V=0$$

$$V=0$$

$$V=0$$

$$V=0$$

## Boundary conditions

1. V = 0 at y = 0

2. 
$$V = 0$$
 at  $y = L$ 

3. 
$$V = 0$$
 at  $x = \infty$ 

$$4. V = V_0 \sin(\frac{\pi y}{L})$$

at 
$$x = 0$$

Laplace eyn 
$$\nabla^2 V = 0$$

Sep. of vars. Guess  $V = X/3/4/9$ )

P'vg in  $X'' Y - x Y'' = 0$ 
 $X'' = - Y''$ 

Each is substiquely a constant, call  $f = 1$ 

Each is most iqual a constant, call  $f = 1$ 

Que to symmetry if publican  $f = 1$ 

Verification  $f = 1$ 
 $f = 1$ 

Equal like terms -> only n=1 survives! as C,=V.

Problem 4 Plat

 $V[x_{-}, y_{-}] = Exp[-Pi x] Sin[Pi y]$  Plot3D[V[x, y], {x, 0, 2}, {y, 0, 1}, PlotRange  $\rightarrow$  All]

Out[1]=  $e^{-\pi x} \sin[\pi y]$ 



(15 pts) **Problem 5**. (a) A molecule with a polarizability  $\alpha$  is placed in an electric field and polarizes. If the field has the functional form,  $\mathbf{E} = 5x\hat{\mathbf{x}} + 2z^3\hat{\mathbf{z}}$  and the molecule is located at the point (1, 2, 3) (ignore units for this problem) what are the force and torque on it? (b) What charge distribution  $\rho(x, y, z)$  would give rise to such a field?

(a) 
$$\vec{p} = \alpha \vec{t}$$
 $\vec{p} = \alpha \left( 5.1\hat{x} + 23^{3}\hat{x} \right)$ 
 $\vec{p} = \alpha \left( 5.1\hat{x} + 23^{3}\hat{x} \right)$ 

Force:  $\vec{F} = (\vec{p}.\vec{\nabla}).\vec{E}$ 
 $= (\vec{p}.\vec{E}).\vec{E}$ 
 $= (\vec{p}.\vec{E}).\vec{E}$ 
 $= (\vec{p}.\vec{E}).\vec{E}$ 
 $= (\vec{p}.\vec{E}).\vec{E}$ 
 $= (\vec{p}.\vec{E}).\vec{E}$ 

(b) From Gaussis Law
$$7-\vec{E} = P/60 \quad P = 60 \quad \vec{\nabla} \cdot \vec{E}$$

$$p = 60 \left(5 + 6z^{2}\right)$$

$$p = 60 \left(5 + 6z^{2}\right)$$

(15 pts) **Problem 6.** A current flows clockwise in a square loop of side length 2a that lies flat in the plane of this page. Write down several integral expressions that you could use to find the magnetic field at a point (x, y) that lies in the plane of the loop, where the distances x and y are measured from the center of the square. (You don't have to actually do the integrals.)

For top section 
$$\vec{r}' = x' \times 1 a \ y$$

$$\vec{\lambda} = (x - x') \hat{x} + (y - a) \hat{y}$$

$$\vec{\lambda} = (x - x') \hat{x} + (y - a) \hat{y}$$

$$\vec{\lambda} = (x - x')^{2} + (y - a)^{2}$$

$$\vec{\lambda} = (x - x')^{2} + (y - a)^{2}$$

$$\vec{\lambda} = (x - x')^{2} + (y - a)^{2}$$

$$\vec{\lambda} = (x - x')^{2} + (y - a)^{2}$$

$$\vec{\lambda} = (x - x')^{2} + (y - a)^{2}$$

$$\vec{\lambda} = (x - x')^{2} + (y - a)^{2}$$

$$\vec{\lambda} = (x - x')^{2} + (y - a)^{2}$$

$$\vec{\lambda} = (x - x')^{2} + (y - a)^{2}$$

$$\vec{\lambda} = (x - x')^{2} + (y - a)^{2}$$

For bothern section 
$$\hat{c}^{1} = x^{1}\hat{c}^{2} - a\hat{g}$$
 $\hat{c}^{2} = (x-y)\hat{c}^{2}(y+a)\hat{g}$ 
 $\hat{c}^{2} = (x-y)\hat{c}^{2}(y+a)\hat{c}^{2}$ 
 $\hat{c}^{3} = (x-y)\hat{c}^{2}(y+a)\hat{c}^{3}$ 
 $\hat{c}^{3} = (x-y)\hat{c}^{3}(y+a)\hat{c}^{3}$ 
 $\hat{c}^{3} = (x-y)\hat{c}^{3}$ 

For left section 
$$\frac{2}{12} = -a \times 40^{\circ}$$
  $\frac{2}{3}$   $\frac{2}{3} = -a \times 40^{\circ}$   $\frac{2}{3}$   $\frac{2}{3} = -a \times 40^{\circ}$   $\frac{2}{3} = -a \times$ 

$$A = ((y+a)^{2} \times (y-y)^{2})^{1/2}$$

$$d\hat{z} = dy'\hat{y}$$

$$d\hat{z} = dy'\hat{y}$$

$$d\hat{z} = dy'\hat{y}$$

$$d\hat{z} = (y-a)^{2} \times (y-y')^{2}$$

$$d\hat{z} = (y-a)^{2} \times (y-y')^{2}$$

$$d\hat{z} = (y-a)^{2} \times (y-y')^{2}$$

$$d\hat{z} = dy'\hat{y}$$

$$d\hat{z} = dy'\hat{z}$$

(10 pts) **Problem** 7. An infinitely long, thick cylindrical shell of inner radius a and outer radius b has a magnetization of  $\mathbf{M} = \frac{k}{s^2} \widehat{\boldsymbol{\phi}}$ . Calculate the magnetic field in the region a < s < b as a function of distance from the center of the cylinder.



(12 pts) Problem 8. The current of an infinite solenoid (n turns/length) is increasing linearly according to  $I = I_0 \frac{t}{\tau}$ , where  $I_0$  and  $\tau$  are positive constants). Determine the induced electric field, both magnitude and direction.



s. it's like a B field prison like this



Now K, and ke must be chosen to satisfy initial conditions

Problem 9 cont.

init cond ( 
$$\circ$$
 V ( $H=0$ ) = +2  
init cond 2 :  $\frac{dV}{dt}(H=0) = 0$  (since so initial count  
and  $I = \frac{d\Phi}{dt} = C\frac{dV}{dt}$ )  
 $+1:$   $+2 = 5 + K_1 \cos \theta + K_2 \sin \theta$ 

N2: Derivative done with Metheration, see attached

$$O = -2500 \, k_1 + 9682 \, k_2$$

$$k_2 = \frac{2500}{9682} \, k_1 = -7746$$

Final ourse

I've plotted that on McKennadian as well (not required),
see next page.

problem a) cont

 $v[t] = v[t] = 5 + k1 \exp[-2500 t] \cos[9682 t] + k2 \exp[-2500 t] \sin[9682 t] ;$   $v'[t] /. t \to 0$  af f = 0 af f = 0

 $v2[t_{-}] = k1 \exp[-2500 t] \cos[9682 t] + k2 \exp[-2500 t] \sin[9682 t] + 5 /.$   $\{k1 \rightarrow -3, k2 \rightarrow -0.7746\}$ 

Out3 =  $5 - 3 e^{-2500 t} \cos[9682 t] - 0.7746 e^{-2500 t} \sin[9682 t]$ 

 $m[a] = Plot[v2[t], \{t, 0, .005\}, PlotRange \rightarrow All]$ 



m(5) = (\* Look how it goes to 5V at t = infinity! \*)

n[6] =

 $Plot[v2[t], \{t, 0, .001\}, PlotRange \rightarrow All]$ 



(\* Look how it satisfies the initial conditions! \*)

(15 pts) **Problem 10**. As we talked about many times in class, the quantity  $1/\sqrt{\epsilon_0\mu_0}$  equals c, the speed of light in a vacuum. We have the tools now to derive that relationship using the Maxwell Equations!

The 1-dimensional "wave equation" is a well known partial differential equation describing waves moving at a velocity v:

$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

It's called the wave equation because a basic traveling sine wave  $f = A \sin(kx - \omega t)$ , is in fact a solution of the equation as can be seen by taking two spatial derivatives, two time derivatives, and plugging them into the equation:

$$-k^2 A \sin(kx - \omega t) = \frac{1}{v^2} (-\omega^2 A \sin(kx - \omega t))$$
$$k^2 = \frac{1}{v^2} (\omega^2)$$

So the wave equation is true for that function, as long as the wave speed  $v = \omega/k$ .

A very similar equation arises directly from the Maxwell equations, which is the point of this problem.

- a. Suppose you have electric and magnetic fields in a vacuum (i.e., no charge/current densities). Write down the 4 Maxwell equations for this case.
- b. Show that the **E** field can be decoupled from the **B** field using Vector Identity 11 from the front cover, giving you a single equation for **E**. (The same can be done for **B**.) The equation for **E** that you end up with should be a three dimensional version of the wave equation (a  $\nabla^2$  instead of a  $d^2/dx^2$ ).
- c. Show that the wave speed  $\nu$  that you end up is indeed  $1/\sqrt{\epsilon_0\mu_0}$ . This is still amazing to me, and a central part of the "magic" of Maxwell's equations! Maxwell's equations were derived/discovered by looking at forces between charges and currents—yet this equation describes a traveling electromagnetic wave moving precisely at the measured speed of light!
- d. Now suppose you have a dielectric material (linear, isotropic) which has no free charge nor free current, where  $\mu_r = 1$ , but where  $\epsilon_r$  is not just equal to 1 anymore. Write out the "in matter" Maxwell's equations for this case. Use Ampere's Law for **H** to determine what the curl of **B** equals, in terms of the **E** field and other given quantities.
- e. Repeat steps (b) and (c) to get the wave equation for **E** again. What velocity do you obtain in this case? I taught my Phys 123 students that inside materials the speed of light v = c/n, where n is the index of refraction—what does n turn out to be, in terms of the information given in the problem?

(a) Maxwell equs

$$\nabla \cdot \vec{E} = \frac{9}{60}$$

$$\nabla \cdot \vec{E} = \frac{9}{60}$$

$$\nabla \cdot \vec{E} = -\frac{30}{64}$$

$$\nabla \cdot \vec{B} = 0$$

<sup>\*</sup> In case it's not obvious, this is a "traveling sine wave" because if you look at it at successive times, the peaks of the sine wave move to the right at a certain speed. Actually, sinusoidal waves are not the only solutions to the wave equation—traveling waves of any shape will solve the equation. But that's beyond what I care about here.

(b) Vector identity 11:  $\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \vec{A}) - \nabla^2 A$ Applied to  $\vec{E}$  field:

$$\nabla \times (\nabla \times \vec{E}) = O(O \cdot \vec{E}) - P^{2} \vec{E}$$

$$= -1\vec{B}$$

$$= -1\vec{B}$$

$$= -2\vec{E}$$

(d) Maxwell Equs in matter

$$\vec{D} \cdot \vec{D} = p_{\text{free}}$$
 $\vec{\nabla} \times \vec{E} = -\frac{1}{3}\vec{B}$ 
 $\vec{\nabla} \cdot \vec{R} = 0$ 
 $\vec{\nabla} \times \vec{H} = \vec{J}_{\text{free}} + \vec{J}_{\text{free}}$ 

(e) 
$$\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \vec{E}) - \nabla^2 \vec{E}$$
  

$$\frac{\partial}{\partial x} (\nabla \times \vec{B}) = \nabla^2 \vec{E}$$

It place and I frace 20

and if 
$$\vec{D} = 60 \text{ Gr} \vec{E}$$
 (linear, isotropiz)

and if  $\vec{H} = jt_0 \vec{B}$  (marragn.)

index of retraction = Sgrt of dielectric constant!