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Gaussian Units 
by Dr. Colton, Physics 441 (last updated: Fall 2019) 

 
SI Units Review 
 
As “everyone knows”, the standard SI units are meters, kilograms, seconds, newtons,1 joules, etc. Certain 
of those, such as meters, kilograms, and seconds, are considered to be more fundamental and are called 
the “base units” (see https://en.wikipedia.org/wiki/SI_base_unit), whereas others are derived from the 
base units. For example force is defined as mass times acceleration through Newton’s Second Law, so a 
newton is a kg⋅m/s2. 
 
The base units were originally related to physically tangible things. A meter was originally defined as a 
ten millionth of the distance from the equator to the North Pole. A kilogram was originally defined in 
terms of the mass of a reference chunk of platinum kept in France (chosen to be equal to the mass of a 
10 cm × 10 cm × 10 cm cube of water, so that water would have a density of 1 g/cm3). Both meters and 
kilograms have since been replaced by more accurate definitions as knowledge has increased and 
measuring ability has improved.  
 
Now, let’s put ourselves in the positions of the early scientists trying to define the base units of electricity 
and magnetism. They—or, let’s say, “We”—have discovered that two charges exert a force on each other 
that depends on the amount of the charges and the distance between them, according to Coulomb’s law: 
 

~ܨ
ଶݍଵݍ
ଶݎ

 

 
We say that charges produce an electric “field” which allows them to produce a force at a distance.  
 

We also have discovered that moving charges form currents, ܫ ൌ
ௗ

ௗ௧
, which produce a new type of field 

(magnetic) which exerts a force on other moving charges. We call the combination of this new force with 
the original electric field force the “Lorentz force”: 
 

 ۴ ൌ ሺ۳ݍ  ܞ ൈ ۰ሻ (Lorentz force, SI units) 
 
Also we have found that two nearby parallel currents also exert a force on each other, according to what I 
will call the “Ampere force law”:2  
 

~ܨ
ଶܫଵܫ
ݎ

 

 
But we don’t yet have precise definitions of  

 coulomb units 
o and therefore also not of volts or electric fields, since (in SI units) we have:  

[electric field] = N/C,  and volts = [electric field] × meters 

                                                 
1 I’ll use the convention that names of units should always be written as lower case even when named after people, although the 
symbols for the units (m, kg, s, N, J, etc.) can be either upper or lower case. 
2 I have not actually ever heard this equation ever called by that name before but it seemed appropriate as an analog to Coulomb’s 
law. Exercise for the reader: prove that two parallel wires of length ܮ, separated by distance ݎ where ݎ ≪  will exert an ,ܮ

attractive force on each other which in SI units is given by ܨ ൌ ቀ
ఓబ

ଶగ
ቁ
ூభூమ


.  
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o and therefore also not of teslas since (in SI units) the units of magnetic field and electric 
field are related through the Lorentz force equation (the two terms in the parentheses 
must have the same units), which leads to:  [magnetic field] = [electric field]/[velocity]. 

 the proportionality constant from Coloumb’s law, which involves ߳ 
 ampere units 

o which we could define if we had a definition of coulombs, as ampere = coulomb/second 
 the proportionality constant from the Ampere force law, which involves ߤ 

 
Now we are trying to figure out a way of defining those units and establishing values for those 
proportionality constants. So, how do you do that?  
 
Attempt 1. Maybe you try to use Coulomb’s law, which you have now written in a more precise form as 
the following:   
   

ܨ  ൌ
1

߳ߨ4

ଶݍଵݍ
ଶݎ

 (SI units) 

 
So you set up an experiment and measure the force between two balls of charge.  
 
Problem. Without having a definition of a coulomb, there’s no way to measure the value of ߳. It could be 
literally anything! It depends completely on how you define the coulomb. And similarly, without having a 
definition of ߳, there’s no way to measure what a coulomb is. We’re stymied.  
 
Attempt 2. Well, if you could define an ampere, then you could use the ampere = coulomb/second 
relationship to define a coulomb. So maybe you next try to use the Ampere force law between wires, 
which as per the footnote on the last page is now written in a more precise form as the following: 
   

ܨ  ൌ ൬
ܮߤ
ߨ2

൰
ଶܫଵܫ
ݎ

 

 
(SI units) 

So you set up an experiment and measure the force between two long, straight wires.  
 
Problem. Without having a definition of an ampere, there’s no way to measure the value of ߤ. It could be 
literally anything! It depends completely on how you define the ampere. And similarly, without having a 
definition of ߤ, there’s no way to measure what an ampere is. We’re stymied.  
 
 
The Vicious Cycle 
 
The fundamental issue is that there are seven intertwined quantities: 

 coulomb 
 ampere 
 electric field units 
 volt 
 tesla 
 ߳ 
 ߤ 
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If we knew what a coulomb is, we could define the units of amperes (= C/s), electric field (= N/C), volts 
(= [electric field] × [distance]), and teslas (= [electric field]/[velocity]). We could measure ߳ from 
Coulomb’s law and ߤ from the Ampere force law. Everything would be established.  
 
If we knew what an ampere is, we could similarly establish all six other quantities.  
If we knew what the unit of electric field is, we could establish all six other quantities.  
If we knew what a volt is, we could establish all six other quantities.  
If we knew what a tesla is, we could establish all six other quantities.  
If we knew what ߳ was, we could establish all six other quantities.  
If we knew what ߤ is, we could establish all six other quantities.  
 
But without knowing any of the seven, there’s no way to break free of the vicious cycle. It’s like a crime 
drama where there are seven guilty subjects who can only be convicted once one of them flips.  
 
 
How to Break the Cycle – the SI Solution 
 
The SI solution to breaking the vicious cycle is to make ߤ a defined quantity. Specifically, people chose 
ߤ ൌ ߨ4 ൈ 10ି N/A2, which you have seen before but probably wondered about. The 4ߨ is there for 
historical reasons, and the 10ି is to make an ampere a pretty usable quantity for typical currents.  
 
This allows the six other guilty subjects to be flipped. This definition of ߤ combined with the Ampere 
force law gives a way of measuring an ampere,3 which gives a coulomb, which gives all of the other 
quantities. It results in an experimentally measured value of ߳ ൌ 8.854 ൈ 10ିଵଶ C2/Nm2. One trade-off 
is that this choice for ߤ results in a coulomb being an extremely large value of charge.  
 
 
How to Break the Cycle – the Gaussian Solution 
 
Viewed in the context of the above discussion, it should be clear that there are at least six other ways that 
we could break the cycle: we could define any of the values of the other six quantities through a different 
way (coulomb, ampere, electric field, volt, tesla, ߳). For example, we could define a coulomb to be the 
amount of charge deposited on a metal ball by running a certain size Van de Graaff generator a certain 
length of time. That might not be a great definition, because it would likely depend on the humidity, the 
materials used, the machining tolerances, and so forth, but it could be done.  
 
The Gaussian solution to breaking the cycle is to make ߳ a defined quantity, specifically: 
 

 ߳ ൌ
1
ߨ4

 (Gaussian units) 

 
In fact, the symbol “߳” isn’t even ever written out in any equations that involve Gaussian units—you’ll 
only see factors of 4ߨ instead. This choice of a defined quantity will make the Gaussian unit of charge 
(which is NOT a coulomb anymore; see below) pretty usable for typical charges. It allows the six other 
guilty subjects to be flipped. It results in an experimentally measured value of ߤ which is given below. 
One trade-off is that this choice for ߳ results in the Gaussian unit for current being an extremely small 
amount of current.  

                                                 
3 Force between wires is probably not the way an ampere is actually defined, as it would be to imprecise. But the point is that it 
could be defined that way. 
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Another choice made in the selection of Gaussian units is to use centimeters, grams, and seconds as the 
base units (CGS) instead of meters, kilograms, and seconds like the SI system (MKS). That’s an 
independent choice, unrelated to fixing ߳, and we’ll need to keep that in mind for all Gaussian unit 
equations that have length and mass in them. The choice to use CGS also results in dynes and ergs as the 
derived units for force and energy, respectively; 1 dyne = 1 g⋅cm/s2 = 10–5 N,  and 1 erg = 1 g⋅cm2/s2  
= 10–7 J. 
 
 
The Consequences of the Gaussian Solution 
 
One main consequence of the Gaussian solution, and in fact the reason why ߳ is defined as 4ߨ is to 

simplify Coulomb’s law. Replacing ߳ with 
ଵ

ସగ
, it becomes: 

   

ܨ  ൌ
ଶݍଵݍ
ଶݎ

 (Coulomb’s law, Gaussian units) 

 
Remember that force must be measured in dynes and distance in centimeters. Analyzing that equation for 
units quickly results in dyne = [charge]2/cm2, which becomes ሾchargeሿ ൌ cm ⋅ ඥdyne. That unit of 
charge is given its own name—actually several names, there is not general agreement!—and is called 
either “statcoulombs”, “franklins”, or “electrostatic unit of charge (esu)”. The three unit names are 
interchangeable, with in my opinion the latter being slightly more common so that’s what I’ll use. The 
relationship to coulombs is this: 
   

 1	esu ൌ	3.3356 ൈ 10ିଵ	C (Gaussian unit of charge) 
 
Current is defined as esu/second, and is not given its own special unit name. 
 
As mentioned above, another consequence of Gaussian units is that ߤ becomes an experimentally 
measured quantity. Specifically, it is: 
   

ߤ  ൌ 1.398 ൈ 10ିଶ	sଶ/cmଶ (Gaussian units, but not used) 
 
However, as with ߳, the symbol “ߤ” is never written out in any equations that involve Gaussian units. 
As you’ve probably run across before, and is discussed in Griffiths Chapter 9, Maxwell’s Equations lead 
to the prediction of electromagnetic waves traveling at 1/ඥ߳ߤ, which precisely matches the 

experimental speed of light, ܿ. Since ߳ is defined as 1/4ߨ, we can write ܿ ൌ 1/ඥߤ/4ߨ, which leads to: 
   

ߤ  ൌ
ߨ4
ܿଶ

 (Gaussian units) 

 
The unit of electric field is defined by the equation ۴ ൌ  so [electric field] = dyne/esu. This is given its ,۳ݍ
own special name, namely “gauss”:  
   

 gauss ൌ dyne/esu (Gaussian unit of electric field) 
 
 
But wait! There’s more!  
 



 Gaussian Units – pg 5 

As mentioned above, the SI units of B were defined in terms of the units of E through the Lorentz force 
law, which resulted in tesla = (newton/coulomb)/(meter/second).  
 
But why write down the law like that? Just because the magnetic force depends on the cross produce of 
the particle’s velocity with the magnetic field doesn’t mean we have to write magnetic force as 
܉ܕ۴ ൌ ܞݍ ൈ ۰ . Some clever person (I suspect Lorentz himself but couldn’t verify that) recognized that 
we could just as easily write down the force law like this: 
   

 ۴ ൌ ݍ ቀ۳ 
ܞ
ܿ
ൈ ۰ቁ (Lorentz force, Gaussian units) 

 
It still contains the essential physics. What does that do to the units of B? Notice that inside the 
parentheses the units of v and c will exactly cancel out! Therefore in Gaussian units, B and E must have 
the same units! Both the electric and the magnetic fields have units of gauss. And it can be shown (but I 
won’t) that magnetic field in gauss relates to the SI magnetic field in tesla in the following way: 
   

 1	gauss ൌ 10ିସ	tesla 
(Gaussian unit of magnetic—

and also electric—field) 
 
 
Three Translation Rules 
 
There are a few other subtleties which I’m skipping for now (in particular when dealing with materials), 
but the following three “translation rules” should work about 90% of the time when you need to convert 
from SI to Gaussian units. The first one is by definition, the second is a consequence of the speed of light 
being 1/ඥ߳ߤ, and the third one is a consequence of the modification of the Lorentz force law:  
 

1. If you see an ߳, replace it with 1/4ߨ 
2. If you see a ߤ, replace it with 4ߨ/ܿଶ 
3. If you see a ܤ, replace it with ܤ/ܿ 

 
 
Maxwell’s Equations in both SI and Gaussian Units 
 
Using those rules, we can convert Maxwell’s equations from SI to their Gaussian form: 
 

SI Gaussian 

 ⋅ ۳ ൌ
ఘ

ఢబ
   ⋅ ۳ ൌ ߩߨ4  

 ൈ ۳ ൌ െ
డ۰

డ௧
   ൈ ۳ ൌ െ

ଵ



డ۰

డ௧
  

 ⋅ ۰ ൌ  0 ⋅ ۰ ൌ 0   

 ൈ ۰ ൌ ۸ߤ  ߳ߤ
డ۳

డ௧
   ൈ

۰


ൌ

ସగ

మ
۸ 

ଵ

మ
డ۳

డ௧
  

 
 → ൈ ۰ ൌ

ସగ


۸ 

ଵ



డ۳

డ௧
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Other Equations 
 
You can do the same translation process with other equations. As just one final example, let’s consider 
the energy stored in the fields.  
 

SI Gaussian 

ܷ௧ ൌ
ఢబ
ଶ
 ଶ݀߬  ܷ௧ܧ ൌ

ଵ/ସగ

ଶ
   ଶ݀߬ܧ

 
→ ܷ௧ ൌ

ଵ

଼గ
 ଶ݀߬ܧ  

 

ܷ௧ ൌ
ଵ

ଶఓబ
 ଶ݀߬  ܷ௧ܤ ൌ

ଵ

ଶሺସగ/మሻ
 ቀ


ቁ
ଶ
݀߬  

 ܷ௧ ൌ
మ

଼గ

మ

మ
݀߬  

 → ܷ௧ ൌ
ଵ

଼గ
ଶ݀߬ܤ  

 
The two fields contribute equally to the stored electromagnetic energy! Given the same volume of space, 
a one gauss electric field holds the exact same amount of energy as a one gauss magnetic field. This 
satisfying fact is completely lost when the equations are viewed in SI units.  
 
 
In Summary… 
 
To sum up, here are a few reasons many people still use Gaussian units in research and graduate classes, 
even though SI units have completely taken over at the high school and undergraduate level. 
 

1. Coulomb’s law is simplified; there’s no 1/ሺ4߳ߨሻ proportionality constant. 
2. There’s no need for the really strange defined constant of ߤ ൌ ߨ4 ൈ 10ି N/A2 (which must 

surely confuse all Physics 220 students when they first see it, as there’s no quick explanation). 
3. There are fewer letters in the equations—߳ and ߤ do not show up anywhere! 
4. The fact that electromagnetic waves travel at c is built directly into the equations. 
5. Electric field and magnetic field have the same units. 
6. Some similarities between E and B are made even more explicit (e.g. in the stored energy 

equations). 
 


