Physics 441 Final Exam - due Wed 12/20/17, S pm
(extensions to Thursday 12/21/17, 5 pm, are possible if you talk to me in person)

Rules/Guidance:

e The exam is completely open notes/books. You may use the textbook, other textbooks, your own
class notes, Wikipedia, the results of Google searches, other websites, etc.

e You may not communicate with other people about the exam (classmates, classmates’ notes, other
current or past Physics Department students, relatives, internet forums or chat rooms, Facebook, etc.).

e Ifthe wording of any of the exam problems seems unclear, please talk to me and I will clarify what is
meant.

e Feel free to ask me any questions about homework, exam, or in-class worked problems. But limit it to
actual problems we’ve already done, rather than hypothetical problems that might be similar to the
exam problems.

e Please work neatly and start each problem on a new page. , )
e Please turn in this printed out exa ith your work T Voo, (O 1 o fk
: - -4 () am ! Lo 4&
e The exam is out of total pomt IS — Ue Yo Byunt Appse A v P
o My best guess is tHat a well-rested\We “prepared student should take about 4.5 hours onthe ! S0
exam, not including the extra credit problem. Of course, if you are not yet well-rested and well- {
prepared, then add in additional time as appropriate—perhaps more-or-less equivalent to what you
would have spent studying for a Testing Center exam. Plus sleep time. ©
Name j&- (VAo s

Additional Instructions: Please label & circle/box your answers. Show your work, where appropriate!
And remember: in any problems involving Gauss’s or Ampere’s Law, you should explicitly show
your Gaussian surface/Amperian loop.

(22 pts) Problem 1: Multiple choice and short answer, 2 pts each. Circle the correct answers for the
multiple choice questions; write the short answers in the space provided.

1.1. In the temperature analogy I used in class, if V is like temperature, than E is like:
(a) Constant temperature contours
Heat capacity S ‘ N
Heat flow from hot to cold I Fle)@ inf ) il ~ ,g\ 9 hih Y Ao losw V
(d) Heat flow from cold to hot ¢
(e) Specific heat
(f) Temperature maxima
(g) Temperature minima

1.2. True/False: Ferroelectric materials that have a polarization field that is constant in space (i.e. same
direction, same magnitude everywhere in the material) will only have bound surface charges, not
ound volume charges. =2 -
é%)/Tme N - - 7 = Q . 7[ @ s (/mg')”z«\:}’” [ )(J a
(b) False :
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1.3. A localized charge distribution has no net charge, zero electric dipole moment, but a nonzero electric
quadrupole moment. At a large distance » from the distribution, the electric field will fall off like:
(a) No fall off; it’s constant
(b) 1/r

ywnags e & z
(c) 1/ s /
(d) 17 Al & ~ 2
((e) 1/ : o
(f) 1/75 Gs%gﬂ-a) KJQ;;‘.{ ¢ {:‘ A ,.n;
L { 'd “

1.4. What would be the best way to calculate the magnetic field produced by a cube of current (side
length a, constant current density | = J(Z)?
(a) Coulomb’s law
(b) Gauss’s law
(c) Gauss’s law for D
(d) Multipole expansion for V'
(e) Images charges
(f) Bound charges

(8 Biot-Savart law 3 1/
) Ampere’s law - P
(i) Ampere’s law for H > /}w\,. J RGN g
(j) Multipole expansion for A %»c T 7
(k) Image currents - T ke
(1) Bound currents . A - ’ (o
(m) Faraday’s law S (""i“/ '&‘7 Hoad ool usrle

(n) Maxwell’s fix to Ampere’s law

1.5. Gravitational force is in the —Z direction. A magnetic field goes in the X direction. A wire lies on a
table and a current is run through it in —¥ direction. True or False: if a sufficiently large current were
run through the wire, it could levitate, i.e. overcome the effects of gravity and spring off the table.
(Assume that the wire has sufficiently low res%stance that heating would not be a limiting factor.)

("/ (a)/ True

“~(b) False -
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1.6. A magnetic field is created by running cu%rent through a solenoid. A second magnetic field is created

First field
(d) Second field

-
B ]

N5

7

o
.

s

vector potential A for a given current distribution, J.
(a) True
(b) False

3

1.8. (Short answer) What is the divergence of iz? (in spherical coordinates)
T

T

( ) P
\ Y Il [
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W,,_by ing.current through another solenoid, identical (same current, same dimensions) except it has
14 7 fm‘m@ ore made ofidiamagnetic material. In which case is there more energy stored in the field?
Mo (@) ar
4 f 2

Ned Ao inf ke
o\’f;ﬂ{ "l“ﬁ“lf\w‘) S

" p

1

- = .
> U- = 5{5 hod
%qéﬁf\_‘}\ },‘% (g/qf} by L,\AJ\!‘(/{,%")

’ Seleasid). wWih weda laag
can always be used to find the \, iy 7/, w7
)

)fg (1+7%m) H
\"‘)}-a ™
7
o Am T,

Mﬁw.w, 1
e (»Q,,}g vu.«é‘}




1.9. (Short answer) Draw the appropriate image(s) to solve this problem (the arrows are semi-infinite
grounded conducting planes):
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1.10.(Short answer) A magnetic field points into the page and is increasing. In what direction is the
induced electric field? (Indicate with a picture, no partial credit)
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1.11.(Short answer) An electric field points into the page and is increasing. In what direction is the
induced magnetic field? (Indicate with a picture, no partial credit)
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Worked problems — please work on your own paper, no more than one problem per page.

(8 pts) Problem 2. Four charges (all same charge q) are positioned at the corners of a rectangle in the x-y
plane: (0,0), (a, 0), (0, b), and (a, b). Determine the force on the charge located at (a, b).
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(10 pts) Problem 3. A ring of line charge (radius R, constant linear charge density Ao) lies in the x-y plane

centered on the z-axis. Set up an integral you could use to calculate the potential at an arbitrary point
(x,y, z), with explicit variables and limits of integration
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(12 pts) Problem 4. An infinite slab has thickness d, going from —d/2 to +d/2 in the z-direction and being
infinite in the x- and y- directions. It has a volume charge density which increases with the distance from

Polzl

the center of the slab according to = B

(a) Determine the electric field for points inside and outside

the slab. (b) Let the zero of potential be at the surface of the slab. What is the potential at the center, i.e.

z=10?
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(20 pts) Problem 5. In class we solved Laplace’s equation via separation of variables for rectangular and
spherical symmetry, but not for cylindrical symmetry. Those of you with an advanced mathematical
intuition may guess that the cylindrical symmetry case will involve Bessel functions, but that surprisingly
(to me, anyway) turns out to only be the case for finifte cylinders. The goal of this problem is to figure out
the solution for infinite cylinders, i.e. where there is no z-dependence to the potential.

(a) Go through the initial steps of solving Laplace’s equation via separation of variables for cylindrical
symmetry, assuming V is only a function of s and ¢. Separate the partial differential equation into two
ordinary differential equations for s and ¢. As usual, you’ll need to set two different things equal to the
same constant in order to do this.

(b) The ¢ equation: I’1l solve this equation for you ©. Pick the sign of your constant by setting it equal to
+m? or —m? so that your solutions to the ¢ equation are sinmg and cos m¢ (and linear combinations, of
course). There is an added requirement that the ¢ dependence must be periodic with a period of 2n
because e.g. points at ¢ = 34° are identical to points at ¢ = 394°; that means m must be an integer. (You
can show that if you want, but it’s not required.)

(c) The s equation: Solving the s equation is tricky, and in fact you get a different set of paired solutions
when m is zero compared to when it is nonzero. We’ll use every physicist’s favorite trick of guessing the
correct answers. (1) When m = 0, show that In s and the number 1 are linearly independent solutions that
both solve the s equation. (2) When m # 0, show that s™ and s™™ are linearly independent solutions that
both solve the s equation.

(d) By taking a summation of linearly independent terms, and considering the m = 0 case as a separate
term in the summation from the m # 0 cases (which are infinite), write out the general form of the
complete answer to the situation. “General form” means not worrying about any other boundary
conditions, which I haven’t specified in this problem. Depending on how you write things, you should
end up with something like 3-6 arbitrary constants in your answer.
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(12 pts) Problem 6. An electric dipole at the origin is pointing in the positive x direction: p = poX. What
are the electric potential and electric field at an arbitrary point far away from the origin along the line y =

x, located at (a, a, 0)? (a is positive.) Note that the point is a distance of av/2 from the origin.
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(12 pts) Problem 7. A linear dielectric material with relative permittivity €, is placed inside a parallel
plate capacitor (capacitance C, separation distance d) that is maintained at a fixed voltage V; by a battery.
(a) Does the battery pump charge onto the capacitor or remove charge from the capacitor when this is
done? Explain. (b) What is the electric field inside the material, assuming the material completely fills the
capacitor and you can neglect edge effects?
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(14 pts) Problem 8. A magnetic field in a certain region of space is given by B = 5y% + 2y3%, with all
variables being in standard SI units. (a) What are the units of the numbers 5 and 2? (b) What current
distribution J would give rise to such a field? (c) A small magnetic dipole with dipole moment m =
(0.29 + 0.12) X 107°A - m? is placed in the field at y = 1 m. What is the torque on the dipole? Does the
torque try to rotate the dipole moment to be aligned with B, anti-aligned with B, or other? Explain.
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(14 pts) Problem 9. As we discussed in class, the magnetic dipole moment of a current loop is m = Ia,
where a is the “vector area” of the loop, a = [ da. For planar loops the vector area is just equal to the
area, with its direction given by the right hand rule relative to the direction of current flow. In class I said
that I believed for non-planar loops, a turns out to be the maximal area of the loop as you view it from
arbitrary directions, with the direction of a given by the direction that maximizes the viewable area (and
the right hand rule). I still believe this is accurate, although I haven’t found a reference that puts it quite
like that.

(a) Prove that my claim works for the case of a rectangular loop bent at 90 degrees to form two square
sections as shown, each with side length 5. What value of a do you get from [ da (you can add together
the [ da from the two rectangles, each of which is planar)? And what do you get from my “viewable
area” description?
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(b) As an interesting corollary of this description, it doesn’t actually matter which surface you use to do
the [ da integral as long as that surface is bounded by the loop. As a demonstration of this, prove that you
get the same vector area for a circular loop in the x-y plane (radius R, current in ¢ direction) by
integrating [ da over (1) a planar disk (the answer is trivial, you don’t need to do anything, it’s just TR?Z,
and (2) a hemispherical shell bounded by the loop (radius R, extending into the positive z-direction). In
other words, I’m asking you to integrate [ da for a hemispherical shell and show it equals TR?2Z.
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length is much longer than its radius, saf L ~ 20 R,JA constant magnetization points along the axis of the
cylinder. In your sketch include both the inside and the outside. You don’t have to work out exact

equations, just a general (but fairly accuraté) sketch is fine. (b) On a separate graph, sketch the H field for
the same s1tuat10n
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w pts) Problem 10. (a) Sketch the B field the axis of a finite cylindrical bar magnet where its Ermide sl
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= B and H Field of a magnetized cylinder (o7 a,xf/gj

n= (% exact formula from previous handout, setting muO = 1 and R = 1 «x)
blz_,L_]1=1/2((z+L/2) /sart[1+ (z+L/2)*2] - (z-L1/2)/sart[1 + (z-L/2)~2]);

nz= Plot[b[z, 20], {z, -20, 20}, PlotRange » All] (* length = 20 x radius x)

Qut|2}=

/

i 1 L
-20 -10

20
mz= m[z_, L_] = UnitBox[z /L];
Plot[m[z, 20], {z, -20, 20}]

4.0
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0.6
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2 | final exam problem 10 - B and H field of magnetized cylinder.nb

mns= h[z_, L_] =b[z, L] -m[z, L];
Plot[h[z, 20], {z, -20, 20}, PlotRange - All]

0.4
/ 02}
oulisl L ——-‘// R R , ;

-20 -10 L 10 20




(16 pts) Problem 11. I mentioned in class and/or on the homework that the voltage divider equation was
obtained under the assumption that no current “leaks out”, which is really only the case for when the
output of the voltage divider is hooked up to a circuit with a large input impedance. Since all of our filter
examples were obtained using the voltage divider equation, that means the filter transfer functions that we
plotted are only accurate when the filters are hooked up to circuits with large input impedances. The point
of this problem is to explore that. We are going to analyze connecting the band pass filter to a circuit with
a varying input impedance.

Start with the band pass filter picture,

R
Vin e AN\ Vour
1————~~«y——~-- e

fé —o

and add another resistor, let’s call it Rioqa, going from Vou to ground. That represents the input impedance
of the load circuit, i.e. whatever circuit you are hooking the filter up to. Notice that Rioaa is in parallel with
L and C.

if

Use these numbers: V;, = 1 Vcoswt, R = 100 kQ, L = 10 mH, and € = 10 nF (same RLC values as in
the band pass filter example in the Circuits 2 handout).

The voltage of Riaa is the voltage delivered to the load circuit. Use Mathematica or similar program to
plot the magnitude and phase (on separate graphs) of this voltage as a function of w, for Ris equal to:

(a) 10 kQ
(b) 100 kQ
(c) 1000 k0

Force your magnitude plots to all go from 0 to 1 V on the y-axis so you can easily see the difference
between the situations. The plots for part (c) should look fairly similar to the transfer function plots in the
handout, which essentially assumed an infinite Rioaq.
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n1= R =100000;
L=0.01;
c=10%*-9;
z2[w_, Rload_]
h[w_, Rload_] :

(1/Rload+1/(TwL)+ 1/(-1/ (wec))) -1
z2[w, Rload] / (R + z2[w, Rload])

‘ 1
outer 1 0.4100.d iw
Rload W 100000000
~
( ) = Plot[Abs[h[w, 10000]], {w, 0, 200000}, PlotRange -» {0, 1}] @f\m(! = /()/’( J:L«
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\l) cont

2 | final exam problem 11 - band pass filter with load.nb

ne;= Plot[Abs[h[w, 100000]], {w, 0, 200000}, PlotRange » {0, 1}]
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VA ) Cov 1 final exam problem 11 - band pass filter with load.nb | 3

0= Plot[Abs[h[w, 1000000]], {w, 0, 200000}, PlotRange - {0, 1}]

\ ) - A 1 ¥
{‘C ) Plot[Arg[h[w, 1000000]], {w, 0, 200000}, PlotRange » {-Pi /2, Pi /2}] LL (oad) 7 ?U%W»JL
10 o
i ( \/ W YN o cea iy
r G w. ® —“ V { uM..v‘rlq i
0-6-— m& :‘ ( 0 b6 i‘h {»!f@-ﬁ; )
Out{107- r i k
04r Qu}(&»«-'i V\}HW?
0.2:— A/jL ‘tm}c.,) rcfys ﬁ_.lw‘-[fv
vl Previngdy
“looo00 200000 ‘P\ /)h oY } 5 2

0 50000 100000 150000

15F j &M"N\VD (‘0'75 7[
10 [ \/th)\ .

;o ¢
\/Wv)/"' 0¥ Vo mnd) -
4 o5t Rk
05f | ) . /
[ a
- | l -
outf11]= L L L L L L L L L L 1 L s L I 5e < ’g}) / ! Ay ’C,ff‘(?./‘; ,
o 50000 100000 150000 200000
-05
-10f




(6 pts) Problem 12. Extra credit. Two points for each equation, no partial credit (i.e. 0, 2, 4, or 6 points
are possible). In class on the last day I showed you that the potential and field from a charge distribution p
can be written as convolutions:

fp(r)df > VM=V, ®p
Sy S E@=E®p

V() =

41te

E(r) =

4TE
Here V; and E,, are the potential and field of a unit point charge located at the origin.

I also told you without proving it (due to lack of time) that the Biot-Savart law giving the magnetic field
from a current density J could be written as a cross-product type convolution like this:

B =2 (100 4, B(r) = —equoEo ® (X 1)

You can double check that yourself to make sure you understand what’s going on.

This problem: figure out how to write Griffiths equations 5.65, 4.9, and 6.11 (3" edition: Eqns 5.63, 4.9,
6.11) as convolutions. Those are the equations for the vector potential of a current density J in the
Coulomb gauge, the scalar potential of a polarized object, and the vector potential of a magnetized object,

respectively. 3
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