Physics 441 Final Exam - due Thurs 12/20/18, 5 pm, to Dr Colton’s office (N335 ESC)
Rules/Guidance:

e The exam is completely open notes/books. You may use the textbook, other textbooks, your own
class notes, Wikipedia, the results of Google searches, other websites, etc.

e You may not communicate with other people about the exam (classmates, classmates’ notes, other
current or past Physics Department students, relatives, internet forums or chat rooms, Facebook, etc.).

e If the wording of any of the exam problems seems unclear, please talk to me and I will clarify what is
meant.

- o Feel free to ask me any questions about homework, previous exam questions, or in-class worked

problems. But limit it to actual problems we’ve already done, rather than hypothetical problems that

might be similar to the exam problems.

Please work neatly and start each problem on a new page.

Please turn in this printed out exam along with your work.

The exam is out of 150 total points.

My best guess is that the average time the exam will take for a well-rested, well-prepared student

should be about 5.5 hours. Of course, if you are not yet well-rested and well-prepared, or if you tend

to work slower than the class average, then factor in additional time as appropriate.

Name So Vot wt g

Additional Instructions: Please label & circle/box your answers. For the worked problems, show your
work! If you use non-obvious equations from Griffiths or elsewhere, cite where they come from. And of
course remember: in any problems involving Gauss’s or Ampere’s Law, you should explicitly show
your Gaussian surface/Amperian loop.

(15 pts) Problem 1: Multiple choice, 1.5 pts each. Circle the correct answers below.

1.1. Two charges, of magnitude -Q and +4Q, are located as indicated in the diagram. At which position

will the electric field due to these charges be zero? L Al
A V| I
(b) B T = A B C D E
55 ( A OHHO+HH
(@ D ab g A X bl B X
(e) E 42 5 _(ug) 0
(f) None of them F - T3 — =0
26
1.2. Charges of +2q, +q, and —q are distributed in an area as shown. Consider a L 0+g
Gaussian surface located around the +2q charge, with a point P located on the Y
dashed surface. Which of the statements is true?
(a) The electric field at P depends only on the +2q charge. 4 +2(‘? *r
(b) The electric field is the same everywhere on the Gaussian surface. .
1@3’ The electric field is the same everywhere inside the Gaussian surface. Thessee” °-q

d))The net flux through the Gaussian surface depends only on the +2q
charge. (hadS Guuec'c (and
(e) The net electric field at point P can be determined using the Gaussian surface shown.
() None of the above.
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1.3. A charge Q is placed at the center of the base of a square pyramid as shown. What is the flux through
the shaded side of the prism?

(@ 0
(®) =
© 1o

@ =

5¢&p

L

8¢,
Q

® 3

(g) None of the above.

1.4. A sphere centered on the origin has a constant charge density +po in its upper hemisphere and —po in
its lower hemisphere (po is a positive number). What will be the potential along the z-axis?
(a) Positive =

" &((U‘U H Mo Lo ~p
(b) Negative | _»)7 p te =0

Zero ;\m\; :
(d) Positive for z > 0 and negative forz < 0 N >P°
(e) Negative for z > 0 and positive for z < 0  § g Hmede P
sk (log - r
1.5. True/False: Ferroelectric materials that have a polarization field that is constant in space (i.e. same

direction, same magnitude everywhere in the material) will only have bound surface charges, not

bound volume charges. 2 =
(a) rue /) L= - \—/‘/ //’ & O /V’/ ({D N «--\»-Ujfm oo 1 f e
False 5
Ty g

1.6. Four identical wires carry 4 amps of current each, coming out of the page as shown. The wire on the
right is labeled P. What is the direction of the net magnetic force on wire P caused by the other

ros? T adn ora las o hn et fRves
(a)/ To the left 4A
) To the right ©

(¢) Towards the top of the page A ‘\ .
(d) Towards the bottom of the page ® {,—@4’5" ¥
(e) Into the page /

() Out of the page NS

(g) The net force is nonzero, but in some other direction ©

(h) The net force is zero YNESE &

1.7. True/False: In the Coulomb gauge the formula A(r) = % f Kr—)@d—r can always be used to find the
vector potential A for a given current distribution, J.
(a) True Uy\iv/ /)p]r Soui( e Vw,‘rb’

@ False ,(\,;\ L Spa ;e

b

i
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1.8. What would be the best way to calculate the magnetic field at an arbitrary point in space (x, y, z),
produced by a cube of current that has side length a and constant volume current density J = J,Z?

(a) Coulomb’s law (h) Ampere’s law
(b) Gauss’s law (i) Ampere’s law for H
(¢) Gauss’s law for D (j) Multipole expansion for A
(d) Multipole expansion for V' (k) Image currents
(e) Images charges (1) Bound currents
(f) _Bound charges (m) Faraday’s law
Biot-Savart law (n) Maxwell’s fix to Ampere’s law

1.9. Assuming there is no free surface current on the boundary between the two linear isotropic magnetic
media shown, which of the figures represents possible magnetic field intensity vectors on the two
sides of the boundary? The B, and B, arrows represent magnetic fields just below and just above the
boundary, respectively (where the arrows begin). 1) | gj_ , > 8 N

B> '
Brocz) By - b, .

wt LB o= Bi B g
/A $ ) ?_.

W1=2 =2 - —

(a) (b)

=4 /Bl U2=4 /Bl 2’ l—/
pr=2 il 5T PR
y2 \B \vz/_/;_?_ 2 Z \év/, P

(©) @ —
- B/l — B
o llﬂ: 4 /\Bi\ Ur=4 / Bl
U =2 / M =2 i

\ © ®
N

(g) None of the above

1.10. A permanent magnet is dropped, south pole-down, through a
conducting loop as shown. What will be the direction of the current
induced in the loop as the magnet falls towards, then through, then

away past the loop?
Iockwise first, then counterclockwise when falling away

b) Clockwise first, and continuing to be clockwise when falling away
(c) Counterclockwise first, then clockwise when falling away
(d) Counterclockwise first, and continuing to be counterclockwise
when falling away
(e) There will be no current induced.
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Worked problems — please work on your own paper, no more than one problem per page.

(10 pts) Problem 2. At some point in your future you find yourself teaching a class on electricity and
magnetism. While writing a problem for an exam, you create a scalar potential function thatis V =

Z—g (x%y + xyz + xz?) inside a cubic region of space with side length L, with 0 < x < L,0 <y < L,0 <

z < L. Outside of this region of space, V = 0. (a) Is this a physically possible 7'? Why/why not? (b)
Assuming it is possible, what electric field would it give rise to?

!
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2
(13 pts) Problem 3. A sphere of radius R has a charge density from 0 to R given by, p = py (%) .(a) In

terms of the given variables how much charge total is present in the sphere? (b) How much work was
required to bring together all of that charge? 7ip: you may want to make sure that your final answer has

units of work. ‘ .
0\\/}\— = \(LSL\'E‘. 5/}5 O /
/0 ) .~ ; N
’L/U\) q{ 2 Yy ob ! N oh “_f ’J‘j‘/\( £ oy
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(10 pts) Problem 4. Here’s a figure you may recall from Exam 1. Suppose the x- and y-axes are given in
meters and the z-axis (that is, V) is given in volts. An electron starting at rest moves in response to an
electric force from point A to point B along the path shown. How fast will it be going at point B?

) 4 6 8 10
s L A B B 1V at point B
T 4 S
y-8
| mﬂ LQ f
A& }A a 3 ’71, v & :
P (7[;).'\.“ \/ - & s K
251 1 i .
M Vg =21V
\ —
v 115
V at point A ]
The potential at points from ]
A to B is the solid curve |
110
“8
-
¥4 . '-“
P ~ L
& P The path from A to B is the R |
7 dashed curve, in the x-y plane oM
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C:v’\.‘ (< b f/l

) VRN TTA Y

e e

Z T / 2 /|q )
\[E%\»,MI)MM RRVACERY

Physics 441 Final Exam — pg 6



(18 pts) Problem 5. For a homework assignment earlier this semester you used the relaxation method to
solve Laplace’s equation in 2D, V2V (x,y) = 0, in a region around a capacitor whose plates were fixed at
a certain positive and negative potential. Mathematically, the reason the averaging method works, in
addition to the justification given in class, arises from approximating second derivatives as finite
differences like this: (/4 is the spatial difference between grid points, which we can define to be 1 in some
system of units)

0%V V(x+hy)—2V(x,y) +V(x—h,y)
ax? h2

0*V V(xy+h) —2V(x,y) +V(x,y—h)
ay? h?

You undoubtedly saw those equations in Physics 430.! In the interest of simplicity I’ write the

“approximately equals” symbols as just “equals”. Laplace’s equation in 2D thus becomes the following:
v N %V "
0x2  dy?

Vix+hy) =2V, y)+V(x—hy)+V(,y+h)—2V(x,y)+V(x,y —h)

hZ =0

Vix+hy)+V(x—-hy)+V(x,y+h)+V(x,y—h)—4V(x,y) =0
Vix+hy)+V(x—hy)+V(xy+h)+V(x,y—h) =4V(x,y)

B Vix+hy)+V(x—hy) +V(e,y+h)+V(x,y—h)
h 4

V(x,y)

V(x,y) = average of surrounding points

That last equation gives you a way to iterate, and if you do so until V' (x, y) is indeed the average of the
four surrounding points, then Laplace’s equation is satisfied.

(a) The relaxation method can also be used to solve the more complicated Poisson’s equation, V2V =
—p/€, , where p can be a function of x and y. Setting €, = 1 and h = 1 for simplicity, your first task is
to go through a similar analysis to show that the equivalent equation for Poisson’s equation is this:

V(x,y) = average of surrounding points + p(x,y)/4

So if you iterate until V (x, y) is the average of the four surrounding points plus p at that point divided by
4, then Poisson’s equation is satisfied.

(b) Use this modified technique to solve the following problem by relaxation with a programming
language of your choice. In the middle of a 100x100 array which is bounded by ¥ = 0 cells around the
outside, create a 10x10 square which has p = +10 for the upper half and p = —10 for the lower half.
Iterate until Poisson’s equation is solved to within some suitably small tolerance level, as measured by the

! If not, look at the “Second-order central” equation on this page: https://en.wikipedia.org/wiki/Finite difference
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difference between the left hand side of the iteration equation and the right hand side. Turn in a printout
of your code along with a plot of your final, relaxed, potential function.
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ne)- tolerance = .001;
size =100;
startingarray = ConstantArray[0, {size, size}];
rhoarray = ConstantArray[0, {size, size}];
Do[
rhoarray[[i, j]] = 10;
, {1, 45, 49}, {3, 45, 54}]
Do[
rhoarray[[i, j]] = -10;
, {1, 50, 54}, {j, 45, 54}]
(¥*rhoarray //MatrixForm
ListPlot3D[rhoarray, ImageSize-Large]x)
mask = ConstantArray[True, {size, size}];
(#*True = change value, False = don't touch value %)
mask[[1l, 1 ;; size]] = False; (* the four outside boundaries =)
mask[[size, 1 ;; size]] = False;
mask[[1l ;; size, 1]] = False;
mask[[1l ;; size, size]] = False;
workingarray = startingarray;
relaxltime[workingarray , mask_] :=
Module [ {editablearray = workingarray, maxchange = 0, oldarray = workingarray},
Do[
If[mask[[i, 311,
oldarray[[i, J]] = editablearray[[i, j]]-
editablearray[[i, j]] =
(editablearray[ [i+1, j]] +editablearray[[i-1, j]] +editablearray[[i, J+1]] +
editablearray[[i, J - 1]]) /4 + rhoarray[[i, j]]1/4 //N;
maxchange = Max[maxchange, Abs[editablearray[[i, jJ]] -oldarray[[i, J]]1 11"
], {i, 1, size}, {3, 1, size}];

{editablearray, maxchange}

]

numiterations = 0;
maxchange = 100;
While[maxchange > tolerance,
{workingarray, maxchange} = relaxltime[workingarray, mask] ;

numiterations++;

1

ListPlot3D[workingarray, PlotRange -» All, ImageSize - Large]

maxchange

g ¥
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(12 pts) Problem 6. Set up the Biot-Savart law integral that you B=29

would need to use to determine the magnetic field of a current loop A Al
(radius R, current /) at the point specified, namely (0, R, z). The : /
current is counter-clockwise as viewed from above. Don’t do the - ;
cross product or the integral, just set it up using the given 7 : g
information. Do make sure you only have constant unit vectors 4@ y
inside the integral, however. X v’
B i
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(10 pts) Problem 7. A static magnetic field in a certain region of space is given by B = 5y?% + 3272 §,
with all variables being in standard SI units. (a) What are the units of the numbers 5 and 3? (b) Is this a

physically possible B field? Why/why not? (c) Assuming it is possible, what volume current density J

would give rise to such a field?
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(12 pts) Problem 8. A magnetic dipole at the origin is pointing in the positive x direction with dipole
moment m = myX. What are the magnetic vector potential A and magnetic field B at an arbitrary point
far away from the origin along the line y = x, located at (a, a, 0)? (a is positive.) Use the Coulomb
gauge. Note that the point is a distance of av/2 from the origin.
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(12 pts) Problem 9. A large permanent magnet has magnetization M = M,Z. In a particular section of the
inside—not necessarily right at the center but not very close to the sides—the magnetic field is a constant

B = ByZ, so that H = (

Bg
2o _ M,
Ho b

) Z there. A small spherical cavity, radius R, is hollowed out of the

material in that section. Find B and H at the center of the cavity in terms of the given quantities. Hint:

Feel free to Google/find in your textbook a formula for the magnetic field at the center of a uniformly
magnetized sphere.
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(10 pts) Problem 10. A certain capacitor has parallel circular plates with area 4 and electric field in the

Z direction. Its charge is decreasing according to Q = Qe

-t/T

Determine the induced magnetic field, both magnitude and direction.
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(14 pts) Problem 11. I mentioned in class that the voltage divider equation which we often use to analyze
filters was obtained under the assumption that no current “leaks out”. This is really only the case when the
output of the filter is hooked up to a circuit with a large input impedance. The point of this problem is to
explore what happens when the input impedance of the next circuit varies, using a band pass filter as an
example.

Start with the band pass filter picture,

r A A A b
‘/in i 2 Vout & ¢

and add another resistor, let’s call it Rjoaq, going from ¥, to ground. That represents the input impedance
of the load circuit, i.e. whatever circuit you are hooking the filter up to. Notice that Rjeaq is in parallel with
L and C.

Use these numbers: V;; = 1 Vcoswt, R = 100k, L = 10 mH, and € = 10 nF (same RLC values as in
the band pass filter example in the Advanced Circuit Topics Part 2 handout).

The voltage of Risaq 1s the voltage delivered to the load circuit. Use Mathematica or similar program to
plot the magnitude and phase (on separate graphs) of this voltage as a function of w, for Ry equal to:

(a) 10 kQ
(b) 100 kQ
(c) 1000 kQ

Force your magnitude plots to all go from 0 to 1 V on the y-axis and your phase plots to all go from —u/2

to /2. Choose an appropriate range for your x-axis. The plots for part (c) should look fairly similar to the
transfer function plots in the handout, which in some sense assumed an infinite Rjoqq.
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(14 pts) Problem 12. Gaussian units! If you missed the class period when we discussed Gaussian units
and I gave my three rules for “translating” SI equations to Gaussian units, you are welcome to talk to me
in person to get caught up. I mentioned in class that my three translation rules work about 90% of the time
so here’s some more to the story to help with the other 10%. I know you can Google the answers to the
questions below, so what I will be looking for especially in this problem is for you to show your
understanding from your work. Answers with little or no work or explanations will receive little or no
points.

(a) In Gaussian units, p, the dipole moment, is still chargexdistance (albeit in esu-cm instead of C-m),?
and the polarization field P(x, y, z) still describes the dipole moment per volume at the location
(x,v,z). What does this mean about the units of P? Specifically, show that the units of P are now the
same as the units of E, namely gauss.

(b) Because P still represents the same physical quantity as before, we still have the equation V- P =
—pp, Where py, is the bound volume charge density (now with units of esu/cm®). Previously we used
that equation along with Gauss’s law V- E = p/e, and the desire to create a new field that had the
property of V- (something) = pyr. to deduce what the “something” (which we called D) had to
be. But in Gaussian units, as we discussed in class, Gauss’s law is V - E = 4p... so we want the new
field to have the property that V - (something) = 41py... Deduce what the new “something” must
be, i.e. the D field as defined in Gaussian units. Your deduced definition for D should trivially show
that D also has the same units as E. (Yay! E, P, and D all have units of gauss! Yet another reason why
to like Gaussian units.)

(c) Show that if you had blindly used my original three rules, the D field you would have obtained would
not have satisfied the equation V- D = 41pf,..,. What would the divergence be equal to, instead?

(d) Since D and E now have the same units, there’s no need to differentiate between permittivity ¢ and
relative permittivity €,. They are the same thing in Gaussian units—it’s just called permittivity and is
given the symbol € defined by D = €E. This ¢ is dimensionless, and for a given material has the same
numerical value as the relative permittivity in ST units. In SI units we defined y. by the equation P =
€oXeE. In Gaussian units since P and E have the same units there’s no need for the ¢ so y is defined
by P = x,E. In SI units the relationship between ¢, and y. was €, = 1 + y,. Derive the relationship
between € and y. in Gaussian units.

(e) Show that these definitions/derivations require that y. for a given material in Gaussian units is not the
same numerical value as y. in SI units. How are the two related?

(Some comments follow on the next page.)

Comment 1: The new definition of D is a fourth translation rule and the relationship between y.(SI) and
xe(Gaussian) is a fifth rule. You can go through a nearly identical process for magnetic materials to get a
new definition of H for a sixth rule and a relationship between y,,(SI) and y.,(Gaussian) is a seventh rule.
After that there is only one more rule I am aware of, which is that the vector potential A must be replaced
with A/c in all equations (since B is replaced by B/c and A is still defined by B = V X A). Now you know
about as much as I do with regards to Gaussian units! ©

Comment 2: OK, there’s actually one more thing I know that’s worth sharing here. In Gaussian units H =
B/u and x is dimensionless, so it would appear that H and B have the same units (gauss). However, while
B is always given in gauss, H is invariably given in a unit called “oersted”, symbol Oe. I believe this is
only to help remind people that B and H are measuring different things. No one ever comes out and says
that a gauss and an oersted are dimensionally the same, but that must surely be the case. Anyway, keep
that in mind if/when you ever see any references to oersted—they are talking about the H field.
Experimentally, you can think of it like this: if you set your Helmholtz coil/other electromagnet to a B

2 Irrelevant side note that just occurred to me that I should have mentioned in class: an “esu”, or “electrostatic unit”
is also called a “statcoulomb”. You’ll see those terms used interchangeably, but I think esu is more common now.
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field setting of 1 gauss (= 10 T), as measured when no material is inside the magnet, then when you put
some material inside the magnet there will be an H field of 1oersted inside your material.
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