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Introduction 
 
Each of the terms in the multipole expansion, Griffiths Eq (3.95), can be separated into two pieces: one 
that describes the source (which does not depend on 𝐫), and one that describes how that source produces a 
potential (which does depend on 𝐫). For example, for the monopole term, 𝑛 0, we have: 
 
 𝑄 𝜌 𝐫′ 𝑑𝜏′ (1) 

 𝑉  𝑄 (2) 

 
Here 𝜌 is the charge density function and 𝐫  represents the locations where the charges are (which varies 
over the integral). 𝑄, which is the net charge, can also be called the “monopole moment”. All of the 
information about the charge distribution is contained in the calculation for (1). All of the information 
about the field point is contained in the calculation for (2). 
 
Similarly, for the dipole term 𝑛 1, we have: 
 
 𝐩 𝐫′𝜌 𝐫 𝑑𝜏′  (3) 

 𝑉  𝐩 ⋅ 𝐫  (4) 

 
Here 𝐩 is called the “dipole moment”. Again, all of the information about the charge distribution is 
contained in the calculation for (3) and all of the information about the field point is contained in the 
calculation for (4). 
 
Notice that whereas the monopole moment involved a single number, the dipole moment, being a vector, 
actually involves a collection of three numbers: 𝑝 ,𝑝 ,𝑝 . Also, notice how the dipole term falls off 
faster than the monopole term by an additional power of 𝑟: 1/𝑟  compared to 1/𝑟. Those trends continue: 
for the quadrupole term we will see that (a) the quadrupole moment will involve a collection of even more 
numbers than the dipole moment; specifically, it will involve nine numbers assembled in what we call a 
tensor (basically a matrix), and (b) the quadrupole potential will fall off by an additional power of 𝑟, 
namely 1/𝑟 . 
 
 
Derivation 
 

Setting 𝑛 2 in Griffiths Eq (3.95) and recognizing that 𝑃 cos𝛼 cos 𝛼 , we obtain the 

quadrupole term: 
  

 𝑉 𝐫 𝑟 cos 𝛼 𝜌 𝐫 𝑑𝜏  (5) 

 
Here, 𝛼 is the angle between 𝐫 and 𝐫′.  
 
Working with the two terms inside the integral, we have: 
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First term 

 𝑟 cos 𝛼 𝑟 cos𝛼  (6) 

 
Note that 𝑟 cos𝛼 𝐫 ⋅ 𝐫′ which can be written as a summation, ∑ �̂� ⋅ 𝑟 .  In other words,  �̂�  for 𝑖
𝑥,𝑦, 𝑧 represents Cartesian components of the unit vector 𝐫.  
 
Because we have two different 𝑟 cos𝛼 terms multiplied together, we’ll have two summations. We can 
write the second one as being over 𝑗.  
 

 𝑟 cos 𝛼 ∑ �̂� 𝑟 �̂� 𝑟,   (7) 

 
 
Second term 

 𝑟 𝑟 𝐫 ⋅ 𝐫  (8) 

 
This is true since 𝐫 ⋅ 𝐫 is just equal to one. We can then write 𝐫 ⋅ 𝐫 as a summation, ∑ �̂� ⋅ �̂� , and turn it 
into a double summation using the Kronecker delta function 𝛿 :  𝐫 ⋅ 𝐫 ∑ �̂� �̂� 𝛿, . Thus we have 
 

 𝑟 ∑ 𝑟 �̂� �̂� 𝛿,  (9) 

 
Piecing together 
 
Eq (5) then turns into the following:  
 

 𝑉 𝐫 ∑ �̂� 𝑟 �̂� 𝑟 𝑟 �̂� �̂� 𝛿 𝜌 𝐫 𝑑𝜏,  (10) 

 
where I’ve interchanged the order of the integral and the summation.  Next I’ll pull out �̂� �̂�  from each 
terms and put in front of the integral because the integral is over the primed coordinates: 
 

 𝑉 𝐫 ∑ �̂� �̂�  𝑟 𝑟 𝑟 𝛿 𝜌 𝐫 𝑑𝜏  ,  (11) 

 
The stuff in the curly braces no longer has any 𝐫 dependence!  That was exactly our goal—we have 
separated out the source information. Eq (11) can now be written as two separate equations. 
 
 
Quadrupole moment tensor 
 

 𝑄 𝑟 𝑟 𝑟 𝛿 𝜌 𝐫 𝑑𝜏  (12) 

 
The stuff in the curly braces from Eq 11 is called the “quadrupole moment tensor”, and given the 
unfortunate symbol 𝑄  (Q for “quadrupole”) which is not to be confused with Q the net charge. 𝑄  is 
property of only the charge distribution and does not depend on the field point at all. It is a collection of 
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nine numbers (𝑖 and 𝑗 each can be 𝑥,𝑦, 𝑧) which can be written in matrix form as a 3×3 array if you like, 
analogous to how 𝐩 can be written as a 3-element vector. Moreover, the formula in Eq (12) is symmetric 
in reversing 𝑖 and 𝑗, so there are only six independent matrix elements. In matrix form it can be written 
like this: 
 

 𝐐𝐢𝐣

𝑄 𝑄 𝑄
𝑄 𝑄 𝑄
𝑄 𝑄 𝑄

  (13) 

 
Quadrupole potential 
 

 𝑉 𝐫  ∑ �̂� �̂�  𝑄,  (14) 

 
Once the quadrupole moment tensor is known, the potential can be determined via Eq (14). Notice the 
1/𝑟  dependence. Recall that �̂�  represents the three Cartesian components of the unit vector pointing to 
the field point, 𝐫.  
 
The similarities between the quadrupole potential equation and the dipole potential equation can be made 
even more striking by rewriting the dot product in Eq (4) in terms of a summation: 
 

 𝑉  ∑ �̂� 𝑝  (15) 

 
Disclaimer: Eqs (12) and (14) are given in the 4th edition of Griffiths problem 3.52. By contrast, the 3rd 
edition (in problem 3.45) defines 𝑄  without the factor of 1/2 in the two terms, choosing instead to 
include an extra 1/2 in the equation for 𝑉 . A check of the internet reveals some continued 
disagreement on this, but most sources actually seem to favor the 3rd edition version of the equations. 
However, I personally prefer the 4th edition equations so that’s what I’ve used in this handout.  
 
 
Extensions 
 
The next term of the multipole expansion will give rise to an “octopole” potential and an octopole tensor 
𝑂  (O for octopole) which will contain 27 terms in a 3×3×3 array of numbers. Recognizing the patterns 
in Eqs (12) and (14), we can write them as the following:  
 

 𝑂 𝑟 𝑟 𝑟 𝑠𝑡𝑢𝑓𝑓 𝜌 𝐫 𝑑𝜏  (16) 

 𝑉 𝐫  ∑ �̂� �̂� �̂�  𝑂, ,  (17) 

 
For the sake of completeness the “stuff” in Eq (16) is the following:  𝑟 𝑟 𝛿 𝑟 𝛿 𝑟 𝛿 , but you 
are likely to never need to know that. 
 
Similarly, there will be a “hexadecapole” term, described by a 81 element tensor 𝐻  which will contain 
remnants of the Legendre polynomial P3, along with a 𝑉  equation which varies as 1/𝑟  and 
involves an 81 term summation over 𝑖,𝑗,𝑘, and 𝑙. 
  


