Legendre Polynomials, by Dr Colton Physics 441

The Legendre polynomials, $P_{\ell}(x)$ are a series of polynomials of order ℓ , $A + Bx + Cx^2 + ... + Zx^{\ell}$, that:

- (a) come up often, especially in partial differential equations
- (b) have interesting properties
- (c) are well understood and have been studied for centuries

Here they are:

Legendre $P[\ell,x]$ is built into Mathematica, just like Sin[x]out[1]= P0[x] = Legendre P[0,x] $P_0(x)$

 $\label{eq:p1} \begin{array}{l} \mbox{ln[2]:= P1[x_{-}] = LegendreP[1, x]} \\ \mbox{Out[2]:= x} \end{array}$

In[3]:= P2[x_] = LegendreP[2, x]
Out[3]= $\frac{1}{2}$ (-1 + 3 x^2) $P_2(x)$

Sometimes the polynomials are written in terms of $x = \cos \theta$, e.g. $P_2(\cos \theta) = -\frac{1}{2} + \frac{3\cos^2 \theta}{2}$

ln[4]:= P3[x] = LegendreP[3, x]

Out[4]= $\frac{1}{2} \left(-3 \times + 5 \times^{3} \right)$

ln[5]:= P4[x] = LegendreP[4, x]

Out[5]= $\frac{1}{8}$ (3 - 30 x² + 35 x⁴) **P₄(x)**

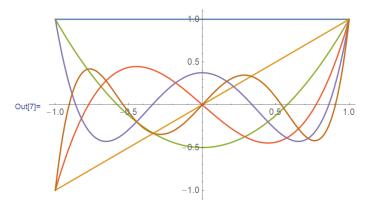
ln[6]:= P5[x] = LegendreP[5, x]

Out[6]= $\frac{1}{8}$ (15 x - 70 x³ + 63 x⁵) $\mathbf{P_5}(x)$

Etc.

Plots:

 $ln[7]:= Plot[{P0[x], P1[x], P2[x], P3[x], P4[x], P5[x]}, {x, -1, 1}]$



The subscript ℓ is the order of the polynomial = highest power of x.

The functions alternate even/odd.

A given polynomial has either only odd or only even powers of *x*.

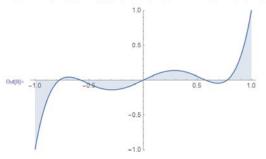
They all go to either 1 or -1 on the boundary when plotted in the range from $-1 \le x < 1$.

Very important facts

- Can be computed via the "Rodriguez formula": $P_{\ell}(x) = \frac{1}{2^{\ell}\ell!} \left(\frac{d}{dx}\right)^{\ell} (x^2 1)^{\ell}$ or via summation $P_{\ell}(x) = 2^{\ell} \cdot \sum_{k=0}^{\ell} x^k \binom{\ell}{k} \binom{(\ell+k-1)/2}{\ell}$ where $\binom{\ell}{k}$ is the binomial coefficient " ℓ choose k".
- Orthogonality: $\int_{-1}^{1} P_{\ell}(x) P_{m}(x) dx = \begin{cases} 0 & \text{if } \ell \neq m \\ \frac{2}{2\ell+1} & \text{if } \ell = m \end{cases}$
 - o If $x = \cos\theta$, then $dx = -\sin\theta d\theta$; use negative sign to switch limits then we have: $\int_0^{\pi} P_{\ell}(\cos\theta) P_m(\cos\theta) \sin\theta d\theta = \begin{cases} 0 & \text{if } \ell \neq m \\ \frac{2}{2\ell+1} & \text{if } \ell = m \end{cases}$
- Differential equation: $\frac{d}{dx} \left((1 x^2) \frac{df}{dx} \right) + \ell(\ell + 1) f = 0$ has solution $f = P_{\ell}(x)$, or linear combinations, $f = \sum_{\ell=0}^{\infty} A_{\ell} P_{\ell}(x)$
 - o If $x = \cos\theta$, then equation is $\frac{d}{d\theta} \left(\sin\theta \frac{df}{d\theta} \right) = -\ell(\ell+1) \sin\theta f$, solution is $f = P_{\ell}(\cos\theta)$.
- There are a second set of solutions to that differential equation, called $Q_n(x)$, the "Legendre functions of the second kind"; these diverge at $x = \pm 1$ and are therefore often not used.

Orthogonality, depicted

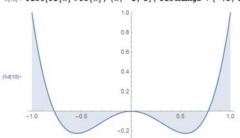
 $lo[8] = Plot[P2[x] * P3[x], \{x, -1, 1\}, PlotRange \rightarrow \{-1, 1\}, Filling \rightarrow Axis]$



$$lo[9] = Integrate[P2[x] * P3[x], {x, -1, 1}]$$

Out[9]= 0

$$\label{eq:plot_problem} \begin{split} & \text{lo[10]= Plot[P1[x] * P3[x], \{x, -1, 1\}, PlotRange} \rightarrow \{-.3, 1\}, \ \text{Filling} \rightarrow \text{Axis]} \end{split}$$



Out[11]= 0

$$\int_{-1}^{1} P_2(x) P_3(x) dx = ?$$

The product of an even and an odd function is odd, so this will clearly integrate to zero.

$$\int_{-1}^{1} P_1(x) P_3(x) dx = ?$$

Here the product is an even function, and so isn't so obvious that it integrates to zero. But you can see the positive areas still cancel out the negative areas.

$$\int_{-1}^{1} P_n(x) P_m(x) dx \text{ always equals } 0$$
if $n \neq m!$

Comparison with sines & cosines:

Sines/Cosines

- Two oscillatory functions: sin(x) and cos(x). Sometimes one of them is not used, due to the symmetry of the problem.
- 2. You typically determine the value of sin(x) or cos(x) for arbitrary x by using a calculator or computer program.

3.
$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$
$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

- 4. $\sin(m\pi x) = \text{odd for all } m$. $\cos(m\pi x) = \text{even for all } m$.
- 5. At x = 1, $\sin(m\pi x) = 0$ for all m. At x = 1, $\cos(m\pi x) = \pm 1$ for all m.
- 6. The differential equation satisfied by $f = \sin(m\pi x)$ is $f'' + (m\pi)^2 f = 0$
- 7. $\sin(n\pi x)$ is orthogonal to $\sin(m\pi x)$ on the interval (0,1):

$$\int_{0}^{1} \sin(n\pi x) \sin(m\pi x) dx = \begin{cases} 0, & \text{if } n \neq m \\ \frac{1}{2}, & \text{if } n = m \end{cases}$$

Bessel functions

Two functions for each ℓ : $P_{\ell}(x)$ and $Q_{\ell}(x)$. Typically Q_{ℓ} is not used because it's infinite at the boundaries.

You typically determine the value of $P_{\ell}(x)$ for arbitrary x by using a calculator or computer program.

$$P_{\ell}(x) = \frac{1}{2^{\ell}\ell!} \left(\frac{d}{dx}\right)^{\ell} (x^2 - 1)^{\ell}, \text{ or}$$

$$P_{\ell}(x) = 2^{\ell} \cdot \sum_{k=0}^{\ell} x^k {\ell \choose k} {(\ell + k - 1)/2 \choose \ell}$$

 $P_{\ell}(x) = \text{odd for odd } \ell.$ $P_{\ell}(x) = \text{even for even } \ell.$

At x = 1, $P_{\ell}(x) = 1$ for all ℓ . At x = -1, $P_{\ell}(x) = \pm 1$ for all ℓ .

The differential equation satisfied by $f = P_{\ell}(x)$ is $\frac{d}{dx} \left((1 - x^2) \frac{df}{dx} \right) + \ell(\ell + 1) f = 0$

 $P_{\ell}(x)$ is orthogonal to $P_m(x)$ on the interval (-1,1):

$$\int_{-1}^{1} P_{\ell}(x) P_{m}(x) dx = \begin{cases} 0 & \text{if } \ell \neq m \\ \frac{2}{2\ell + 1} & \text{if } \ell = m \end{cases}$$

 $P_{\ell}(\cos \theta)$ is orthogonal to $P_m(\cos \theta)$ on the interval $(0,\pi)$, with respect to a "weighting" of $\sin \theta$:

$$\int_0^{\pi} P_{\ell}(\cos \theta) P_m(\cos \theta) \sin \theta \, d\theta = \begin{cases} 0 & \text{if } \ell \neq m \\ \frac{2}{2\ell + 1} & \text{if } \ell = m \end{cases}$$