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with thanks to Carson Tenney for help thinking through the issues related to complex 𝜎𝜎�𝑓𝑓 and  𝜀𝜀�̃�𝑟 
 
Introduction 
 
As discussed in the “Complex wave number, index of refraction, and relative permittivity” handout, there 
is an intimate connection between exponentially decaying 𝐄𝐄 and 𝐁𝐁 fields as they penetrate into materials, 
and phase shifts between driving and response fields such as 𝐄𝐄 and 𝐏𝐏. Those two items lead towards the 
following quantities being complex numbers: wave number 𝑘𝑘� , susceptibility 𝜒𝜒�𝑒𝑒, relative permittivity 𝜀𝜀�̃�𝑟, 
and conductivity 𝜎𝜎�. This handout in particular looks more at the connection between the complex 
permittivity and complex conductivity.  
 
As was mentioned in the last section of the end of that previous handout, since the polarization current is 
𝐉𝐉𝑝𝑝 = 𝜕𝜕𝐏𝐏

𝜕𝜕𝜕𝜕
 and 𝐏𝐏 = 𝜀𝜀0𝜒𝜒�𝑒𝑒𝐄𝐄, the assumption of a harmonic time dependence leads to  

 
 𝐉𝐉𝑝𝑝 = −𝑖𝑖𝜀𝜀0𝜒𝜒�𝑒𝑒𝜔𝜔𝐄𝐄 (1) 
 
which looks like an Ohm’s law for insulators, with  
 
 𝜎𝜎�𝑝𝑝 = −𝑖𝑖𝜀𝜀0𝜒𝜒�𝑒𝑒𝜔𝜔 (2) 
 
That is where we pick up the story.  
 
Connection between complex 𝜺𝜺�𝒓𝒓 and 𝝈𝝈� in insulators 
 
Dividing 𝜒𝜒�𝑒𝑒 into its real and imaginary components, we have:  
 
 𝜎𝜎�𝑝𝑝 = −𝑖𝑖𝜔𝜔𝜀𝜀0�𝜒𝜒𝑒𝑒,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 + 𝑖𝑖𝜒𝜒𝑒𝑒,𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖� (3) 
 
Moreover, this is ALL the conductivity an insulator is likely to have, since it won’t have much if any free 
current-type conductivity, so we can just call 𝜎𝜎�𝑝𝑝 the complex 𝜎𝜎�.  
 
Also, since 𝜒𝜒�𝑒𝑒 = 𝜀𝜀�̃�𝑟 − 1, we have 

 
𝜒𝜒𝑒𝑒,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 = 𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 − 1
𝜒𝜒𝑒𝑒,𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖 = 𝜀𝜀𝑟𝑟,𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖             � (4) 

 
which, when substituted into (3) leads to 
 

𝜎𝜎� = −𝑖𝑖𝜔𝜔𝜀𝜀0�𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 − 1 + 𝑖𝑖𝜀𝜀𝑟𝑟,𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖� 

𝜎𝜎� = 𝜔𝜔𝜀𝜀0𝜀𝜀𝑟𝑟,𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖 − 𝑖𝑖𝜔𝜔𝜀𝜀0�𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 − 1� 

so apparently the real part of 𝜎𝜎�𝑝𝑝 is related to the imaginary part of 𝜀𝜀�̃�𝑟, and vice versa.  
 

 
𝜎𝜎𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 = 𝜔𝜔𝜀𝜀0𝜀𝜀𝑟𝑟,𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖              
𝜎𝜎𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖 = −𝜔𝜔𝜀𝜀0�𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 − 1�  (5) 
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Equation (5) gives the real and imaginary components of 𝜎𝜎� in terms of 𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 and 𝜀𝜀𝑟𝑟,𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖, but can easily 
be solved for the real and imaginary components of 𝜀𝜀�̃�𝑟 in terms of 𝜎𝜎𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 and 𝜎𝜎𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖: 
 

 
𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 = 1 − 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜔𝜔𝜀𝜀0

𝜀𝜀𝑟𝑟,𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖 = 𝜎𝜎𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟
𝜔𝜔𝜀𝜀0

            
 (6) 

 
So if an insulator has even just a little bit of polarization current-related real conductivity, it will 
necessarily have an imaginary component to the dielectric constant 𝜀𝜀�̃�𝑟. Equation (6) can also be expressed 
in the following way, which I have seen in many sources.  
 
 𝜀𝜀�̃�𝑟 = 𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 + 𝑖𝑖 𝜎𝜎𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟

𝜔𝜔𝜀𝜀0
 (7) 

 
What about conductors? 
 
Recall that one of the main topics of the “Complex wave number, index of refraction, and relative 
permittivity” handout was Griffiths (9.126) (5th edition), which when written with complex permittivity 
and complex conductivity becomes this:    
 
 𝑘𝑘�2 = 𝜇𝜇𝜀𝜀̃𝜔𝜔2 + 𝑖𝑖𝜇𝜇𝜎𝜎�𝑓𝑓𝜔𝜔 (8) 
 
If we assume 𝜇𝜇 = 𝜇𝜇0, write 𝜀𝜀̃ as 𝜀𝜀0𝜀𝜀�̃�𝑟, and 𝜇𝜇0 as 1

𝜀𝜀0𝑐𝑐2
, then (8) becomes: 

 
𝑘𝑘�2 = � 1

𝜀𝜀0𝑐𝑐2
� 𝜀𝜀0𝜀𝜀�̃�𝑟 𝜔𝜔2 + 𝑖𝑖 � 1

𝜀𝜀0𝑐𝑐2
� 𝜎𝜎�𝑓𝑓𝜔𝜔  

 
 𝑘𝑘�2 = 𝜔𝜔2

𝑐𝑐2
�𝜀𝜀�̃�𝑟 + 𝑖𝑖 𝜎𝜎�𝑓𝑓

𝜔𝜔𝜀𝜀0
� (9) 

 
Aha! Look how similar the term in parentheses is to (7) above. Technically the 𝜎𝜎𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 in (7) is just the 
polarization current component of the conductivity, so plugging (7) into (9) we have: 
 
 𝑘𝑘�2 = 𝜔𝜔2

𝑐𝑐2
�𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 + 𝑖𝑖 𝜎𝜎𝑝𝑝,𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟

𝜔𝜔𝜀𝜀0
+ 𝑖𝑖 𝜎𝜎�𝑓𝑓

𝜔𝜔𝜀𝜀0
� (10) 

 
By assuming that 𝜎𝜎�𝑓𝑓 for conductors is real, we then obtain:  
 
 𝑘𝑘�2 = 𝜔𝜔2

𝑐𝑐2
�𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 + 𝑖𝑖 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡,𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟

𝜔𝜔𝜀𝜀0
� (11) 

 
And by analogy to (7) we can define for conductors, with 𝜎𝜎 now meaning the total conductivity:  
 
 𝜀𝜀�̃�𝑟 = 𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 + 𝑖𝑖 𝜎𝜎𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟

𝜔𝜔𝜀𝜀0
      (for conductors*) (12) 

 
to obtain:  
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 𝑘𝑘�2 = 𝜔𝜔2

𝑐𝑐2
𝜀𝜀�̃�𝑟        (for conductors*)  (13) 

 
 

 𝜀𝜀�̃�𝑟 = 𝑛𝑛�2         (for conductors*) (14)  

 
However, I have given Equations (12-14) three major asterisks because in my opinion there are two 
important caveats to these equations. First, is the assumption that 𝜎𝜎�𝑓𝑓 for conductors is real. That isn’t 
necessarily the case, and if not, the imaginary part of 𝜎𝜎�𝑓𝑓 would be combined with 𝜀𝜀𝑟𝑟,𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 in (11). I think 
that’s actually not too bad of a caveat, seems straightforward to deal with.  
 
The second caveat is worse: by deciding to redefine 𝜀𝜀�̃�𝑟 as per (12), we have actually lost the fundamental 
definition of 𝜀𝜀�̃�𝑟 as describing the proportionality between 𝐃𝐃 and 𝐄𝐄 fields! Nevertheless, the way Equations 
(12)-(14) end up being identical to the corresponding equations for insulators—namely Equation (7) from 
this handout and Equations (13) and (10) from the “Complex wave number, index of refraction, and 
relative permittivity” handout—is so compelling that I believe everybody does this.  
 
 
Concluding comments from Reitz, Milford, and Christy 
 
Most sources just blindly present (12)-(14) without discussing or likely even thinking about the 
ramifications. The textbook Foundations of Electromagnetic Theory by Reitz, Milford, and Christy 
(RMC) is one of the few sources I have found which even mentions the similarities/differences of 
complex permittivity vs complex conductivity at all. Here is what they say on pages 498-499 (4th edition), 
with a few small edits by me: 
 

We should also comment on a significant feature of this model [the Lorentz oscillator model for 
insulators]—that 𝜀𝜀�̃�𝑟 is complex. Even though the model was set up for bound charges, the 
resulting complex 𝜀𝜀�̃�𝑟 is characteristic of a conducting medium. There is a nonvanishing 𝜎𝜎𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 =
𝜀𝜀𝑟𝑟,𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝜀𝜀0𝜔𝜔, without the intentional introduction of a conduction current density 𝐽𝐽. In addition, 
with 𝜔𝜔0 = 0 for free charges [see my Lorentz oscillator model handout], there is still a real 
relative permittivity component characteristic of a dielectric medium. This model automatically 
incorporates both real and imaginary parts of 𝜀𝜀�̃�𝑟, corresponding to both the displacement current 
𝜕𝜕𝐃𝐃/𝜕𝜕𝜕𝜕 and the conduction current 𝐉𝐉 in Maxwell’s ∇ × 𝐇𝐇 equation. 
 
For each of the groups of oscillators—bound and free charges—we have to calculate 𝐏𝐏 or 𝐉𝐉 but 
not both, since they are equivalent expressions of the fact that the particle displacement has a 
component in phase with the E field and also a component 90° out of phase, or that the particle 
velocity has an out-of-phase component and also an in-phase component. For static fields, bound 
charges have displacement in phase with the field and free charges have velocity in phase with the 
field; but at high frequencies both bound and free charges can each have in-phase and out-of-
phase components of both displacement and velocity. All of the discussion [of complex 
permittivity] could instead be formulated in terms of a complex conductivity and in certain 
contexts, it is more usual to do so.  
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