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Notation 
 
When we start talking about complex wave numbers, we also soon have complex indices of refraction and 
complex relative permittivities, and there is a dizzying amount of varying—and overlapping‼—notation 
that people use for these three quantities. To be as clear as possible and avoid any ambiguity, I myself 
will use the following symbols in class and on homework assignments and exams. 
 

𝑘෨ ൌ complex wave vector 
 

𝑘 ൌ real part of 𝑘෨ , called 𝑘 in Griffiths and some other sources 
 

𝑘 ൌ imaginary part of 𝑘෨ , called 𝜅 in Griffiths and some other sources 
 
 

𝑛 ൌ complex index of refraction, not directly used in Griffiths, 
                                           also called 𝒩 by some sources (e.g. Peatross and Ware) 
 

𝑛 ൌ real part of 𝑛 , also called 𝑛 by nearly all sources ሺincluding Griffithsሻ 
 

𝑛 ൌ imaginary part of 𝑛 , not directly used in Griffiths, 
                 also called 𝑘 by nearly all sources ሺ!ሻ  
                 and 𝜅 by some ሺe. g. Peatross and Ware along with some othersሻ 

 to add insult to injury, many sources define the imaginary index of 
refraction 𝑘 as the negative of 𝑛. I believe this has to do with 
representing complex traveling waves as 𝑒ሺ௭ିఠ௧ሻ vs 𝑒ሺఠ௧ି௭ሻ. As near 
as I can tell, the former is used by most physicists and the latter by most 
engineers.  

 
 

𝜖̃ ൌ complex relative permittivity aka complex dielectric constant 
  also called 𝜖 by many sources and 𝐾 or 𝐾෩ by others 

 
𝜖, ൌ real part of 𝜖̃ , not directly used in Griffiths,  

also called 𝜖 , 𝜖ଵ or 𝜖ᇱ by many sources and 𝐾,𝐾୰ or 𝐾ᇱ by others 
 

𝜖, ൌ imaginary part of 𝜖̃ , not directly used in Griffiths, 
also called 𝜖ଶ or 𝜖ᇱᇱ by many sources and 𝐾୧ or 𝐾ᇱᇱ by others 

 
Basic relationships 
 
The complex index of refraction 𝑛 and complex wave number 𝑘෨  are related through this equation: 
 

 
 
Equating the real and imaginary parts of that equation (and remembering that 𝜔 must be real) results in: 

𝑛 ൌ
𝑐
𝜔
𝑘෨  
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𝑛 ൌ
𝑐
𝜔
𝑘 

 

𝑛 ൌ
𝑐
𝜔
𝑘  

 
Note in particular that 𝑛 and 𝑘෨  will always have the same complex angle. 
 
 
The complex relative permittivity 𝜖̃ and complex index of refraction 𝑛 are related through this equation: 
 

 
 
Plugging in 𝜖̃ ൌ 𝜖,  𝑖𝜖, and 𝑛 ൌ 𝑛  𝑖𝑛 and equating the real and imaginary parts of 
that equation results in: 
 

𝜖, ൌ 𝑛
ଶ െ 𝑛

ଶ   
 

𝜖, ൌ 2𝑛𝑛 
 

(As per the “add insult to injury” comment above, you will see 
many sources write that last equation as 𝜖′′ ൌ െ2𝑛𝑘.) 

 
It’s “left as an exercise for the reader” to derive the inverse equations: 
  

𝑛 ൌ ඨ
|𝜖̃|  𝜖,

2
 

 

𝑛 ൌ ඨ
|𝜖̃| െ 𝜖,

2
 

 

where the absolute values mean the magnitude of the complex number, i.e. |𝜖̃| ൌ ට𝜖,
ଶ  𝜖,

ଶ . 

 
 
The complex relative permittivity 𝜖̃ and complex wave number 𝑘෨  are related through this equation: 
 

 
 
Note in particular that 𝜖̃ and 𝑘෨ଶ will always have the same complex angle. 
 

  

𝜖̃ ൌ 𝑛ଶ 

𝜖̃ ൌ
𝑐ଶ

𝜔ଶ 𝑘
෨ଶ 



Complex wave number, index of refraction, and relative permittivity – pg 3 
 

Why is the complex wave number important? 
 
The complex wave number governs the wavelength in the material as well as the decay of the wave’s 
amplitude. Assuming travel in the z-direction for simplicity, plane waves have the following form: 
 

𝐸෨ ൌ 𝐸𝑒ሺ௭ିఠ௧ሻ 
 
When the wave number is complex, this becomes: 
 

𝐸෨ ൌ 𝐸𝑒ሺ
෨ ௭ିఠ௧ሻ 

𝐸෨ ൌ 𝐸𝑒
ሺሺೝೌାೌሻ௭ିఠ௧ሻ 

𝐸෨ ൌ 𝐸𝑒
ିೌ௭𝑒ሺೝೌ௭ିఠ௧ሻ 

Taking the real part, we have: 
 

𝐸 ൌ 𝐸𝑒
ିೌ௭ cosሺ𝑘𝑧 െ 𝜔𝑡ሻ 

 
You can see from that, that the real part of 𝑘෨  is related to the oscillations in space as per the usual 
definition of wave number, through the cosሺ𝑘𝑧 െ 𝜔𝑡ሻ term: 
 

 
 
The imaginary part of 𝑘෨  is related to how the amplitude of the wave decays as it penetrates the material, 
through the 𝑒ିೌ௭ term. The inverse of 𝑘 has units of meters, and is often called the skin depth, 𝛿. 
 

 
 
The decay of the wave is also characterized by the absorption coefficient, 𝛼, which describes the fall off 
in intensity according to 𝐼 ൌ 𝐼𝑒ିఈ௭. The absorption coefficient is typically what you would be able to 
measure in an experiment. Because intensity varies with amplitude squared, we have: 
 

𝛼 ൌ 2𝑘 
 
Equations for how the absorption coefficient relates to complex 𝑛 and complex 𝜖̃ can be obtained via the 
“basic relationships” equations above; three particularly useful such equations are the following: 
 

𝑛 ൌ
𝑐

2𝜔
𝛼 

𝜖, ൌ
𝑐ଶ

𝜔ଶ 𝑘
ଶ െ

𝑐ଶ

4𝜔ଶ 𝛼
ଶ 

𝜖. ൌ
𝑐ଶ

𝜔ଶ 𝑘𝛼 

 

Since the ratio 𝑐/𝜔 equals  𝜆௩௨௨/2𝜋, you’ll also often see those equations written in terms of the 

vacuum wavelength, such as: 𝑛 ൌ
ఒೡೌೠೠ

ସ
α. 

𝜆 ൌ
2𝜋
𝑘

 

𝛿 ൌ
1

𝑘
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To sum up: a big piece of the picture is therefore, when there is absorption (non-zero 𝛼) complex numbers 
very naturally enter the equations. 
 
 
Caution: what about complex conductivity? 
 
The equation for the complex index of refraction, 𝑛, was obtained simply via analogy with the equation 
from the non-absorptive case, 𝑛 ൌ



ఠ
𝑘, and led directly to a complex relative permittivity. However, this 

is not the only way to incorporate complex numbers (and hence absorption) into the equations. An 
alternate method is to use a complex conductivity instead of a complex relative permittivity. Typically 
either one or the other is done, but not both.  Therefore we will assume for now that the conductivity from 
Ohm’s law, 𝐉 ൌ 𝜎𝐄 is a real quantity. However, there will be times, as in the Ohm’s law homework 
problem from HW 1, where it is more natural to talk about a complex conductivity.  
 
 
Griffiths section 9.4.1 and the connection to complex 𝝐𝒓 
 
In my opinion Griffiths section 9.4.1 is unclear in many respects. Let’s pick up the story with Eq. 9.126 
(3rd and 4th editions Eq. 9.124), since everything seems OK until that point. Here’s that equation: 
 

𝑘෨ଶ ൌ 𝜇𝜖𝜔ଶ  𝑖𝜇𝜎𝜔 
 
That equation comes from plugging plane wave solutions into the modified wave equations for 𝐄 or 𝐁. 
The modified wave equations in turn, come from Maxwell’s equations for linear materials with 𝜌 ൌ 0, 
and with Ohm’s law, 𝐉𝐟 ൌ 𝜎𝐄. The second term on the RHS (imaginary component) comes from the free 
current term in Ampere’s law, and the first term on the RHS (real component) comes from the 
displacement current term in Ampere’s law.  
 
Caution: in this equation, 𝜖 ሺൌ 𝜖𝜖ሻ and 𝜎 are both considered to be real numbers. In other words, in that 
equation you must NOT use the complex 𝜖 nor the complex 𝜎 that we have just been talking about. This 
confused me for several years and my earlier versions of this handout got it wrong! 
 

For simplicity, let’s assume 𝜇 ൌ 𝜇, write 𝜇 as 
ଵ

ఢబమ
, and write 𝜖 as 𝜖𝜖,. Griffiths Eq. 9.126 can then 

be written as the following:  
 

𝑘෨ଶ ൌ
𝜔ଶ

𝑐ଶ
𝜖, 

𝑖𝜎𝜔
𝜖𝑐ଶ

 

𝑘෨ଶ ൌ
𝜔ଶ

𝑐ଶ
൬𝜖,  𝑖

𝜎
𝜖𝜔

൰  

 
Since in the absence of absorption (complex numbers), the stuff in the parentheses would simply be 𝜖, 
another way to incorporate complex numbers into the equations, and hence the effects of absorption, is to 
define the complex relative permittivity as the following:  
 

 
  
The imaginary part of the complex permittivity can then be read off the equation as:  

𝜖̃ ൌ 𝜖,  𝑖
𝜎
𝜖𝜔

 

Eq. 9.126 
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where to reiterate, 𝜎 must be a real conductivity. You will see this equation given by a lot of sources. Or, 

combining with the previous equation, 𝜖. ൌ
మ

ఠమ 𝑘𝛼, we can write it in another potentially useful 

form:  
 

𝜎 ൌ
𝑘𝛼
𝜇𝜔

 

 
This therefore is the connection between absorption and conductivity: if a material is not at all conductive 
at a given frequency, it will also not have any absorption, nor will it have imaginary components of the 
relative permittivity, index of refraction, nor wave number.   
 
 
Solving Griffiths Eq. 9.126 
 
The square root of a complex number is given by taking the square root of its magnitude and dividing its 
angle in half. (Minor detail that each number actually has two different square roots, like √3 and െ√3 are 
each square roots of the number 3, but let’s not worry about that.) Griffiths takes the square root of Eq. 
9.126 in that fashion and arrives at these answers, Eq. 9.128 (3rd and 4th editions Eq. 9.126):   
 
 
  
 
 
 
 
 
Caution: this equation assumes that 𝑘෨ଶ is in the first quadrant, which also 
forces its square root 𝑘෨  to be in the first quadrant, as depicted in the complex 
plane figure on the right. However, as is discussed in limiting case 2 below, 
that is not always the case. If 𝒌෩𝟐 is not in the first quadrant, then you can’t 
use Griffiths’ Eq. 9.128. 
 
 
Three limiting cases 
 
The textbook Foundations of Electromagnetic Theory by Reitz, Milford, and Christy (RMC), 4th edition, 
page 428, gives situations where the following three approximations may be employed and says “Most 
often one or another of the following approximations are valid.” As a reminder, here is Eq. 9.126 again.  
 

𝑘෨ଶ ൌ 𝜇𝜖𝜔ଶ  𝑖𝜇𝜎𝜔 
 

𝜖, ൌ
𝜎
𝜖𝜔

 

𝑘෨ଶ 

𝑘෨  

𝑘 ൌ 𝜔ට
ఢఓ

ଶ
ቈට1  ቀ ఙ

ఢఠ
ቁ
ଶ
 1

ଵ/ଶ

  

𝑘 ൌ 𝜔ට
ఢఓ

ଶ
ቈට1  ቀ ఙ

ఢఠ
ቁ
ଶ
െ 1

ଵ/ଶ
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Case 1. 𝒌෩𝟐 is mostly real, and positive.  
 
If the real term is much larger than the imaginary term, then:  
 

𝑘෨ଶ ൌ 𝜇𝜖𝜔ଶ  𝑖ሺsmallሻ  
𝑘෨ଶ ൎ 𝜇𝜖𝜔ଶ  

 
In this case 𝑘෨ଶ is on the x-axis of the complex plane, and its square root 𝑘෨  is 
also on the x-axis (real). 
 

𝑘෨ ൎ ඥ𝜇𝜖𝜔ଶ  
 
That means: 
 

  
 
 
 
In other words, 𝑘෨  is nearly purely real, and positive; which therefore means that  𝜖̃ and 𝑛 are also both 
nearly purely real, and positive. This is the situation for insulators down to very low frequencies 
(essentially DC). The definition of an insulator is that 𝜎 ≪ 𝜖𝜔, assuming 𝜖 is positive. 
 
Case 2. 𝒌෩𝟐 is mostly real, and negative.  
 
If the real term is much larger than the imaginary term, but NEGATIVE (because 𝜖 is negative), then:  
 

𝑘෨ଶ ൌ െ𝜇|𝜖|𝜔ଶ  𝑖ሺsmallሻ  
𝑘෨ଶ ൎ െ𝜇|𝜖|𝜔ଶ  

 
Then 𝑘෨ଶ is on the negative x-axis, and its square root 𝑘෨  is on the y-axis 
(purely imaginary). Specifically:  
 

𝑘෨ ൎ 𝑖 ඥ𝜇|𝜖|𝜔ଶ   
 
That means: 
    
 
 
 
 

Since 𝑘෨  is nearly purely imaginary; 𝑛 is also nearly purely imaginary. To have this case, we need 𝜎 ≪
|𝜖|𝜔, and 𝜖 is negative. While having a small 𝜎 doesn’t seem like a conductor, one can show that this 
case is typically true for conductors at frequencies in the upper infrared or higher. In other words, it’s not 
so much that 𝜎 is small, but rather that 𝜔 is large. 
 
Case 3. 𝒌෩𝟐 is mostly imaginary.  
 
If the imaginary term is much larger than the real term, then:  
 

𝑘෨ଶ ൌ ሺsmall realሻ  𝑖𝜇𝜎𝜔  

𝑘෨ଶ 𝑘෨  

𝑘 ൎ ඥ𝜇𝜖𝜔ଶ  
 

𝑘 ൎ 0 

𝑘෨ଶ 
𝑘෨  

𝑘 ൎ 0  
 

𝑘 ൎ ඥ𝜇|𝜖|𝜔ଶ 
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𝑘෨ଶ ൎ 𝑖𝜇𝜎𝜔  
 
Then 𝑘෨ଶ is on the y-axis, and its square root 𝑘෨  is at 45. Specifically:  
 

𝑘෨ ൎ ට
ఓఙఠ

ଶ
 ට

ఓఙఠ

ଶ
𝑖   

 
That means: 
    
 
 
 
 
 
 
Since 𝑘෨  is a complex number at 45, 𝑛 is also a complex number at 45.  To have this case, we need 𝜎 ≫
𝜖𝜔 (i.e. small frequencies). This is typically true for conductors at microwave frequencies and below. 
 
According to RMC: 
 

The dividing frequency between the latter two cases is 𝜔 ൎ 1/𝜏 where 𝜏 is the collision [aka 
damping] time for the free electrons. For pure metals at room temperature, 1/𝜏 ൎ 10ଵସ s-1. 
Physically, in cases (1) and (2) the displacement current predominates and in case (3) the 
conduction current predominates. Where the skin depth is important in electrical problems, 
usually case (3) applies... and the “wave” is very strongly attenuated in terms of the wavelength.   

 
 
 

𝑘෨ଶ 𝑘෨  

𝑘 ൎ ට
ఓఙఠ

ଶ
  

 

𝑘 ൎ ට
ఓఙఠ

ଶ
  


