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Lorentz Oscillator Model 
by Dr. Colton, Physics 442/471/581 (last updated: 7 Jul 2025) 

 
Introduction 
  
The Lorentz oscillator model, also known as the Drude-Lorentz oscillator model, involves modeling an 
electron as a driven damped harmonic oscillator. It is extremely important, as can be seen by it being used in 
these textbooks: Physics 442 – Griffiths, Introduction to Electrodynamics; Physics 471 – Peatross and Ware, 
Physics of Light and Optics; Physics 581 – Kittel, Introduction to Solid State Physics, and Stokes, Solid State 
Physics for Advanced Undergraduate Students; and also a graduate school textbook on semiconductor 
physics I used – Yu and Cardona, Fundamentals of Semiconductors. 
 
In this model the electron is bound to a nucleus with a force that can be represented as a spring force, spring 
constant 𝐶. The driving force is the oscillating electric field. There is also a damping force whose source is 
not specified but is present so that the oscillations don’t go infinite when the driving force is at the resonant 
frequency. Also, although the model is for insulators, by removing the spring force so the free electrons are 
not bound to atoms we can also make it apply to conductors. The method of this model is as follows:  
 

1) Obtain an equation of motion for the electron, 𝑥෤ሺ𝑡ሻ, using complex numbers to represent phase shifts 
as usual.  

2) Since the nucleus basically doesn’t move at all, the oscillating dipole moment of the electron-nuclear 
pair of charges will be 𝑞𝑥෤ሺ𝑡ሻ.  

3) If we then assume there are 𝑁 electrons per volume, all with that same response, then the oscillating 
polarization 𝑃෨ (which is dipole moment density) will be 𝑃෨ ൌ 𝑁𝑞𝑥෤ሺ𝑡ሻ.  

4) We’ll find that this is proportional to the driving electric field, then we can read off the 
proportionality constant as 𝜀଴𝜒෤௘ to obtain an equation for 𝜒෤௘, and from that 𝜀௥̃ and 𝑛෤.  

 
Driven, damped harmonic oscillator 
 
There are three forces on the electron in this model. First is the driving force from the electric field, where 
𝐹ௗ௥௜௩௜௡௚ ൌ 𝑞𝐸 ൌ 𝑞𝐸଴ cosሺെ𝜔𝑡ሻ. I’m using cosሺെ𝜔𝑡ሻ here instead of cosሺ൅𝜔𝑡ሻ so that it matches time 
dependence of a standard traveling EM wave, namely cosሺ𝑘𝑥 െ 𝜔𝑡ሻ. Next is the restoring force from the 
spring; we can put the spring force in terms of the resonant frequency 𝜔଴ instead of spring constant 𝐶, so 
𝐹௦௣௥௜௡௚ ൌ െ𝐶𝑥 ൌ െ𝑚𝜔଴

ଶ𝑥. Finally is the damping force, which is proportional to the velocity and is 
described by damping coefficient 𝛾 (units of 𝛾 chosen such that force ൌ 𝛾𝑚𝑣). Then Newton’s Second Law 
becomes: 
 

 𝐹ௗ௥௜௩௜௡௚ ൅ 𝐹௦௣௥௜௡௚ ൅ 𝐹ௗ௔௠௣௜௡௚ ൌ 𝑚𝑥ሷ  (1) 

 𝑞𝐸଴ cosሺെ𝜔𝑡ሻ െ 𝑚𝜔଴
ଶ𝑥 െ 𝛾𝑚𝑥ሶ ൌ 𝑚𝑥ሷ  (2) 

 𝑥ሷ ൅ 𝛾𝑥ሶ ൅ 𝜔଴
ଶ𝑥 ൌ

௤ாబ
௠

cosሺെ𝜔𝑡ሻ (3) 

 
That is the equation of motion we need to solve. It’s simpler to solve if you use complex numbers to 
represent the oscillations. Then we have:  
 

 𝑥ሷ ൅ 𝛾𝑥ሶ ൅ 𝜔଴
ଶ𝑥 ൌ

௤ாబ
௠
𝑒ି௜ఠ௧ (4) 

To solve (4) we’ll use one of the physicist’s favorite tricks, which is to guess the answer and plug it into the 
equation. Here I want to guess a sinusoidal oscillation with added phase shift. 



Lorentz oscillator model – pg 2 
 

Guess 𝑥 ൌ 𝑥଴ cosሺെ𝜔𝑡 ൅ 𝜙ሻ  as solution    →   𝑥෤ ൌ 𝑥଴𝑒௜థ𝑒ି௜ఠ௧  in complex notation 
 𝑥෤ ൌ 𝑥෤଴𝑒ି௜ఠ௧  (the phase 𝜙  is lumped in with complex 0

~x ) 

 
The time derivatives bring down factors of െ𝑖𝜔, so we have:  
 

 ሺെ𝑖𝜔ሻଶ𝑥෤଴𝑒ି௜ఠ௧ ൅ 𝛾ሺെ𝑖𝜔ሻ𝑥෤଴𝑒ି௜ఠ௧ ൅ 𝜔଴
ଶ𝑥෤଴𝑒ି௜ఠ௧ ൌ

௤ாబ
௠
𝑒ି௜ఠ௧ (5) 

We can cancel the 𝑒ି௜ఠ௧ factors, then this remains: 
 

 𝑥෤଴ሺെ𝜔ଶ െ 𝑖𝜔𝛾 ൅ 𝜔଴
ଶሻ ൌ

௤ாబ
௠

 (6) 

 𝑥෤଴ ൌ
௤ாబ
௠

 
ଵ

ఠబ
మିఠమି௜ఠఊ

 (7) 

That is the solution to the complex amplitude of the electron’s oscillating motion. The fact that it is complex 
just means there is a time delay (phase shift) between the driving electric field and the response of the 
electron. Since 𝐸෨ሺ𝑡ሻ ൌ 𝐸଴𝑒ି௜ఠ௧, we can add back into the time dependence to find:  
 

 𝑥෤ሺ𝑡ሻ ൌ
௤

௠
 

ଵ

ఠబ
మିఠమି௜ఠఊ

𝐸෨ሺ𝑡ሻ (8) 

We can separate the amplitude into real and imaginary parts, which turn out to be:  
 

 
Reሼ𝑥෤଴ሽ ൌ

௤ாబ
௠

ఠబ
మିఠమ

൫ఠబ
మିఠమ൯

మ
ାሺఠఊሻమ

Imሼ𝑥෤଴ሽ ൌ
௤ாబ
௠

ఠఊ

൫ఠబ
మିఠమ൯

మ
ାሺఠఊሻమ

   ൢ (9) 

The complex phase of the amplitude is the phase shift 𝜙. 
  
 
 

Susceptibility and Permittivity 
 
As described in the Introduction, the complex polarization 𝑃෨ ൌ 𝑁𝑞𝑥෤ሺ𝑡ሻ, and is therefore: 
 

 𝑃෨ሺ𝑡ሻ ൌ  𝑁𝑞 
௤/௠

ఠబ
మିఠమି௜ఠఊ

𝐸෨ሺ𝑡ሻ (10) 

Also as mentioned in the Introduction the proportionality constant between 𝑃෨ and 𝐸෨  is 𝜀଴𝜒෤௘, so we can just 
read off the complex susceptibility as being the stuff multiplying 𝐸෨ , divided by 𝜀଴:  
 

 𝜒෤௘ ൌ
ே௤మ

௠ఌబ
 

ଵ

ఠబ
మିఠమି௜ఠఊ

 (11) 

The quantity 
ே௤మ

௠ఢబ
 has units of frequency squared, and its square root is called the plasma frequency 𝜔௣, 

because it happens to also be the frequency at which a plasma will naturally oscillate if the positive and 
negative charges in the plasma are offset from each other. 
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 𝜔௣ ൌ ට
ே௤మ

௠ఢబ
 (12) 

That allows us to write the complex susceptibility in a nice compact form, 
 

 𝜒෤௘ ൌ
ఠ೛
మ

ఠబ
మିఠమି௜ఠఊ

 (13) 

The susceptibility and the permittivity (aka dielectric constant) are related via 𝜀௥̃ ൌ 1 ൅ 𝜒෤௘, so we have:  
 

 𝜀௥̃ ൌ 1 ൅  
ఠ೛
మ

ఠబ
మିఠమି௜ఠఊ

 (14) 

This is the main result of the Lorentz oscillator model: a specific equation and functional form for the 
frequency dependence of the relative permittivity of insulators in AC electric fields. The rest of this handout 
just describes minor extensions to that equation, and then applies the equation to a few specific situations.  
 
Note that even in this fairly straightforward model of insulators we arrive at a complex permittivity.  
 
 
Plots of Lorentz oscillator model permittivity, index of refraction, and reflectivity 
 
Figure 1 shows the real and imaginary parts of 𝜀௥̃ as a function of 𝜔 and Figure 2 shows the real and 
imaginary parts of  𝑛෤ ൌ ඥ𝜀௥̃, both plotted with 𝜔௣ ൌ 1 and 𝜔଴ ൌ 1 for simplicity, and for three values of the 
damping constant: 𝛾 ൌ 0.06, 0.2, and 0.5. As the damping decreases, the peaks get narrower and taller.  
 
Close to the resonance there is a large imaginary component to both 𝜀௥̃ and 𝑛෤, which means a lot of 
absorption, but far from the resonance both values are nearly all real. It is only in the neighborhood of the 
resonance (when 𝜔 is close to 𝜔଴) that the complex nature of the permittivity is important. Also notice how 
𝑛௥௘௔௟  and 𝑛௜௠௔௚ are always positive, so  𝑛෤ stays in the first quadrant, as it must, whereas 𝜀௥,௥௘௔௟  can be 
negative so 𝜀௥̃ can be in the second quadrant. 
 
Figure 3 plots the reflectivity at normal incidence at an air-material interface, which is given by: 

Figure 1. Plots of 𝜀௥,௥௘௔௟ and 𝜀௥,௜௠௔௚ for a material with an electronic resonance, plotted with 𝜔௣ ൌ 1 and  
𝜔଴ ൌ 1, for three different damping values: 𝛾 ൌ 0.06, 0.2, 0.5. (The taller peaks are those with less damping.) 

𝜀௥,௥௘௔௟ 

𝜔 

𝜀௥,௜௠௔௚

𝜔 
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 𝑅 ൌ ቚଵି௡
෤

ଵା௡෤
ቚ
ଶ
 (15) 

Insulators become very reflective for frequencies where 𝜀௥̃ goes negative and hence 𝑛෤ goes imaginary, which 

it can be shown is the range between 𝜔଴ and ට𝜔଴
ଶ ൅ 𝜔௣ଶ . Damping rounds out the corners and decreases the 

maximum reflectivity.  
 
 
Low and high frequency limits  
 
As can be seen in the permittivity plots, 𝜀௥̃ goes to a specific real value at low frequencies, and to a different 
specific real value at high frequencies. I will call those values 𝜀ሺ0ሻ and 𝜀ஶ, respectively, and the values can 
be obtained by using 𝜔 ൌ 0 and 𝜔 ൌ ∞ in the Lorentz oscillator model permittivity equation. 
 
Low frequency value:  

 𝜀ሺ0ሻ ൌ 1 ൅  
ఠ೛
మ

ఠబ
మି଴మି௜଴ఊ

ൌ 1 ൅  
ఠ೛
మ

ఠబ
మ (16) 

𝜔 

𝑛௥௘௔௟ 

𝜔 

𝑛௜௠௔௚ 

Figure 2. Plots of 𝑛௥௘௔௟ and 𝑛௜௠௔௚ for a material with an electronic resonance, plotted with 𝜔௣ ൌ 1 and  𝜔଴ ൌ
1, for three different damping values: 𝛾 ൌ 0.06, 0.2, 0.5. (The taller peaks are those with less damping.) 

𝑅 

𝜔 

Figure 3. Plot of 𝑅 for the electronic (UV) 
resonance in an insulator, with 𝜔௣ ൌ 1 and 𝜔଴=1, 
and four different damping values: 𝛾 ൌ 0, 0.06, 0.2, 
and 0.5. (The taller peaks are those with less 
damping.) 



Lorentz oscillator model – pg 5 
 

High frequency value:  

 𝜀ஶ ൌ 1 ൅  
ఠ೛
మ

ఠబ
మିஶమି௜ஶఊ

ൌ 1 (17) 

 
Modification 1: Changing 𝜺ஶ 
 
For situations where you are truly at infinitely high frequencies, the relative permittivity really does need to 
go to 1, because nothing can respond quickly enough to produce dielectric screening. However, there are 
many situations where some additional screening might exist at frequencies just above the resonance that you 
are looking at. In those cases, the high frequency value will NOT be 1, but will be something else. To take 
that into account, we can just manually change the “1” in the complex permittivity equation to 𝜀ஶ:  
 

 𝜀௥̃ ൌ 𝜀ஶ ൅  
ఠ೛
మ

ఠబ
మିఠమି௜ఠఊ

 (18) 

That changes the low frequency value to 𝜀ሺ0ሻ ൌ 𝜀ஶ ൅  
ఠ೛
మ

ఠబ
మ  and the high frequency limit (of course) to 𝜀ஶ. 

 
It also affects the plots. Figures 4, 5, and 6, are the same as Figures 1, 2, and 3, just redone for the case of 
𝜀ஶ ൌ 3 instead of 1. Notice how shifting 𝜀௥̃ up by 2 reduces the range where 𝜀௥̃,௥௘௔௟  goes negative, in turn 
reducing the range where 𝑛෤ is purely imaginary and the material is highly reflective. Specifically, the region 

of high reflectivity becomes the range between 𝜔଴ and ට𝜔଴
ଶ ൅

ఠ೛
మ

ఌಮ
 . 

 
 
Modification 2: Multiple oscillators, and “oscillator strength” 
 
One situation where you have an 𝜀ஶ value which is not 1, is if you have multiple resonances but you want to 
focus on the lower one. To allow for multiple resonances we can introduce a summation. Let’s assume for 
now that the multiple resonances arise because you have electrons bound to different atoms; each atom could 
have its own response. Here 𝜔௣௜, 𝜔଴௜ and 𝛾௜ are the plasma frequency, resonant frequency, and damping 
coefficient, respectively, for the 𝑖th type of electron.  

Figure 4. Plots of 𝜀௥,௥௘௔௟ and 𝜀௥,௜௠௔௚ for a material with 𝜀ஶ ൌ 3, plotted with 𝜔௣ ൌ 1 and  𝜔଴ ൌ 1, for three 
different damping values: 𝛾 ൌ 0.06, 0.2, 0.5. (The taller peaks are those with less damping.) 

𝜀௥,௥௘௔௟ 

𝜔 

𝜀௥,௜௠௔௚ 

𝜔 
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 𝜀௥̃ ൌ 𝜀ஶ ൅ ∑
ఠ೛೔
మ

ఠబ೔
మ ିఠమି௜ఠఊ೔

௜  (19) 

By introducing the oscillator strength, 𝑓௜ ൌ 𝑁௜/𝑁௧௢௧, which describes the fraction of electrons of type 𝑖, we 
can change the equation into this: 
  

 𝜀௥̃ ൌ 𝜀ஶ ൅ 𝜔௣ଶ ∑
௙೔

ఠబ೔
మ ିఠమି௜ఠఊ೔

௜   (20) 

The plasma frequency in (20) is now defined by the total number of oscillating electrons per volume, 𝜔௣ ൌ

ට
ே೟೚೟௤మ

௠ఢబ
, so when you multiply 𝜔௣ଶ𝑓௜, you get 𝑁௧௢௧𝑓௜ as the 𝑁 of each term, which is the number per volume 

of that species. If there is no dielectric response above the highest frequency, then set 𝜀ஶ ൌ 1 again. 
 
Figure 7 depicts the permittivity for a situation with two resonances. Specifically, I’ve chosen 𝜀ஶ ൌ 1 and 
𝜔௣ ൌ 3; then the left resonance has 𝜔଴ ൌ 1, 𝛾 ൌ 0.06, and 𝑓 ൌ 0.3; the right resonance has 𝜔଴ ൌ 4, 𝛾 ൌ
0.04, and 𝑓 ൌ 0.7.  Notice how in particular the right resonance’s 𝜀ሺ0ሻ, which equals 1 ൅ 𝜔௣ଶ/𝜔଴

ଶ ൌ 1.5625, 
becomes the left resonance’s 𝜀ஶ.  
 

𝜔 

𝑛௥௘௔௟ 

𝜔 

𝑛௜௠௔௚ 

Figure 5. Plots of 𝑛௥௘௔௟ and 𝑛௜௠௔௚ for a material with 𝜀ஶ ൌ 3, plotted with 𝜔௣ ൌ 1 and  𝜔଴ ൌ 1, for three 
different damping values: 𝛾 ൌ 0.06, 0.2, 0.5. (The taller peaks are those with less damping.) 

𝑅 

𝜔 

Figure 6. Plot of 𝑅 for a material with 𝜀ஶ ൌ 3, 
plotted with 𝜔௣ ൌ 1 and 𝜔଴=1, and four different 
damping values: 𝛾 ൌ 0, 0.06, 0.2, and 0.5. (The 
taller peaks are those with less damping.) 
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Schematic plots like Figure 8 are used to depict how the susceptibility or polarizability of atoms in solids 
changes with frequency. Aside from what happens at low frequencies, labeled as a dipolar effect, there is a 
lot of similarity with the two-resonance plot of Fig. 7 (left). In Fig. (8) one resonance is labeled “electronic” 
and occurs in the ultraviolet from the dielectric response of the electrons; the other is labeled “ionic” and 
occurs in the infrared frequencies due to the dielectric response of ions in the lattice. The ionic model is 
identical to what was presented above for electrons, except the dipoles are formed by the combined motion 
of the positive and negative ions instead of the motion of the electrons. Because the ions are much heavier 
than electrons, the resonant frequencies in the ionic regime are much lower. 
 
Applied to glasses 
 
The electronic resonance itself is typically at UV frequencies. The shape of 𝑛෤௥௘௔௟  at frequencies below the 
resonance (i.e. visible wavelengths) explains the normal dispersion found in glasses. See for example 
Figure 9, which is a plot of 𝑛෤௥௘௔௟  vs. 𝜆 for several common glasses; compare against the shape of 𝑛෤௥௘௔௟ 
below resonance from Fig. 2 (plotted vs. 𝜔). 
 
Applied to gases 
 
Griffiths applies (20) to a gas of molecules, but defines the quantities slightly differently. Instead of 𝑁 being 
the total number of oscillating electrons and 𝑓௜ being the fraction of electrons of type 𝑖, he uses 𝑁 as the total 

Figure 7. Plots of 𝜀௥,௥௘௔௟ and 𝜀௥,௜௠௔௚ for a material with two resonances, using these parameters: 𝜀ஶ ൌ 1, 
𝜔௣ ൌ 3; 𝜔଴ଵ ൌ 1, 𝛾ଵ ൌ 0.06, and 𝑓ଵ ൌ 0.3; and 𝜔଴ଶ ൌ 4, 𝛾ଶ ൌ 0.04, and 𝑓ଶ ൌ 0.7.   

𝜀௥,௥௘௔௟ 

𝜔 

𝜀௥,௜௠௔௚ 

𝜔 

Figure 8. Schematic of the frequency dependence 
of the several contributions to the polarizability. 
From Kittel, Fig. 16-8. 
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number of molecules an  d 𝑓௜ being the number of oscillating electrons of type 𝑖 within each molecule. It 
amounts to the same thing, though, since the number of molecules × number of oscillating electrons of type 𝑖 
within each molecule is the same as the number of oscillating electrons × fraction of electrons of type 𝑖. 
 
Additionally, since gases are dilute, 𝑁 will be small, and the terms in the summation will be much less than 

one. Therefore the index of refraction can be approximated by 𝑛෤ ൌ ඥ𝜀௥̃ ൌ √1 ൅ small ൎ 1 ൅
ଵ

ଶ
ሺsmallሻ. 

Griffiths uses that approximation to obtain Cauchy’s formula, Equation (9.176) (5th edition): 
 

 𝑛 ൎ 1 ൅ 𝐴 ቀ1 ൅
஻

ఒమ
ቁ (21) 

Applied to ions 
 
As mentioned above, the Lorentz oscillator model can be applied to ionic materials. In such materials, the 
atoms are charged and their interactions with neighboring atoms cause them to be anchored to their lattice 
spots as with a spring. The relevant charge 𝑞 is the ionic charge, which in general could be different than the 
charge of an electron, 𝑒. In partially ionic materials the charge can even be fractional. 
 
Figure 10 depicts the Lorentz model applied to such oscillating ions, plotting the real part of the relative 
permittivity near the resonant frequency of the oscillating ions. Kittel has chosen 𝛾 ൌ 0, 𝜀ஶ ൌ 2, 𝜔଴ ൌ 1, 
and 𝜔௣ such that 𝜀ሺ0ሻ ൌ 3. The permittivity goes negative at 𝜔଴, which is labeled 𝜔் because it represents a 
transverse oscillation of the ions in response to the electric field. The frequency at which the permittivity 
goes positive is defined in the text as 𝜔௅ because it relates to a longitudinal oscillation of the ions, at which 
there is no dielectric response because the electric field itself is a transverse oscillation. Electromagnetic 
waves with frequencies in the shaded region, between 𝜔் and 𝜔௅, will not propagate in the medium but 
instead will have 100% reflectivity (if no damping). 
 

Figure 10. The real part of the relative permittivity near 
the resonant frequency of the oscillating ions in a solid, 
using the Lorentz model with no damping (𝛾 ൌ 0ሻ. Kittel 
has chosen  𝜀ஶ ൌ 2, 𝜔଴ ൌ 1, and 𝜔௣ such that 𝜀ሺ0ሻ ൌ 3.. 
From Kittel, Fig. 14.13a. 

ωT   ωL 

Figure 9. Real part of index of refraction plotted vs 
wavelength for several glasses. These frequencies are 
just below the electronic resonance 𝜔଴. From Wikipedia, 
Dispersion (optics). 



Lorentz oscillator model – pg 9 
 

A well-known semiconductor physics textbook by Yu and Cardona plots the results of this model applied to 
ions, along with some actual experimental data for real materials. These are presented in Figures 11 and 12.   
 
Important note on units: As you can see, the x-axis of Fig. 12 is labeled “Wave number [cm-1]". CAUTION: 
that is not what we’ve been calling the wave number! The wave number 𝑘, as we’ve been using it, would be 
labeled as rad/m or rad/cm. By contrast, when you see experimental data that is labeled “cm-1”, particularly 
with optical data like this, they always mean 1/𝜆 instead of 2𝜋/𝜆. I believe in the “olden days” 𝑘 was 
originally defined as 1/𝜆, and this has persisted in some things even today. If you see a feature on a graph 
like this at, say, 185 cm-1, you can convert it to regular wavelength like this: 

 
185 cm-1 = 18500 m-1    take inverse, 𝜆 = 5.405e-5 meters  54 μm  

 
 
Applied to metals 
 
The fun doesn’t stop! In metals the valence electrons are not anchored to their nuclei (no springs) but instead 
are free to move around the material. However, they still respond to the electric field and experience 
damping in the same way as the electrons in insulators for which we derived the Lorentz oscillator model 
above. Can we just set 𝜔଴ ൌ 0 to account for no restoring forces? Yes we can! Setting 𝜔଴ ൌ 0 in the Lorentz 
oscillator model (which, with no restoring forces is sometimes called the Drude model) results in:  
 

Figure 11. The infrared 
reflectivity from ionic 
oscillations, calculated 
from the Lorentz model for 
a few different values of 
damping. T and L stand 
for the transverse and 
longitudinal oscillations, 
the O stands for “optical 
phonon” modes. From Yu 
& Cardona, Fig. 6.31(b). 

Figure 12. Actual 
experimental reflectivity 
data (solid curves), and 
theoretical fits from the 
Lorentz model (dashed 
curves) using ωT, ωL, and 
γ as fitting parameters. 
From Yu & Cardona, Fig. 
6.32. 
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 𝜀௥̃ ൌ 𝜀ஶ െ  
ఠ೛
మ

ఠమା௜ఠఊ
 (22) 

Figure 13 plots the real and imaginary parts of 𝑛෤ ൌ ඥ𝜀௥̃ from this equation with 𝜀ஶ ൌ 1 and 𝜔௣ ൌ 50𝛾, at 
frequencies close to 𝜔௣; and also the reflectivity 𝑅 from this equation for 𝜔௣ ൌ 0.25 (chosen to match 𝜔௣ in 
Fig. 14) and four values of damping: 𝛾 ൌ 0, 0.001, 0.01, 0.1. Notice the abrupt crossover between being 
nearly purely imaginary (highly reflective) below the plasma frequency to nearly purely real (highly 
transparent) above the plasma frequency. Most metals have plasma frequencies in the UV, so if your eyes 
were sensitive to the far UV rather than to visible light, you would be able to see right through metals!  
 
Finally, as an example where you need to use an 𝜀ஶ not equal to 1, Figure 14 shows some data on the 
infrared reflectivity of indium antimonide (InSb) on the left, also with my own plot of 𝑅 on the right using 
𝜀ஶ ൌ 12, 𝜔௣ ൌ 0.25, and four damping values:  𝛾 ൌ 0, 0.001, 0.01, 0.1. Notice how nicely my plot matches 
the experimental data; but also, how different my plot here is compared to Figure 13 in terms of where the 
reflectivity abruptly dips, even though 𝜔௣ is still 0.25. The differences arise from setting 𝜀ஶ ൌ 12. 

Figure 13. (left) Real and imaginary parts of the index of refraction for a conductor with 𝜀ஶ ൌ 1 and 𝜔௣ ൌ 50𝛾. 
From Peatross and Ware, Fig. 2.7. (right) Plot of 𝑅 for a metal with 𝜀ஶ ൌ 1, 𝜔௣ ൌ 0.25 and four different damping 
values: 𝛾 ൌ 0, 0.001, 0.01, 0.1. (The taller peaks are those with less damping.) Given this 𝜔௣, the plot on the left 
corresponds to 𝛾 ൌ 0.005, between the yellow and green curves. 

𝑅 
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Figure 14. (left) Experimental reflectivity of InSb (empty points), fitted with the Lorentz model with no damping 
(solid line). From Kittel, Fig. 14.3. (right) Plot of 𝑅 with 𝜀ஶ ൌ 12, 𝜔௣ ൌ 0.25, and four different damping values:  
𝛾 ൌ 0, 0.001, 0.01, 0.1. (The taller peaks are those with less damping.) This plot makes it look like Kittel should 
have used some damping in the fit on the left to smooth out the sharp features in his solid line. 
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