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The Maxwell Stress Tensor Theorem 
by Dr. Colton, Physics 442 (last updated: Winter 2025) 

 
Goal 
 
The goal here is to figure out an equation that is analogous to Poynting’s Theorem, but involving 
momentum instead of energy. As a reminder, Poynting’s Theorem has these two forms: 
 

−𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∮𝐒𝐒 ⋅ 𝑑𝑑𝐚𝐚  
 

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ⋅ 𝐒𝐒 
 
where 𝑈𝑈 and 𝑢𝑢 are the energy and energy density stored in the fields, 𝑊𝑊 and 𝑤𝑤 are the work and work per 
volume done on charges, and 𝐒𝐒 is the Poynting vector.  
 
The new equations will have this form:  
 

−𝜕𝜕(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎)
𝜕𝜕𝜕𝜕

= 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒐𝒐𝒐𝒐 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 + ∮(−𝐓⃖𝐓�⃗ ) ⋅ 𝑑𝑑𝐚𝐚  
 

−𝜕𝜕(𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅)
𝜕𝜕𝜕𝜕

= 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 + ∇ ⋅ �−𝐓⃖𝐓�⃗ �  
 
where 𝐓⃖𝐓�⃗  is the Maxwell Stress Tensor and −𝐓⃖𝐓�⃗  represents outward momentum flow like 𝐒𝐒 represents 
outward energy flow. Because momentum and force are vectors, 𝐓⃖𝐓�⃗  must be a tensor, which for now you 
can think of as being just a 3 × 3 matrix. I call these equations the “MST theorem” by analogy to 
Poynting’s theorem, but I haven’t seen that term used elsewhere.  
 
 
Derivation  
 
We will arrive at this equation by starting with the force on the charges, which is given by the Lorentz 
force equation:  
 

𝐅𝐅 = 𝑞𝑞𝐄𝐄 + 𝑞𝑞𝐯𝐯 × 𝐁𝐁. 
 
Let’s define force per volume to be 𝐟𝐟. Since 𝑞𝑞/𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is 𝜌𝜌 and a charge density moving at speed 𝐯𝐯 
becomes a current density with 𝜌𝜌𝐯𝐯 = 𝐉𝐉, we therefore have:  
 

𝐟𝐟 = 𝜌𝜌𝐄𝐄 + 𝐉𝐉 × 𝐁𝐁. 
 
We can use Gauss’s law and Ampere’s law to substitute 𝜌𝜌 = 𝜀𝜀0∇ ⋅ 𝐄𝐄 and 𝐉𝐉 = 1

𝜇𝜇0
∇ × 𝐁𝐁 − 𝜀𝜀0

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕

, to obtain: 
 

𝐟𝐟 = 𝜀𝜀0(∇ ⋅ 𝐄𝐄)𝐄𝐄 + � 1
𝜇𝜇0
∇ × 𝐁𝐁 − 𝜀𝜀0

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕
� × 𝐁𝐁  

 
 𝐟𝐟 = 𝜀𝜀0(∇ ⋅ 𝐄𝐄)𝐄𝐄 + 1

𝜇𝜇0
(∇ × 𝐁𝐁) × 𝐁𝐁 − 𝜀𝜀0 �

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕
� × 𝐁𝐁.  
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Let’s arbitrarily add in 1
𝜇𝜇0

(∇ ⋅ 𝐁𝐁)𝐁𝐁  to the right hand side to increase the symmetry between 𝐄𝐄 and 𝐁𝐁, 
which we can do because the divergence of 𝐁𝐁 is zero—so it’s just adding in nothing. Let’s also reverse 
the order of the cross product of the second term on the right hand side. That gives us:  
 
 𝐟𝐟 = 𝜀𝜀0(∇ ⋅ 𝐄𝐄)𝐄𝐄 + 1

𝜇𝜇0
(∇ ⋅ 𝐁𝐁)𝐁𝐁 − 1

𝜇𝜇0
𝐁𝐁 × (∇ × 𝐁𝐁) − 𝜀𝜀0 �

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕
� × 𝐁𝐁. (1) 

 
Let’s now tackle the last term of on right hand side of (1). It relates to 𝜕𝜕𝐒𝐒/𝜕𝜕𝜕𝜕, as we will see as follows:  
 

𝜕𝜕𝐒𝐒
𝜕𝜕𝜕𝜕

= 1
𝜇𝜇0

𝜕𝜕(𝐄𝐄×𝐁𝐁)
𝜕𝜕𝜕𝜕

  
 

𝜇𝜇0
𝜕𝜕𝐒𝐒
𝜕𝜕𝜕𝜕

= �𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕
� × 𝐁𝐁 + 𝐄𝐄 × �𝜕𝜕𝐁𝐁

𝜕𝜕𝜕𝜕
�  

 
 𝜇𝜇0

𝜕𝜕𝐒𝐒
𝜕𝜕𝜕𝜕

= �𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕
� × 𝐁𝐁 + 𝐄𝐄 × (−∇ × 𝐄𝐄) (2) 

 
where the last step was done via Faraday’s law and the step before that using the derivative product rule.  
 
We can now see that the last term of (1) closely relates to the first term on the right hand side of (2), and 
equals the following:  
 

−𝜀𝜀0 �
𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕
� × 𝐁𝐁 = −𝜀𝜀0 �𝜇𝜇0

𝜕𝜕𝐒𝐒
𝜕𝜕𝜕𝜕
− 𝐄𝐄 × (−∇ × 𝐄𝐄)�, 

 
which simplifies to  
 −𝜀𝜀0 �

𝜕𝜕𝐄𝐄
𝜕𝜕𝜕𝜕
� × 𝐁𝐁 = −𝜀𝜀0𝜇𝜇0

𝜕𝜕𝐒𝐒
𝜕𝜕𝜕𝜕
− 𝜀𝜀0𝐄𝐄 × (∇ × 𝐄𝐄). (3) 

 
 
Substituting (3) into (1), we have:  
 
 𝐟𝐟 = 𝜀𝜀0(∇ ⋅ 𝐄𝐄)𝐄𝐄 + 1

𝜇𝜇0
(∇ ⋅ 𝐁𝐁)𝐁𝐁 − 1

𝜇𝜇0
𝐁𝐁 × (∇ × 𝐁𝐁) − 𝜀𝜀0𝜇𝜇0

𝜕𝜕𝐒𝐒
𝜕𝜕𝜕𝜕
− 𝜀𝜀0𝐄𝐄 × (∇ × 𝐄𝐄) (4) 

 
Nearing the end, we have a term now that is 𝐄𝐄 × (∇ × 𝐄𝐄), and a similar term for 𝐁𝐁. We can use Griffiths’ 
Product Rule #4 which gives an equation for ∇(𝐀𝐀 ⋅ 𝐁𝐁); when 𝐀𝐀 and 𝐁𝐁 are the same field, let’s call it 𝐀𝐀, 
PR4 results in this:  
 

∇(𝐴𝐴2) = 2𝐀𝐀 × (∇ × 𝐀𝐀) + 2(𝐀𝐀 ⋅ ∇)𝐀𝐀 
 

𝐀𝐀 × (∇ × 𝐀𝐀) =
1
2
∇(𝐴𝐴2) − (𝐀𝐀 ⋅ ∇)𝐀𝐀 

 
We use that expression in (4) for 𝐄𝐄 and also for 𝐁𝐁, and reorder the terms to obtain the final result for 𝑓𝑓:  
 

 𝐟𝐟 = 𝜀𝜀0 �(∇ ⋅ 𝐄𝐄)𝐄𝐄 − 1
2
∇(𝐸𝐸2) + (𝐄𝐄 ⋅ ∇)𝐄𝐄� + 1

𝜇𝜇0
�(∇ ⋅ 𝐁𝐁)𝐁𝐁 − 1

2
∇(𝐵𝐵2) + (𝐁𝐁 ⋅ ∇)𝐁𝐁� − 𝜀𝜀0𝜇𝜇0

𝜕𝜕𝐒𝐒
𝜕𝜕𝜕𝜕

 (5) 

 
This is the MST equation, although not how it’s typically written.  
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Standard Forms 
 
What does (𝐄𝐄 ⋅ ∇)𝐄𝐄 even mean, anyway? It’s a shortcut notation for this:  
 

(𝐄𝐄 ⋅ ∇)𝐄𝐄 = �𝐸𝐸𝑥𝑥
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐸𝐸𝑦𝑦
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐸𝐸𝑧𝑧
𝜕𝜕
𝜕𝜕𝜕𝜕
� �𝐸𝐸𝑥𝑥𝐱𝐱� + 𝐸𝐸𝑦𝑦𝐲𝐲� + 𝐸𝐸𝑧𝑧𝐳𝐳��  

 
which is actually 9 terms once you “FOIL” it out! 
 
There are also other derivatives acting on the various components of 𝐄𝐄, and also for 𝐁𝐁, and (5) can be 
made to look quite a bit simpler if we put it in a vector form, like this:  
 

 �
𝑓𝑓𝑥𝑥
𝑓𝑓𝑦𝑦
𝑓𝑓𝑧𝑧
� = � 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕� �

3 × 3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝑇𝑇𝑖𝑖𝑖𝑖   

� − 𝜀𝜀0𝜇𝜇0
𝜕𝜕𝐒𝐒
𝜕𝜕𝜕𝜕

  

 
Or using a shortcut notation, like this:  
 

 𝐟𝐟 = ∇ ⋅ 𝐓⃖𝐓�⃗ − 𝜀𝜀0𝜇𝜇0
𝜕𝜕𝐒𝐒
𝜕𝜕𝜕𝜕

  

 
That is the standard “differential form” of the MST equation.  
 
Grouping the various components of (5) together and doing some algebra which I won’t show, the 3 × 3 
matrix which I’ve called 𝑇𝑇𝑖𝑖𝑖𝑖, also known as the “Maxwell Stress Tensor”, turns out to be given by the 
following formula for the (𝑖𝑖, 𝑗𝑗)th component:  
 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜀𝜀0 �𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗 −
1
2
𝛿𝛿𝑖𝑖𝑖𝑖𝐸𝐸2� +

1
𝜇𝜇0
�𝐵𝐵𝑖𝑖𝐵𝐵𝑗𝑗 −

1
2
𝛿𝛿𝑖𝑖𝑖𝑖𝐵𝐵2�  

 
Here 𝛿𝛿𝑖𝑖𝑖𝑖 refers to the Kronecker delta function, which is 1 if 𝑖𝑖 = 𝑗𝑗  (for the diagonal components of the 
matrix) and 0 otherwise (for the off-diagonal components).  
  
By integrating over a volume of space and applying the divergence theorem we have these other two 
standard “integral forms” of the MST equation which gives the force rather than force density: 
 

𝐅𝐅 = ∮ 𝐓⃖𝐓�⃗ ⋅ 𝑑𝑑𝐚𝐚 − 𝜀𝜀0𝜇𝜇0
𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝐒𝐒𝑑𝑑𝑑𝑑   

 

�
𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
𝐹𝐹𝑧𝑧
� = ∮�

𝑇𝑇𝑥𝑥𝑥𝑥 𝑇𝑇𝑥𝑥𝑥𝑥 𝑇𝑇𝑥𝑥𝑥𝑥
𝑇𝑇𝑦𝑦𝑦𝑦 𝑇𝑇𝑦𝑦𝑦𝑦 𝑇𝑇𝑦𝑦𝑦𝑦
𝑇𝑇𝑧𝑧𝑧𝑧 𝑇𝑇𝑧𝑧𝑧𝑧 𝑇𝑇𝑧𝑧𝑧𝑧

��
𝑛𝑛𝑥𝑥
𝑛𝑛𝑦𝑦
𝑛𝑛𝑧𝑧
�𝑑𝑑𝑑𝑑 − 𝜀𝜀0𝜇𝜇0

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝐒𝐒𝑑𝑑𝑑𝑑   

 
I’ve explicitly written out the matrix elements and have also written 𝑑𝑑𝐚𝐚 in terms of a unit vector normal to 
the surface, 𝐧𝐧, i.e. 𝑑𝑑𝐚𝐚 = 𝐧𝐧𝑑𝑑𝑑𝑑. When actually using the MST equation to deduce forces on charges, that 
last form will be the most useful. Just be sure to draw a closed “Maxwellian surface” (like a Gaussian 
surface) surrounding the charges whose force you want to know, so that you are very clear about the 
surface integral, and use a different 𝐧𝐧 for each part of the closed surface as appropriate.  
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Conservation of Momentum 
 
The MST equation is a statement of conservation of momentum. This can most easily be seen by 
considering a region of space where there is no medium (and hence no force), where it becomes: 
 

−
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜀𝜀0𝜇𝜇0𝐒𝐒) = ∇ ⋅ �−𝐓⃖𝐓�⃗ � 
 
Compare that to these other two previous conservation laws…   
 
Conservation of charge (equation of continuity): 
 
 
 
 
 
Conservation of energy (Poynting’s theorem, in the absence of charges):   
 
 
 
 
 
Just like 𝜌𝜌 is charge density and 𝑢𝑢 is energy density, we can recognize that 𝜀𝜀0𝜇𝜇0𝐒𝐒 is momentum density, 
which the units bear out.  
 
Just like 𝐉𝐉 represents an outward flow of charge (charge per time, per area) and 𝐒𝐒 is an outward flow of 
energy (energy per time, per area), −𝐓⃖𝐓�⃗  represents an outward flow of momentum. Careful with the sign! 
With regards to what the specific matrix components represent, I really like this sentence from the 3rd 
edition of Griffiths: “Specifically, −𝑇𝑇𝑖𝑖𝑖𝑖 is the momentum in the 𝑖𝑖 direction crossing a surface oriented in 
the 𝑗𝑗 direction, per unit area, per unit time.” 
 
 
Conclusion 
 
In summary: momentum is conserved in the absence of the fields exerting forces on charges. When the 
fields do exert forces on charges, then by rewriting the order of the MST terms to match what I said was 
the goal at the start, like this 
 

− 𝜕𝜕
𝜕𝜕𝜕𝜕

(∫ 𝜀𝜀0𝜇𝜇0𝐒𝐒𝑑𝑑𝑑𝑑) = 𝐅𝐅 + ∮(−𝐓⃖𝐓�⃗ ) ⋅ 𝑑𝑑𝐚𝐚  
  

−𝜕𝜕(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎)
𝜕𝜕𝜕𝜕

= 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒐𝒐𝒐𝒐 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 + ∮(−𝐓⃖𝐓�⃗ ) ⋅ 𝑑𝑑𝐚𝐚,  
 
we can say that stored momentum in a volume of space can be lost either by (1) using it to exert a force 
on charges within that volume, or (2) by having an overall outward flow of momentum from the region.  
 

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∇ ⋅ 𝐒𝐒 

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∇ ⋅ 𝐉𝐉 


